Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia, Project 651-03-1251/2012-09/05

Link to this page

Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia, Project 651-03-1251/2012-09/05

Authors

Publications

The use of methylcellulose for the synthesis of Li2FeSiO4/C composites

Milović, Miloš; Jugović, Dragana; Mitrić, Miodrag; Dominko, Robert; Stojković Simatović, Ivana; Jokić, Bojan; Uskoković, Dragan

(Springer, 2016)

TY  - JOUR
AU  - Milović, Miloš
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Dominko, Robert
AU  - Stojković Simatović, Ivana
AU  - Jokić, Bojan
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/2318
AB  - The key parameters related to cathode materials for commercial use are a high specific capacity, good cycling stability, capacity retention at high current rates, as well as the simplicity of the synthesis process. This study presents a facile synthesis of a composite cathode material, Li2FeSiO4 with carbon, under extreme conditions: rapid heating, short dwell at 750 °C and subsequent quenching. The water-soluble polymer methylcellulose was used both as an excellent dispersing agent and a carbon source that pyrolytically degrades to carbon, thereby enabling the homogeneous deployment of the precursor compounds and the control of the Li2FeSiO4 particle growth from the earliest stage of processing. X-ray powder diffraction reveals the formation of Li2FeSiO4 nanocrystallites with a monoclinic structure in the P21/n space group (#14). The composite’s electrochemical performance as a cathode material in Li-ion batteries was examined. The influence of the amount of methylcellulose on the microstructural, morphological, conductive, and electrochemical properties of the obtained powders has been discussed. It has been shown that the overall electrochemical performance is improved with an increase of carbon content, through both the decrease of the mean particle diameter and the increase of electrical conductivity.
PB  - Springer
T2  - Cellulose
T1  - The use of methylcellulose for the synthesis of Li2FeSiO4/C composites
SP  - 239
EP  - 246
VL  - 23
IS  - 1
DO  - 10.1007/s10570-015-0806-9
UR  - https://hdl.handle.net/21.15107/rcub_dais_2318
ER  - 
@article{
author = "Milović, Miloš and Jugović, Dragana and Mitrić, Miodrag and Dominko, Robert and Stojković Simatović, Ivana and Jokić, Bojan and Uskoković, Dragan",
year = "2016",
abstract = "The key parameters related to cathode materials for commercial use are a high specific capacity, good cycling stability, capacity retention at high current rates, as well as the simplicity of the synthesis process. This study presents a facile synthesis of a composite cathode material, Li2FeSiO4 with carbon, under extreme conditions: rapid heating, short dwell at 750 °C and subsequent quenching. The water-soluble polymer methylcellulose was used both as an excellent dispersing agent and a carbon source that pyrolytically degrades to carbon, thereby enabling the homogeneous deployment of the precursor compounds and the control of the Li2FeSiO4 particle growth from the earliest stage of processing. X-ray powder diffraction reveals the formation of Li2FeSiO4 nanocrystallites with a monoclinic structure in the P21/n space group (#14). The composite’s electrochemical performance as a cathode material in Li-ion batteries was examined. The influence of the amount of methylcellulose on the microstructural, morphological, conductive, and electrochemical properties of the obtained powders has been discussed. It has been shown that the overall electrochemical performance is improved with an increase of carbon content, through both the decrease of the mean particle diameter and the increase of electrical conductivity.",
publisher = "Springer",
journal = "Cellulose",
title = "The use of methylcellulose for the synthesis of Li2FeSiO4/C composites",
pages = "239-246",
volume = "23",
number = "1",
doi = "10.1007/s10570-015-0806-9",
url = "https://hdl.handle.net/21.15107/rcub_dais_2318"
}
Milović, M., Jugović, D., Mitrić, M., Dominko, R., Stojković Simatović, I., Jokić, B.,& Uskoković, D.. (2016). The use of methylcellulose for the synthesis of Li2FeSiO4/C composites. in Cellulose
Springer., 23(1), 239-246.
https://doi.org/10.1007/s10570-015-0806-9
https://hdl.handle.net/21.15107/rcub_dais_2318
Milović M, Jugović D, Mitrić M, Dominko R, Stojković Simatović I, Jokić B, Uskoković D. The use of methylcellulose for the synthesis of Li2FeSiO4/C composites. in Cellulose. 2016;23(1):239-246.
doi:10.1007/s10570-015-0806-9
https://hdl.handle.net/21.15107/rcub_dais_2318 .
Milović, Miloš, Jugović, Dragana, Mitrić, Miodrag, Dominko, Robert, Stojković Simatović, Ivana, Jokić, Bojan, Uskoković, Dragan, "The use of methylcellulose for the synthesis of Li2FeSiO4/C composites" in Cellulose, 23, no. 1 (2016):239-246,
https://doi.org/10.1007/s10570-015-0806-9 .,
https://hdl.handle.net/21.15107/rcub_dais_2318 .
3
4
4

Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy

Jugović, Dragana; Milović, Miloš; Ivanovski, Valentin N.; Avdeev, Maxim; Dominko, Robert; Jokić, Bojan; Uskoković, Dragan

