Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, E-26/111.150/2011 PRONEM 25/2010

Link to this page

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, E-26/111.150/2011 PRONEM 25/2010

Authors

Publications

Lepidocrocite-like ferrititanate nanosheets and their full exfoliation with quaternary ammonium compounds

Marinković, Bojan A.; Pontón, Patricia I.; Resende, J. M.; Letichevsky, Sonia; Habran, Margarita; Viol, J. B.; Pandoli, Omar; Mančić, Lidija

(Elsevier, 2015)

TY  - JOUR
AU  - Marinković, Bojan A.
AU  - Pontón, Patricia I.
AU  - Resende, J. M.
AU  - Letichevsky, Sonia
AU  - Habran, Margarita
AU  - Viol, J. B.
AU  - Pandoli, Omar
AU  - Mančić, Lidija
PY  - 2015
UR  - https://dais.sanu.ac.rs/123456789/3515
AB  - Efficient methods for the synthesis of layered structure nanomaterials (nanosheets), their complete exfoliation (delamination) into the layers of atomic thickness and design of organic-inorganic nanohybrids present important stages toward development of improved polymer-based nanocomposites and pillared heterostructures with potential application in purification technologies such as photocatalysis. A rapid and efficient exfoliation process of protonated layered ferrititanates with lepidocrocite-like structure and formation of organic-inorganic nanohybrids is performed starting from the nanosheets composed of only a few host layers and nanometric lateral dimensions using quaternary ammonium compounds. These nanosheets are initially synthesized from a highly abundant precursor through an alkaline hydrothermal route. We demonstrated that dimethyldioctadecylammonium cations strongly interact with the exfoliated single host layers (0.75. nm thick) providing thermal stability (~ 500 °C) to the as-prepared organic-inorganic nanohybrid over the temperature range commonly applied for the processing of thermoplastic nanocomposites. © 2015 Elsevier Ltd.
PB  - Elsevier
T2  - Materials and Design
T1  - Lepidocrocite-like ferrititanate nanosheets and their full exfoliation with quaternary ammonium compounds
SP  - 197
EP  - 204
VL  - 85
DO  - 10.1016/j.matdes.2015.06.171
UR  - https://hdl.handle.net/21.15107/rcub_dais_3515
ER  - 
@article{
author = "Marinković, Bojan A. and Pontón, Patricia I. and Resende, J. M. and Letichevsky, Sonia and Habran, Margarita and Viol, J. B. and Pandoli, Omar and Mančić, Lidija",
year = "2015",
abstract = "Efficient methods for the synthesis of layered structure nanomaterials (nanosheets), their complete exfoliation (delamination) into the layers of atomic thickness and design of organic-inorganic nanohybrids present important stages toward development of improved polymer-based nanocomposites and pillared heterostructures with potential application in purification technologies such as photocatalysis. A rapid and efficient exfoliation process of protonated layered ferrititanates with lepidocrocite-like structure and formation of organic-inorganic nanohybrids is performed starting from the nanosheets composed of only a few host layers and nanometric lateral dimensions using quaternary ammonium compounds. These nanosheets are initially synthesized from a highly abundant precursor through an alkaline hydrothermal route. We demonstrated that dimethyldioctadecylammonium cations strongly interact with the exfoliated single host layers (0.75. nm thick) providing thermal stability (~ 500 °C) to the as-prepared organic-inorganic nanohybrid over the temperature range commonly applied for the processing of thermoplastic nanocomposites. © 2015 Elsevier Ltd.",
publisher = "Elsevier",
journal = "Materials and Design",
title = "Lepidocrocite-like ferrititanate nanosheets and their full exfoliation with quaternary ammonium compounds",
pages = "197-204",
volume = "85",
doi = "10.1016/j.matdes.2015.06.171",
url = "https://hdl.handle.net/21.15107/rcub_dais_3515"
}
Marinković, B. A., Pontón, P. I., Resende, J. M., Letichevsky, S., Habran, M., Viol, J. B., Pandoli, O.,& Mančić, L.. (2015). Lepidocrocite-like ferrititanate nanosheets and their full exfoliation with quaternary ammonium compounds. in Materials and Design
Elsevier., 85, 197-204.
https://doi.org/10.1016/j.matdes.2015.06.171
https://hdl.handle.net/21.15107/rcub_dais_3515
Marinković BA, Pontón PI, Resende JM, Letichevsky S, Habran M, Viol JB, Pandoli O, Mančić L. Lepidocrocite-like ferrititanate nanosheets and their full exfoliation with quaternary ammonium compounds. in Materials and Design. 2015;85:197-204.
doi:10.1016/j.matdes.2015.06.171
https://hdl.handle.net/21.15107/rcub_dais_3515 .
Marinković, Bojan A., Pontón, Patricia I., Resende, J. M., Letichevsky, Sonia, Habran, Margarita, Viol, J. B., Pandoli, Omar, Mančić, Lidija, "Lepidocrocite-like ferrititanate nanosheets and their full exfoliation with quaternary ammonium compounds" in Materials and Design, 85 (2015):197-204,
https://doi.org/10.1016/j.matdes.2015.06.171 .,
https://hdl.handle.net/21.15107/rcub_dais_3515 .
3
4
3
4