Bilateral project Montenegro-Serbia: Development of ecological Li-ionic batteries

Link to this page

Bilateral project Montenegro-Serbia: Development of ecological Li-ionic batteries

Authors

Publications

Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook

Gezović, Aleksandra; Vujković, Milica; Milović, Miloš; Grudić, Veselinka; Dominko, Robert; Mentus, Slavko

(Elsevier BV, 2021)

TY  - JOUR
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Milović, Miloš
AU  - Grudić, Veselinka
AU  - Dominko, Robert
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11632
AB  - Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.
PB  - Elsevier BV
T2  - Energy Storage Materials
T1  - Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook
SP  - 243
EP  - 273
VL  - 37
DO  - 10.1016/j.ensm.2021.02.011
UR  - https://hdl.handle.net/21.15107/rcub_dais_11632
ER  - 
@article{
author = "Gezović, Aleksandra and Vujković, Milica and Milović, Miloš and Grudić, Veselinka and Dominko, Robert and Mentus, Slavko",
year = "2021",
abstract = "Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.",
publisher = "Elsevier BV",
journal = "Energy Storage Materials",
title = "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook",
pages = "243-273",
volume = "37",
doi = "10.1016/j.ensm.2021.02.011",
url = "https://hdl.handle.net/21.15107/rcub_dais_11632"
}
Gezović, A., Vujković, M., Milović, M., Grudić, V., Dominko, R.,& Mentus, S.. (2021). Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. in Energy Storage Materials
Elsevier BV., 37, 243-273.
https://doi.org/10.1016/j.ensm.2021.02.011
https://hdl.handle.net/21.15107/rcub_dais_11632
Gezović A, Vujković M, Milović M, Grudić V, Dominko R, Mentus S. Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. in Energy Storage Materials. 2021;37:243-273.
doi:10.1016/j.ensm.2021.02.011
https://hdl.handle.net/21.15107/rcub_dais_11632 .
Gezović, Aleksandra, Vujković, Milica, Milović, Miloš, Grudić, Veselinka, Dominko, Robert, Mentus, Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" in Energy Storage Materials, 37 (2021):243-273,
https://doi.org/10.1016/j.ensm.2021.02.011 .,
https://hdl.handle.net/21.15107/rcub_dais_11632 .
46
6
38

Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook

Gezović, Aleksandra; Vujković, Milica; Milović, Miloš; Grudić, Veselinka; Dominko, Robert; Mentus, Slavko

(Elsevier BV, 2021)

TY  - JOUR
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Milović, Miloš
AU  - Grudić, Veselinka
AU  - Dominko, Robert
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11633
AB  - Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.
PB  - Elsevier BV
T2  - Energy Storage Materials
T1  - Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook
SP  - 243
EP  - 273
VL  - 37
DO  - 10.1016/j.ensm.2021.02.011
UR  - https://hdl.handle.net/21.15107/rcub_dais_11633
ER  - 
@article{
author = "Gezović, Aleksandra and Vujković, Milica and Milović, Miloš and Grudić, Veselinka and Dominko, Robert and Mentus, Slavko",
year = "2021",
abstract = "Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.",
publisher = "Elsevier BV",
journal = "Energy Storage Materials",
title = "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook",
pages = "243-273",
volume = "37",
doi = "10.1016/j.ensm.2021.02.011",
url = "https://hdl.handle.net/21.15107/rcub_dais_11633"
}
Gezović, A., Vujković, M., Milović, M., Grudić, V., Dominko, R.,& Mentus, S.. (2021). Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. in Energy Storage Materials
Elsevier BV., 37, 243-273.
https://doi.org/10.1016/j.ensm.2021.02.011
https://hdl.handle.net/21.15107/rcub_dais_11633
Gezović A, Vujković M, Milović M, Grudić V, Dominko R, Mentus S. Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. in Energy Storage Materials. 2021;37:243-273.
doi:10.1016/j.ensm.2021.02.011
https://hdl.handle.net/21.15107/rcub_dais_11633 .
Gezović, Aleksandra, Vujković, Milica, Milović, Miloš, Grudić, Veselinka, Dominko, Robert, Mentus, Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" in Energy Storage Materials, 37 (2021):243-273,
https://doi.org/10.1016/j.ensm.2021.02.011 .,
https://hdl.handle.net/21.15107/rcub_dais_11633 .
46
6
38

Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011

Gezović, Aleksandra; Vujković, Milica; Milović, Miloš; Grudić, Veselinka; Dominko, Robert; Mentus, Slavko

(Elsevier BV, 2021)

TY  - DATA
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Milović, Miloš
AU  - Grudić, Veselinka
AU  - Dominko, Robert
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11634
AB  - Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.
PB  - Elsevier BV
T2  - Energy Storage Materials
T1  - Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011
VL  - 37
UR  - https://hdl.handle.net/21.15107/rcub_dais_11634
ER  - 
@misc{
author = "Gezović, Aleksandra and Vujković, Milica and Milović, Miloš and Grudić, Veselinka and Dominko, Robert and Mentus, Slavko",
year = "2021",
abstract = "Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.",
publisher = "Elsevier BV",
journal = "Energy Storage Materials",
title = "Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011",
volume = "37",
url = "https://hdl.handle.net/21.15107/rcub_dais_11634"
}
Gezović, A., Vujković, M., Milović, M., Grudić, V., Dominko, R.,& Mentus, S.. (2021). Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011. in Energy Storage Materials
Elsevier BV., 37.
https://hdl.handle.net/21.15107/rcub_dais_11634
Gezović A, Vujković M, Milović M, Grudić V, Dominko R, Mentus S. Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011. in Energy Storage Materials. 2021;37.
https://hdl.handle.net/21.15107/rcub_dais_11634 .
Gezović, Aleksandra, Vujković, Milica, Milović, Miloš, Grudić, Veselinka, Dominko, Robert, Mentus, Slavko, "Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011" in Energy Storage Materials, 37 (2021),
https://hdl.handle.net/21.15107/rcub_dais_11634 .