(2014)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Avdeev, Maxim
AU  - Dominko, Robert
AU  - Jokić, Bojan
AU  - Uskoković, Dragan
PY  - 2014
UR  - https://dais.sanu.ac.rs/123456789/755
AB  - A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 °C. The Rietveld crystal structure refinement is done in the monoclinic P21/n space group. It is found that the crystal structure is prone to “antisite” defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mössbauer spectroscopy study: the sextet evidenced in the Mössbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse βII polymorph.
T2  - Journal of Power Sources
T1  - Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy
SP  - 75
EP  - 80
VL  - 265
DO  - 10.1016/j.jpowsour.2014.04.121
UR  - https://hdl.handle.net/21.15107/rcub_dais_755
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Ivanovski, Valentin N. and Avdeev, Maxim and Dominko, Robert and Jokić, Bojan and Uskoković, Dragan",
year = "2014",
abstract = "A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 °C. The Rietveld crystal structure refinement is done in the monoclinic P21/n space group. It is found that the crystal structure is prone to “antisite” defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mössbauer spectroscopy study: the sextet evidenced in the Mössbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse βII polymorph.",
journal = "Journal of Power Sources",
title = "Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy",
pages = "75-80",
volume = "265",
doi = "10.1016/j.jpowsour.2014.04.121",
url = "https://hdl.handle.net/21.15107/rcub_dais_755"
}
Jugović, D., Milović, M., Ivanovski, V. N., Avdeev, M., Dominko, R., Jokić, B.,& Uskoković, D.. (2014). Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. in Journal of Power Sources, 265, 75-80.
https://doi.org/10.1016/j.jpowsour.2014.04.121
https://hdl.handle.net/21.15107/rcub_dais_755
Jugović D, Milović M, Ivanovski VN, Avdeev M, Dominko R, Jokić B, Uskoković D. Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. in Journal of Power Sources. 2014;265:75-80.
doi:10.1016/j.jpowsour.2014.04.121
https://hdl.handle.net/21.15107/rcub_dais_755 .
Jugović, Dragana, Milović, Miloš, Ivanovski, Valentin N., Avdeev, Maxim, Dominko, Robert, Jokić, Bojan, Uskoković, Dragan, "Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy" in Journal of Power Sources, 265 (2014):75-80,
https://doi.org/10.1016/j.jpowsour.2014.04.121 .,
https://hdl.handle.net/21.15107/rcub_dais_755 .
10
12
12

Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy

Jugović, Dragana; Milović, Miloš; Ivanovski, Valentin N.; Avdeev, Maxim; Dominko, Robert; Jokić, Bojan; Uskoković, Dragan

(Elsevier, 2014)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Avdeev, Maxim
AU  - Dominko, Robert
AU  - Jokić, Bojan
AU  - Uskoković, Dragan
PY  - 2014
UR  - https://dais.sanu.ac.rs/123456789/542
AB  - A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 °C. The Rietveld crystal structure refinement is done in the monoclinic P21/n space group. It is found that the crystal structure is prone to “antisite” defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mössbauer spectroscopy study: the sextet evidenced in the Mössbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse βII polymorph.
PB  - Elsevier
T2  - Journal of Power Sources
T1  - Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy
SP  - 75
EP  - 80
VL  - 265
DO  - 10.1016/j.jpowsour.2014.04.121
UR  - https://hdl.handle.net/21.15107/rcub_dais_542
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Ivanovski, Valentin N. and Avdeev, Maxim and Dominko, Robert and Jokić, Bojan and Uskoković, Dragan",
year = "2014",
abstract = "A composite powder Li2FeSiO4/C is synthesized through a solid state reaction at 750 °C. The Rietveld crystal structure refinement is done in the monoclinic P21/n space group. It is found that the crystal structure is prone to “antisite” defect where small part of iron ion occupies exclusively Li(2) crystallographic position, of two different lithium tetrahedral positions (Li(1) and Li(2)). This finding is also confirmed by Mössbauer spectroscopy study: the sextet evidenced in the Mössbauer spectrum is assigned to the iron ions positioned at the Li(2) sites. A bond-valence energy landscape calculation is used to predict the conduction pathways of lithium ions. The calculations suggest that Li conductivity is two-dimensional in the (101) plane. Upon galvanostatic cyclings the structure starts to rearrange to inverse βII polymorph.",
publisher = "Elsevier",
journal = "Journal of Power Sources",
title = "Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy",
pages = "75-80",
volume = "265",
doi = "10.1016/j.jpowsour.2014.04.121",
url = "https://hdl.handle.net/21.15107/rcub_dais_542"
}
Jugović, D., Milović, M., Ivanovski, V. N., Avdeev, M., Dominko, R., Jokić, B.,& Uskoković, D.. (2014). Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. in Journal of Power Sources
Elsevier., 265, 75-80.
https://doi.org/10.1016/j.jpowsour.2014.04.121
https://hdl.handle.net/21.15107/rcub_dais_542
Jugović D, Milović M, Ivanovski VN, Avdeev M, Dominko R, Jokić B, Uskoković D. Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. in Journal of Power Sources. 2014;265:75-80.
doi:10.1016/j.jpowsour.2014.04.121
https://hdl.handle.net/21.15107/rcub_dais_542 .
Jugović, Dragana, Milović, Miloš, Ivanovski, Valentin N., Avdeev, Maxim, Dominko, Robert, Jokić, Bojan, Uskoković, Dragan, "Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy" in Journal of Power Sources, 265 (2014):75-80,
https://doi.org/10.1016/j.jpowsour.2014.04.121 .,
https://hdl.handle.net/21.15107/rcub_dais_542 .
10
12
12