National Science Foundation grant DMR-1523617

Link to this page

National Science Foundation grant DMR-1523617

Authors

Publications

Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials

Peleš Tadić, Adriana; Vuković, George; Kojović, Aleksandar; Stojanović, Dušica; Vlahović, Branislav; Milosavljević, Nataša; Obradović, Nina; Pavlović, Vladimir B.

(Belgrade : University of Belgrade - Faculty of Mechanical Engineering, 2023)

TY  - CONF
AU  - Peleš Tadić, Adriana
AU  - Vuković, George
AU  - Kojović, Aleksandar
AU  - Stojanović, Dušica
AU  - Vlahović, Branislav
AU  - Milosavljević, Nataša
AU  - Obradović, Nina
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14969
AB  - Barium titanate (BaTiO3) and polyvinylidene fluoride (PVDF) based multifunctional materials are attracting a great scientific interest due to their excellent piezoelectric, pyroelectric and ferroelectric properties. These materials undergo controlled transformations through physical interactions and respond to environmental stimuli, such as temperature, pressure, electric and magnetic fields. Their properties strongly depend on synthesis procedures and obtained microstructures. This include intergranular contact surfaces of BaTiO3 based materials, as well as, porous structure and cross-linking patterns of PVDF prepared by electrospinning. It has been found that these microstructures can have fractal structure and that the fractal analysis can be used as a powerful tool for describing structural and functional properties of these materials. Having this in mind, in this research we have used different fractal methods for the reconstructions of various BaTiO3 and PVDF microstructure morphologies. Fractal analysis has been performed by using scanning electron microscope micrographs and computational modeling tools. Fractal dimension of irregular morphologies which exhibit fractal regularity were determined by using box-counting method. This method enables the analysis of self-similar microstructure morphologies by quantifying the rate at which an object's geometrical details develop at increasingly fine scales. Theory of Iterated Function Systems and Voronoi tessellation, have been used for modeling BaTiO3 random microstructures and PVDF porous structures. A python algorithm was created to determine the distribution of pore areas in SEM micrographs. Algorithm’s distribution of calculated pore surface areas was compared with measured pore surface areas and fractal reconstructions of different morphologies and their connection with functional properties were analyzed.
PB  - Belgrade : University of Belgrade - Faculty of Mechanical Engineering
C3  - Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia
T1  - Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials
SP  - 46
UR  - https://hdl.handle.net/21.15107/rcub_dais_14969
ER  - 
@conference{
author = "Peleš Tadić, Adriana and Vuković, George and Kojović, Aleksandar and Stojanović, Dušica and Vlahović, Branislav and Milosavljević, Nataša and Obradović, Nina and Pavlović, Vladimir B.",
year = "2023",
abstract = "Barium titanate (BaTiO3) and polyvinylidene fluoride (PVDF) based multifunctional materials are attracting a great scientific interest due to their excellent piezoelectric, pyroelectric and ferroelectric properties. These materials undergo controlled transformations through physical interactions and respond to environmental stimuli, such as temperature, pressure, electric and magnetic fields. Their properties strongly depend on synthesis procedures and obtained microstructures. This include intergranular contact surfaces of BaTiO3 based materials, as well as, porous structure and cross-linking patterns of PVDF prepared by electrospinning. It has been found that these microstructures can have fractal structure and that the fractal analysis can be used as a powerful tool for describing structural and functional properties of these materials. Having this in mind, in this research we have used different fractal methods for the reconstructions of various BaTiO3 and PVDF microstructure morphologies. Fractal analysis has been performed by using scanning electron microscope micrographs and computational modeling tools. Fractal dimension of irregular morphologies which exhibit fractal regularity were determined by using box-counting method. This method enables the analysis of self-similar microstructure morphologies by quantifying the rate at which an object's geometrical details develop at increasingly fine scales. Theory of Iterated Function Systems and Voronoi tessellation, have been used for modeling BaTiO3 random microstructures and PVDF porous structures. A python algorithm was created to determine the distribution of pore areas in SEM micrographs. Algorithm’s distribution of calculated pore surface areas was compared with measured pore surface areas and fractal reconstructions of different morphologies and their connection with functional properties were analyzed.",
publisher = "Belgrade : University of Belgrade - Faculty of Mechanical Engineering",
journal = "Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia",
title = "Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials",
pages = "46",
url = "https://hdl.handle.net/21.15107/rcub_dais_14969"
}
Peleš Tadić, A., Vuković, G., Kojović, A., Stojanović, D., Vlahović, B., Milosavljević, N., Obradović, N.,& Pavlović, V. B.. (2023). Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia
Belgrade : University of Belgrade - Faculty of Mechanical Engineering., 46.
https://hdl.handle.net/21.15107/rcub_dais_14969
Peleš Tadić A, Vuković G, Kojović A, Stojanović D, Vlahović B, Milosavljević N, Obradović N, Pavlović VB. Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia. 2023;:46.
https://hdl.handle.net/21.15107/rcub_dais_14969 .
Peleš Tadić, Adriana, Vuković, George, Kojović, Aleksandar, Stojanović, Dušica, Vlahović, Branislav, Milosavljević, Nataša, Obradović, Nina, Pavlović, Vladimir B., "Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials" in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia (2023):46,
https://hdl.handle.net/21.15107/rcub_dais_14969 .

Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics

Živojinović, Jelena; Kosanović, Darko; Blagojević, Vladimir A.; Pavlović, Vera P.; Tadić, Nenad; Vlahović, Branislav; Pavlović, Vladimir B.

(2022)

TY  - JOUR
AU  - Živojinović, Jelena
AU  - Kosanović, Darko
AU  - Blagojević, Vladimir A.
AU  - Pavlović, Vera P.
AU  - Tadić, Nenad
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13510
AB  - In this study, microstructure evolution and dielectric properties of SrTiO3 ceramic have been investigated, whereby mechanical activation of SrTiO3 powders was used to modify the functional properties of ceramic materials. Microstructural SEM analysis of SrTiO3 ceramics showed that the increase in mechanical activation time results in less porous samples. Raman spectroscopy indicated changes in the broadening and asymmetry of the TO2 mode with a change in the time of mechanical activation. TO2 mode showed a Fano asymmetry due to its interaction with polarization fluctuations in polar micro-regions, which are a consequence of the presence of oxygen vacancies caused by activation. The maximum value of dielectric permittivity was observed in the sample activated for 10 min. Also, the sample activated for 10 min exhibits relatively low values of loss tangent, compared to the other mechanically activated samples, providing the best overall dielectric performance compared to other samples.
T2  - Science of Sintering
T1  - Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics
SP  - 401
EP  - 414
VL  - 54
IS  - 4
DO  - 10.2298/SOS2204401Z
UR  - https://hdl.handle.net/21.15107/rcub_dais_13510
ER  - 
@article{
author = "Živojinović, Jelena and Kosanović, Darko and Blagojević, Vladimir A. and Pavlović, Vera P. and Tadić, Nenad and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2022",
abstract = "In this study, microstructure evolution and dielectric properties of SrTiO3 ceramic have been investigated, whereby mechanical activation of SrTiO3 powders was used to modify the functional properties of ceramic materials. Microstructural SEM analysis of SrTiO3 ceramics showed that the increase in mechanical activation time results in less porous samples. Raman spectroscopy indicated changes in the broadening and asymmetry of the TO2 mode with a change in the time of mechanical activation. TO2 mode showed a Fano asymmetry due to its interaction with polarization fluctuations in polar micro-regions, which are a consequence of the presence of oxygen vacancies caused by activation. The maximum value of dielectric permittivity was observed in the sample activated for 10 min. Also, the sample activated for 10 min exhibits relatively low values of loss tangent, compared to the other mechanically activated samples, providing the best overall dielectric performance compared to other samples.",
journal = "Science of Sintering",
title = "Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics",
pages = "401-414",
volume = "54",
number = "4",
doi = "10.2298/SOS2204401Z",
url = "https://hdl.handle.net/21.15107/rcub_dais_13510"
}
Živojinović, J., Kosanović, D., Blagojević, V. A., Pavlović, V. P., Tadić, N., Vlahović, B.,& Pavlović, V. B.. (2022). Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics. in Science of Sintering, 54(4), 401-414.
https://doi.org/10.2298/SOS2204401Z
https://hdl.handle.net/21.15107/rcub_dais_13510
Živojinović J, Kosanović D, Blagojević VA, Pavlović VP, Tadić N, Vlahović B, Pavlović VB. Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics. in Science of Sintering. 2022;54(4):401-414.
doi:10.2298/SOS2204401Z
https://hdl.handle.net/21.15107/rcub_dais_13510 .
Živojinović, Jelena, Kosanović, Darko, Blagojević, Vladimir A., Pavlović, Vera P., Tadić, Nenad, Vlahović, Branislav, Pavlović, Vladimir B., "Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics" in Science of Sintering, 54, no. 4 (2022):401-414,
https://doi.org/10.2298/SOS2204401Z .,
https://hdl.handle.net/21.15107/rcub_dais_13510 .
3