Ministry of Foreign Affairs and International Cooperation (Research Project of Particular Relevance between Italy and Serbia—PGR02952)

Link to this page

Ministry of Foreign Affairs and International Cooperation (Research Project of Particular Relevance between Italy and Serbia—PGR02952)

Authors

Publications

Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging

Catanzaro, Valeria; Digilio, Giuseppe; Capuana, Federico; Padovan, Sergio; Cutrin, Juan C.; Carniato, Fabio; Porta, Stefano; Grange, Cristina; Filipović, Nenad; Stevanović, Magdalena

(Basel : MDPI, 2019)

TY  - BOOK
AU  - Catanzaro, Valeria
AU  - Digilio, Giuseppe
AU  - Capuana, Federico
AU  - Padovan, Sergio
AU  - Cutrin, Juan C.
AU  - Carniato, Fabio
AU  - Porta, Stefano
AU  - Grange, Cristina
AU  - Filipović, Nenad
AU  - Stevanović, Magdalena
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/7044
AB  - Table S1. List of the antibodies used in this study; Figure S1 Transmission electron micrographs of particle sections, showing electron dense Gd-NPs with diameter of 1-2 nm; Figure S2 Optical images at the inverted microscope, showing hMSCs after 3 days seeding with ILCSs. The arrows show hMSCs on the particle surface (A) or at the junction between particles (B, C, D); Figure S3 SEM micrographs of ILCSs seeded with hMSCs (after 10 days culture) at (A) 500x and (B) 200x magnification. Cells have been fixed with formalin for SEM. Cells appear mostly located at the junction between adjacent microparticles; Figure S4 Assessment of the multipotentiality of hMSCs after incubation up to 20 days with ILCS. A) Multipotentiality markers by flow cytometry analysis; B) Differentiation into adipocytes (middle, Oil Red staining) or osteocytes (right, Alizarin Red staining). The left panel is the control; Figure S5 Expansions of MR images around the ̶ hMSCs grafts (contralateral to the implants shown in Fig. 5, main text) in an immunocompromised NSG mouse (ad) and an immunocompetent FVB mouse (e-h). Similar to +hMSCs implants, activation of contrast enhancement in T1w-MR images is observed in the immunocompromised mouse on going from day-0 (b) to day-12 (d). Poor activation of contrast enhancement is observed for the immunocompetent mouse (f,h); Figure S6 Photograph of the Matrigel-based hydrogel embedding cell-loaded ILCSs (pink spots) excised from an immunocompromised mouse 20 days after implantation; Figure S7 Histology of -hMSC subcutaneous cell implants excised from a representative immunocompromised NSG mouse (a-c) and immunocompetent FVB mouse (df). (a,d) H&E stains; (b,e) Masson stains; (c,f) Sirius red stains. Arrows indicate microspheres delimited by an intense fibrotic reaction. Arrow-heads are pointing the vascular organization of the matrigel. Double arrows are indicating macrophage foamy cells. Scale bar: 50 μm for a,b,d,e; 25 μm for c,f; Figure S8 Schematics about the geometry of MRI slices across ILCS implants to measure the signal enhancement (see main text, Section 4.5.2.)
PB  - Basel : MDPI
T2  - Journal of Functional Biomaterials
T1  - Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging
VL  - 10
IS  - 3
ER  - 
@book{
