Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200288/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200288 (Inovacioni centar Hemijskog fakulteta u Beogradu doo) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200288 (Иновациони центар Хемијског факултета у Београду доо) (sr)
Authors

Publications

Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction

Filipović, Suzana; Obradović, Nina; Anđelković, Ljubica; Olćan, Dragan; Petrović, Jovana; Mirković, Miljana; Pavlović, Vladimir B.; Jeremić, Dejan; Vlahović, Branislav; Đorđević, Antonije

(Belgrade : International Institute for the Science of Sintering, 2021)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Anđelković, Ljubica
AU  - Olćan, Dragan
AU  - Petrović, Jovana
AU  - Mirković, Miljana
AU  - Pavlović, Vladimir B.
AU  - Jeremić, Dejan
AU  - Vlahović, Branislav
AU  - Đorđević, Antonije
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11230
AB  - Solid-state reaction between BaTiO3 and Fe2O3 was used to produce a multiferroic heterostructure composite. Commercial BaTiO3 and Fe(NO3)3•9H2O were suspended in ethanol for 30 minutes in an ultrasound bath. The prepared mixture was thermally processed at 300 oC for 6 h. Sintering at 1300 oC for 1 h resulted in a mixture of different phases, BaTiO3, BaFe12O19 and Ba12Ti28Fe15O84, which were confirmed by x-ray powder diffraction. A dense microstructure with a small volume fraction of closed porosity was indicated by the scanning electron microscopy, while a homogeneous distribution of Fe ions over BaTiO3 phase was visible from energy dispersive spectroscopy mapping. Doping of BaTiO3 with Fe2O3 resulted in formation of magnetic hexaferrite phases, as confirmed by dielectric measurements that showed a broadened maximum of the permittivity measured as a function of temperature.
PB  - Belgrade : International Institute for the Science of Sintering
T2  - Science of Sintering
T1  - Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction
SP  - 1
EP  - 8
VL  - 53
DO  - 10.2298/SOS2101001F
UR  - https://hdl.handle.net/21.15107/rcub_dais_11230
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Anđelković, Ljubica and Olćan, Dragan and Petrović, Jovana and Mirković, Miljana and Pavlović, Vladimir B. and Jeremić, Dejan and Vlahović, Branislav and Đorđević, Antonije",
year = "2021",
abstract = "Solid-state reaction between BaTiO3 and Fe2O3 was used to produce a multiferroic heterostructure composite. Commercial BaTiO3 and Fe(NO3)3•9H2O were suspended in ethanol for 30 minutes in an ultrasound bath. The prepared mixture was thermally processed at 300 oC for 6 h. Sintering at 1300 oC for 1 h resulted in a mixture of different phases, BaTiO3, BaFe12O19 and Ba12Ti28Fe15O84, which were confirmed by x-ray powder diffraction. A dense microstructure with a small volume fraction of closed porosity was indicated by the scanning electron microscopy, while a homogeneous distribution of Fe ions over BaTiO3 phase was visible from energy dispersive spectroscopy mapping. Doping of BaTiO3 with Fe2O3 resulted in formation of magnetic hexaferrite phases, as confirmed by dielectric measurements that showed a broadened maximum of the permittivity measured as a function of temperature.",
publisher = "Belgrade : International Institute for the Science of Sintering",
journal = "Science of Sintering",
title = "Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction",
pages = "1-8",
volume = "53",
doi = "10.2298/SOS2101001F",
url = "https://hdl.handle.net/21.15107/rcub_dais_11230"
}
Filipović, S., Obradović, N., Anđelković, L., Olćan, D., Petrović, J., Mirković, M., Pavlović, V. B., Jeremić, D., Vlahović, B.,& Đorđević, A.. (2021). Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction. in Science of Sintering
Belgrade : International Institute for the Science of Sintering., 53, 1-8.
https://doi.org/10.2298/SOS2101001F
https://hdl.handle.net/21.15107/rcub_dais_11230
Filipović S, Obradović N, Anđelković L, Olćan D, Petrović J, Mirković M, Pavlović VB, Jeremić D, Vlahović B, Đorđević A. Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction. in Science of Sintering. 2021;53:1-8.
doi:10.2298/SOS2101001F
https://hdl.handle.net/21.15107/rcub_dais_11230 .
Filipović, Suzana, Obradović, Nina, Anđelković, Ljubica, Olćan, Dragan, Petrović, Jovana, Mirković, Miljana, Pavlović, Vladimir B., Jeremić, Dejan, Vlahović, Branislav, Đorđević, Antonije, "Multiferroic Heterostructure BaTiO3/ε-Fe2O3 Composite Obtained by in situ Reaction" in Science of Sintering, 53 (2021):1-8,
https://doi.org/10.2298/SOS2101001F .,
https://hdl.handle.net/21.15107/rcub_dais_11230 .

Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect

Dinić, Ivana; Vuković, Marina; Nikolić, Marko G.; Tan, Zhenquan; Milošević, Olivera; Mančić, Lidija

(American Institute of Physics, 2020)

TY  - JOUR
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Nikolić, Marko G.
AU  - Tan, Zhenquan
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/9450
AB  - The synthesis of lanthanide doped up-converting nanoparticles (UCNPs), whose morphological, structural, and luminescence properties are well suited for applications in optoelectronics, forensics, security, or biomedicine, is of tremendous significance. The most commonly used synthesis method comprises decomposition of organometallic compounds in an oxygen-free environment and subsequent infliction of a biocompatible layer on the particle surface. In this work, hydroxyl-carboxyl (- OH/ - COOH) type of chelating agents (citric acid and sodium citrate) are used in situ for the solvothermal synthesis of hydrophilic NaY0.5Gd0.3F4:Yb,Er UCNPs from rare earth nitrate salts and different fluoride sources (NaF, NH4F, and NH4HF2). X-ray powder diffraction showed crystallization of cubic and hexagonal NaY0.5Gd0.3F4:Yb,Er phases in nano- and micro-sized particles, respectively. The content of the hexagonal phase prevails in the samples obtained when Na-citrate is used, while the size and shape of the synthesized mesocrystals are affected by the choice of fluoride source used for precipitation. All particles are functionalized with citrate ligands and emit intense green light at 519 nm and 539 nm (2H11/2, 4S3/2 → 4I15/2) under near infrared light. The intensity of this emission is distressed by the change in the origin of phonon energy of the host matrix revealed by the change in the number of the excitation photons absorbed per emitted photon.
PB  - American Institute of Physics
T2  - The Journal of Chemical Physics
T1  - Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect
SP  - 084706
VL  - 153
IS  - 8
DO  - 10.1063/5.0016559
UR  - https://hdl.handle.net/21.15107/rcub_dais_9450
ER  - 
@article{
author = "Dinić, Ivana and Vuković, Marina and Nikolić, Marko G. and Tan, Zhenquan and Milošević, Olivera and Mančić, Lidija",
year = "2020",
abstract = "The synthesis of lanthanide doped up-converting nanoparticles (UCNPs), whose morphological, structural, and luminescence properties are well suited for applications in optoelectronics, forensics, security, or biomedicine, is of tremendous significance. The most commonly used synthesis method comprises decomposition of organometallic compounds in an oxygen-free environment and subsequent infliction of a biocompatible layer on the particle surface. In this work, hydroxyl-carboxyl (- OH/ - COOH) type of chelating agents (citric acid and sodium citrate) are used in situ for the solvothermal synthesis of hydrophilic NaY0.5Gd0.3F4:Yb,Er UCNPs from rare earth nitrate salts and different fluoride sources (NaF, NH4F, and NH4HF2). X-ray powder diffraction showed crystallization of cubic and hexagonal NaY0.5Gd0.3F4:Yb,Er phases in nano- and micro-sized particles, respectively. The content of the hexagonal phase prevails in the samples obtained when Na-citrate is used, while the size and shape of the synthesized mesocrystals are affected by the choice of fluoride source used for precipitation. All particles are functionalized with citrate ligands and emit intense green light at 519 nm and 539 nm (2H11/2, 4S3/2 → 4I15/2) under near infrared light. The intensity of this emission is distressed by the change in the origin of phonon energy of the host matrix revealed by the change in the number of the excitation photons absorbed per emitted photon.",
publisher = "American Institute of Physics",
journal = "The Journal of Chemical Physics",
title = "Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect",
pages = "084706",
volume = "153",
number = "8",
doi = "10.1063/5.0016559",
url = "https://hdl.handle.net/21.15107/rcub_dais_9450"
}
Dinić, I., Vuković, M., Nikolić, M. G., Tan, Z., Milošević, O.,& Mančić, L.. (2020). Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect. in The Journal of Chemical Physics
American Institute of Physics., 153(8), 084706.
https://doi.org/10.1063/5.0016559
https://hdl.handle.net/21.15107/rcub_dais_9450
Dinić I, Vuković M, Nikolić MG, Tan Z, Milošević O, Mančić L. Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect. in The Journal of Chemical Physics. 2020;153(8):084706.
doi:10.1063/5.0016559
https://hdl.handle.net/21.15107/rcub_dais_9450 .
Dinić, Ivana, Vuković, Marina, Nikolić, Marko G., Tan, Zhenquan, Milošević, Olivera, Mančić, Lidija, "Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect" in The Journal of Chemical Physics, 153, no. 8 (2020):084706,
https://doi.org/10.1063/5.0016559 .,
https://hdl.handle.net/21.15107/rcub_dais_9450 .
1
1
1
1

Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect

Dinić, Ivana; Vuković, Marina; Nikolić, Marko G.; Tan, Zhenquan; Milošević, Olivera; Mančić, Lidija

(American Institute of Physics, 2020)

TY  - JOUR
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Nikolić, Marko G.
AU  - Tan, Zhenquan
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/9818
AB  - The synthesis of lanthanide doped up-converting nanoparticles (UCNPs), whose morphological, structural, and luminescence properties are well suited for applications in optoelectronics, forensics, security, or biomedicine, is of tremendous significance. The most commonly used synthesis method comprises decomposition of organometallic compounds in an oxygen-free environment and subsequent infliction of a biocompatible layer on the particle surface. In this work, hydroxyl-carboxyl (- OH/ - COOH) type of chelating agents (citric acid and sodium citrate) are used in situ for the solvothermal synthesis of hydrophilic NaY0.5Gd0.3F4:Yb,Er UCNPs from rare earth nitrate salts and different fluoride sources (NaF, NH4F, and NH4HF2). X-ray powder diffraction showed crystallization of cubic and hexagonal NaY0.5Gd0.3F4:Yb,Er phases in nano- and micro-sized particles, respectively. The content of the hexagonal phase prevails in the samples obtained when Na-citrate is used, while the size and shape of the synthesized mesocrystals are affected by the choice of fluoride source used for precipitation. All particles are functionalized with citrate ligands and emit intense green light at 519 nm and 539 nm (2H11/2, 4S3/2 → 4I15/2) under near infrared light. The intensity of this emission is distressed by the change in the origin of phonon energy of the host matrix revealed by the change in the number of the excitation photons absorbed per emitted photon.
PB  - American Institute of Physics
T2  - The Journal of Chemical Physics
T1  - Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect
SP  - 084706
VL  - 153
IS  - 8
DO  - 10.1063/5.0016559
UR  - https://hdl.handle.net/21.15107/rcub_dais_9818
ER  - 
@article{
author = "Dinić, Ivana and Vuković, Marina and Nikolić, Marko G. and Tan, Zhenquan and Milošević, Olivera and Mančić, Lidija",
year = "2020",
abstract = "The synthesis of lanthanide doped up-converting nanoparticles (UCNPs), whose morphological, structural, and luminescence properties are well suited for applications in optoelectronics, forensics, security, or biomedicine, is of tremendous significance. The most commonly used synthesis method comprises decomposition of organometallic compounds in an oxygen-free environment and subsequent infliction of a biocompatible layer on the particle surface. In this work, hydroxyl-carboxyl (- OH/ - COOH) type of chelating agents (citric acid and sodium citrate) are used in situ for the solvothermal synthesis of hydrophilic NaY0.5Gd0.3F4:Yb,Er UCNPs from rare earth nitrate salts and different fluoride sources (NaF, NH4F, and NH4HF2). X-ray powder diffraction showed crystallization of cubic and hexagonal NaY0.5Gd0.3F4:Yb,Er phases in nano- and micro-sized particles, respectively. The content of the hexagonal phase prevails in the samples obtained when Na-citrate is used, while the size and shape of the synthesized mesocrystals are affected by the choice of fluoride source used for precipitation. All particles are functionalized with citrate ligands and emit intense green light at 519 nm and 539 nm (2H11/2, 4S3/2 → 4I15/2) under near infrared light. The intensity of this emission is distressed by the change in the origin of phonon energy of the host matrix revealed by the change in the number of the excitation photons absorbed per emitted photon.",
publisher = "American Institute of Physics",
journal = "The Journal of Chemical Physics",
title = "Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect",
pages = "084706",
volume = "153",
number = "8",
doi = "10.1063/5.0016559",
url = "https://hdl.handle.net/21.15107/rcub_dais_9818"
}
Dinić, I., Vuković, M., Nikolić, M. G., Tan, Z., Milošević, O.,& Mančić, L.. (2020). Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect. in The Journal of Chemical Physics
American Institute of Physics., 153(8), 084706.
https://doi.org/10.1063/5.0016559
https://hdl.handle.net/21.15107/rcub_dais_9818
Dinić I, Vuković M, Nikolić MG, Tan Z, Milošević O, Mančić L. Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect. in The Journal of Chemical Physics. 2020;153(8):084706.
doi:10.1063/5.0016559
https://hdl.handle.net/21.15107/rcub_dais_9818 .
Dinić, Ivana, Vuković, Marina, Nikolić, Marko G., Tan, Zhenquan, Milošević, Olivera, Mančić, Lidija, "Up-converting nanoparticles synthesis using hydroxyl-carboxyl chelating agents: Fluoride source effect" in The Journal of Chemical Physics, 153, no. 8 (2020):084706,
https://doi.org/10.1063/5.0016559 .,
https://hdl.handle.net/21.15107/rcub_dais_9818 .
1
1
1
1