author = "Catanzaro, Valeria and Digilio, Giuseppe and Capuana, Federico and Padovan, Sergio and Cutrin, Juan C. and Carniato, Fabio and Porta, Stefano and Grange, Cristina and Filipović, Nenad and Stevanović, Magdalena",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/7044",
abstract = "Table S1. List of the antibodies used in this study; Figure S1 Transmission electron micrographs of particle sections, showing electron dense Gd-NPs with diameter of 1-2 nm; Figure S2 Optical images at the inverted microscope, showing hMSCs after 3 days seeding with ILCSs. The arrows show hMSCs on the particle surface (A) or at the junction between particles (B, C, D); Figure S3 SEM micrographs of ILCSs seeded with hMSCs (after 10 days culture) at (A) 500x and (B) 200x magnification. Cells have been fixed with formalin for SEM. Cells appear mostly located at the junction between adjacent microparticles; Figure S4 Assessment of the multipotentiality of hMSCs after incubation up to 20 days with ILCS. A) Multipotentiality markers by flow cytometry analysis; B) Differentiation into adipocytes (middle, Oil Red staining) or osteocytes (right, Alizarin Red staining). The left panel is the control; Figure S5 Expansions of MR images around the ̶ hMSCs grafts (contralateral to the implants shown in Fig. 5, main text) in an immunocompromised NSG mouse (ad) and an immunocompetent FVB mouse (e-h). Similar to +hMSCs implants, activation of contrast enhancement in T1w-MR images is observed in the immunocompromised mouse on going from day-0 (b) to day-12 (d). Poor activation of contrast enhancement is observed for the immunocompetent mouse (f,h); Figure S6 Photograph of the Matrigel-based hydrogel embedding cell-loaded ILCSs (pink spots) excised from an immunocompromised mouse 20 days after implantation; Figure S7 Histology of -hMSC subcutaneous cell implants excised from a representative immunocompromised NSG mouse (a-c) and immunocompetent FVB mouse (df). (a,d) H&E stains; (b,e) Masson stains; (c,f) Sirius red stains. Arrows indicate microspheres delimited by an intense fibrotic reaction. Arrow-heads are pointing the vascular organization of the matrigel. Double arrows are indicating macrophage foamy cells. Scale bar: 50 μm for a,b,d,e; 25 μm for c,f; Figure S8 Schematics about the geometry of MRI slices across ILCS implants to measure the signal enhancement (see main text, Section 4.5.2.)",
publisher = "Basel : MDPI",
journal = "Journal of Functional Biomaterials",
title = "Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging",
volume = "10",
number = "3"
}
Catanzaro, V., Digilio, G., Capuana, F., Padovan, S., Cutrin, J. C., Carniato, F., Porta, S., Grange, C., Filipović, N.,& Stevanović, M. (2019). Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging.
Journal of Functional BiomaterialsBasel : MDPI., 10(3).
Catanzaro V, Digilio G, Capuana F, Padovan S, Cutrin JC, Carniato F, Porta S, Grange C, Filipović N, Stevanović M. Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging. Journal of Functional Biomaterials. 2019;10(3)
Catanzaro Valeria, Digilio Giuseppe, Capuana Federico, Padovan Sergio, Cutrin Juan C., Carniato Fabio, Porta Stefano, Grange Cristina, Filipović Nenad, Stevanović Magdalena, "Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging" 10, no. 3 (2019)

Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging

Catanzaro, Valeria; Digilio, Giuseppe; Capuana, Federico; Padovan, Sergio; Cutrin, Juan C.; Carniato, Fabio; Porta, Stefano; Grange, Cristina; Filipović, Nenad; Stevanović, Magdalena

(Basel : MDPI, 2019)

TY  - JOUR
AU  - Catanzaro, Valeria
AU  - Digilio, Giuseppe
AU  - Capuana, Federico
AU  - Padovan, Sergio
AU  - Cutrin, Juan C.
AU  - Carniato, Fabio
AU  - Porta, Stefano
AU  - Grange, Cristina
AU  - Filipović, Nenad
AU  - Stevanović, Magdalena
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6689
AB  - Cell scaffolds are often used in cell transplantation as they provide a solid structural support to implanted cells and can be bioengineered to mimic the native extracellular matrix. Gadolinium fluoride nanoparticles (Gd-NPs) as a contrast agent for Magnetic Resonance Imaging (MRI) were incorporated into poly(lactide-co-glycolide)/chitosan scaffolds to obtain Imaging Labelled Cell Scaffolds (ILCSs), having the shape of hollow spherical/ellipsoidal particles (200–600 µm diameter and 50–80 µm shell thickness). While Gd-NPs incorporated into microparticles do not provide any contrast enhancement in T1-weighted (T1w) MR images, ILCSs can release Gd-NPs in a controlled manner, thus activating MRI contrast. ILCSs seeded with human mesenchymal stromal cells (hMSCs) were xenografted subcutaneously into either immunocompromised and immunocompetent mice without any immunosuppressant treatments, and the transplants were followed-up in vivo by MRI for 18 days. Immunocompromised mice showed a progressive activation of MRI contrast within the implants due to the release of Gd-NPs in the extracellular matrix. Instead, immunocompetent mice showed poor activation of MRI contrast due to the encapsulation of ILCSs within fibrotic capsules and to the scavenging of released Gd-NPs by phagocytic cells. In conclusion, the MRI follow-up of cell xenografts can report the host cell response to the xenograft. However, it does not strictly report on the viability of transplanted hMSCs. © 2019 by the authors.
PB  - Basel : MDPI
T2  - Journal of Functional Biomaterials
T1  - Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging
SP  - 28
VL  - 10
IS  - 3
DO  - 10.3390/jfb10030028
ER  - 
@article{
author = "Catanzaro, Valeria and Digilio, Giuseppe and Capuana, Federico and Padovan, Sergio and Cutrin, Juan C. and Carniato, Fabio and Porta, Stefano and Grange, Cristina and Filipović, Nenad and Stevanović, Magdalena",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6689",
abstract = "Cell scaffolds are often used in cell transplantation as they provide a solid structural support to implanted cells and can be bioengineered to mimic the native extracellular matrix. Gadolinium fluoride nanoparticles (Gd-NPs) as a contrast agent for Magnetic Resonance Imaging (MRI) were incorporated into poly(lactide-co-glycolide)/chitosan scaffolds to obtain Imaging Labelled Cell Scaffolds (ILCSs), having the shape of hollow spherical/ellipsoidal particles (200–600 µm diameter and 50–80 µm shell thickness). While Gd-NPs incorporated into microparticles do not provide any contrast enhancement in T1-weighted (T1w) MR images, ILCSs can release Gd-NPs in a controlled manner, thus activating MRI contrast. ILCSs seeded with human mesenchymal stromal cells (hMSCs) were xenografted subcutaneously into either immunocompromised and immunocompetent mice without any immunosuppressant treatments, and the transplants were followed-up in vivo by MRI for 18 days. Immunocompromised mice showed a progressive activation of MRI contrast within the implants due to the release of Gd-NPs in the extracellular matrix. Instead, immunocompetent mice showed poor activation of MRI contrast due to the encapsulation of ILCSs within fibrotic capsules and to the scavenging of released Gd-NPs by phagocytic cells. In conclusion, the MRI follow-up of cell xenografts can report the host cell response to the xenograft. However, it does not strictly report on the viability of transplanted hMSCs. © 2019 by the authors.",
publisher = "Basel : MDPI",
journal = "Journal of Functional Biomaterials",
title = "Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging",
pages = "28",
volume = "10",
number = "3",
doi = "10.3390/jfb10030028"
}
Catanzaro, V., Digilio, G., Capuana, F., Padovan, S., Cutrin, J. C., Carniato, F., Porta, S., Grange, C., Filipović, N.,& Stevanović, M. (2019). Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging.
Journal of Functional BiomaterialsBasel : MDPI., 10(3), 28.
https://doi.org/10.3390/jfb10030028
Catanzaro V, Digilio G, Capuana F, Padovan S, Cutrin JC, Carniato F, Porta S, Grange C, Filipović N, Stevanović M. Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging. Journal of Functional Biomaterials. 2019;10(3):28
Catanzaro Valeria, Digilio Giuseppe, Capuana Federico, Padovan Sergio, Cutrin Juan C., Carniato Fabio, Porta Stefano, Grange Cristina, Filipović Nenad, Stevanović Magdalena, "Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging" 10, no. 3 (2019):28,
https://doi.org/10.3390/jfb10030028 .
1
2
2