US Department of Energy/National Nuclear Security Administration (Grant: NA0003979)

Link to this page

US Department of Energy/National Nuclear Security Administration (Grant: NA0003979)

Authors

Publications

Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite

Filipović, Suzana; Obradović, Nina; Corlett, Cole; Fahrenholtz, William G.; Rosenschon, Martin; Füglein, Ekkehard; Dojčilović, Radovan; Tošić, Dragana; Petrović, Jovana; Đorđević, Antonije; Vlahović, Branislav; Pavlović, Vladimir B.

(Wiley, 2024)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Corlett, Cole
AU  - Fahrenholtz, William G.
AU  - Rosenschon, Martin
AU  - Füglein, Ekkehard
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Petrović, Jovana
AU  - Đorđević, Antonije
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - https://dais.sanu.ac.rs/123456789/16516
AB  - Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.
PB  - Wiley
T2  - Journal of Applied Polymer Science
T1  - Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite
SP  - e55040
VL  - 141
IS  - 10
DO  - 10.1002/app.55040
UR  - https://hdl.handle.net/21.15107/rcub_dais_16516
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Corlett, Cole and Fahrenholtz, William G. and Rosenschon, Martin and Füglein, Ekkehard and Dojčilović, Radovan and Tošić, Dragana and Petrović, Jovana and Đorđević, Antonije and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2024",
abstract = "Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.",
publisher = "Wiley",
journal = "Journal of Applied Polymer Science",
title = "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite",
pages = "e55040",
volume = "141",
number = "10",
doi = "10.1002/app.55040",
url = "https://hdl.handle.net/21.15107/rcub_dais_16516"
}
Filipović, S., Obradović, N., Corlett, C., Fahrenholtz, W. G., Rosenschon, M., Füglein, E., Dojčilović, R., Tošić, D., Petrović, J., Đorđević, A., Vlahović, B.,& Pavlović, V. B.. (2024). Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science
Wiley., 141(10), e55040.
https://doi.org/10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516
Filipović S, Obradović N, Corlett C, Fahrenholtz WG, Rosenschon M, Füglein E, Dojčilović R, Tošić D, Petrović J, Đorđević A, Vlahović B, Pavlović VB. Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science. 2024;141(10):e55040.
doi:10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516 .
Filipović, Suzana, Obradović, Nina, Corlett, Cole, Fahrenholtz, William G., Rosenschon, Martin, Füglein, Ekkehard, Dojčilović, Radovan, Tošić, Dragana, Petrović, Jovana, Đorđević, Antonije, Vlahović, Branislav, Pavlović, Vladimir B., "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite" in Journal of Applied Polymer Science, 141, no. 10 (2024):e55040,
https://doi.org/10.1002/app.55040 .,
https://hdl.handle.net/21.15107/rcub_dais_16516 .

Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite

Filipović, Suzana; Obradović, Nina; Corlett, Cole; Fahrenholtz, William G.; Rosenschon, Martin; Füglein, Ekkehard; Dojčilović, Radovan; Tošić, Dragana; Petrović, Jovana; Đorđević, Antonije; Vlahović, Branislav; Pavlović, Vladimir B.

(Wiley, 2024)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Corlett, Cole
AU  - Fahrenholtz, William G.
AU  - Rosenschon, Martin
AU  - Füglein, Ekkehard
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Petrović, Jovana
AU  - Đorđević, Antonije
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - https://dais.sanu.ac.rs/123456789/16243
AB  - Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.
PB  - Wiley
T2  - Journal of Applied Polymer Science
T1  - Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite
SP  - e55040
VL  - 141
IS  - 10
DO  - 10.1002/app.55040
UR  - https://hdl.handle.net/21.15107/rcub_dais_16516
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Corlett, Cole and Fahrenholtz, William G. and Rosenschon, Martin and Füglein, Ekkehard and Dojčilović, Radovan and Tošić, Dragana and Petrović, Jovana and Đorđević, Antonije and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2024",
abstract = "Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.",
publisher = "Wiley",
journal = "Journal of Applied Polymer Science",
title = "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite",
pages = "e55040",
volume = "141",
number = "10",
doi = "10.1002/app.55040",
url = "https://hdl.handle.net/21.15107/rcub_dais_16516"
}
Filipović, S., Obradović, N., Corlett, C., Fahrenholtz, W. G., Rosenschon, M., Füglein, E., Dojčilović, R., Tošić, D., Petrović, J., Đorđević, A., Vlahović, B.,& Pavlović, V. B.. (2024). Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science
Wiley., 141(10), e55040.
https://doi.org/10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516
Filipović S, Obradović N, Corlett C, Fahrenholtz WG, Rosenschon M, Füglein E, Dojčilović R, Tošić D, Petrović J, Đorđević A, Vlahović B, Pavlović VB. Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science. 2024;141(10):e55040.
doi:10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516 .
Filipović, Suzana, Obradović, Nina, Corlett, Cole, Fahrenholtz, William G., Rosenschon, Martin, Füglein, Ekkehard, Dojčilović, Radovan, Tošić, Dragana, Petrović, Jovana, Đorđević, Antonije, Vlahović, Branislav, Pavlović, Vladimir B., "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite" in Journal of Applied Polymer Science, 141, no. 10 (2024):e55040,
https://doi.org/10.1002/app.55040 .,
https://hdl.handle.net/21.15107/rcub_dais_16516 .

Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material

Janićijević, Aleksandra; Pavlović, Vera P.; Kovačević, Danijela; Đorđević, Nenad; Marinković, Aleksandar; Vlahović, Branislav; Karoui, Abdennaceur; Pavlović, Vladimir B.; Filipović, Suzana

(Springer, 2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Pavlović, Vera P.
AU  - Kovačević, Danijela
AU  - Đorđević, Nenad
AU  - Marinković, Aleksandar
AU  - Vlahović, Branislav
AU  - Karoui, Abdennaceur
AU  - Pavlović, Vladimir B.
AU  - Filipović, Suzana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16160
AB  - The hybrid multifunctional magnetic organic/inorganic composite materials, with addition of optimal filler type and quantities are attractive due to wide range of potential application, from various pressure sensors, through smart packaging, to tissue engineering and medicine. The structural, morphological and magnetic properties of polyvinylidene fluoride/nanocellulose/magnetite@BaTiO3 hybrid films were investigated. The presented study revealed significant impact of nanocellulose (NC) content on formation of the polymorphs of PVDF, responsible for ferro-, piezo- and pyroelectric properties. The structural characterization, XRD and Raman measurements confirmed enhancement of the β and γ phases when the loading of NC higher then 4 wt% in multi-component hybrid films. The saturation magnetization value gradually raises with increasing amount of NC and reaches its maximum value of 41.2 emu/g at content of 4 wt% NC. Further, addition of NC decreases saturation magnetization value regardless of constant amount of magnetite, indicating optimal content of NC substrate for co-precipitation of Fe3O4 onto NC matrix.
PB  - Springer
T2  - Journal of Inorganic and Organometallic Polymers and Materials
T1  - Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material
DO  - 10.1007/s10904-023-02953-w
UR  - https://hdl.handle.net/21.15107/rcub_dais_16160
ER  - 
@article{
author = "Janićijević, Aleksandra and Pavlović, Vera P. and Kovačević, Danijela and Đorđević, Nenad and Marinković, Aleksandar and Vlahović, Branislav and Karoui, Abdennaceur and Pavlović, Vladimir B. and Filipović, Suzana",
year = "2023",
abstract = "The hybrid multifunctional magnetic organic/inorganic composite materials, with addition of optimal filler type and quantities are attractive due to wide range of potential application, from various pressure sensors, through smart packaging, to tissue engineering and medicine. The structural, morphological and magnetic properties of polyvinylidene fluoride/nanocellulose/magnetite@BaTiO3 hybrid films were investigated. The presented study revealed significant impact of nanocellulose (NC) content on formation of the polymorphs of PVDF, responsible for ferro-, piezo- and pyroelectric properties. The structural characterization, XRD and Raman measurements confirmed enhancement of the β and γ phases when the loading of NC higher then 4 wt% in multi-component hybrid films. The saturation magnetization value gradually raises with increasing amount of NC and reaches its maximum value of 41.2 emu/g at content of 4 wt% NC. Further, addition of NC decreases saturation magnetization value regardless of constant amount of magnetite, indicating optimal content of NC substrate for co-precipitation of Fe3O4 onto NC matrix.",
publisher = "Springer",
journal = "Journal of Inorganic and Organometallic Polymers and Materials",
title = "Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material",
doi = "10.1007/s10904-023-02953-w",
url = "https://hdl.handle.net/21.15107/rcub_dais_16160"
}
Janićijević, A., Pavlović, V. P., Kovačević, D., Đorđević, N., Marinković, A., Vlahović, B., Karoui, A., Pavlović, V. B.,& Filipović, S.. (2023). Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. in Journal of Inorganic and Organometallic Polymers and Materials
Springer..
https://doi.org/10.1007/s10904-023-02953-w
https://hdl.handle.net/21.15107/rcub_dais_16160
Janićijević A, Pavlović VP, Kovačević D, Đorđević N, Marinković A, Vlahović B, Karoui A, Pavlović VB, Filipović S. Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. in Journal of Inorganic and Organometallic Polymers and Materials. 2023;.
doi:10.1007/s10904-023-02953-w
https://hdl.handle.net/21.15107/rcub_dais_16160 .
Janićijević, Aleksandra, Pavlović, Vera P., Kovačević, Danijela, Đorđević, Nenad, Marinković, Aleksandar, Vlahović, Branislav, Karoui, Abdennaceur, Pavlović, Vladimir B., Filipović, Suzana, "Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material" in Journal of Inorganic and Organometallic Polymers and Materials (2023),
https://doi.org/10.1007/s10904-023-02953-w .,
https://hdl.handle.net/21.15107/rcub_dais_16160 .

Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite

Janićijević, Aleksandra; Filipović, Suzana; Sknepnek, Aleksandra; Vlahović, Branislav; Đorđević, Nenad; Kovacević, Danijela; Mirković, Miljana; Petronijević, Ivan; Živković, Predrag; Rogan, Jelena; Pavlović, Vladimir B.

(Basel : MDPI, 2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Filipović, Suzana
AU  - Sknepnek, Aleksandra
AU  - Vlahović, Branislav
AU  - Đorđević, Nenad
AU  - Kovacević, Danijela
AU  - Mirković, Miljana
AU  - Petronijević, Ivan
AU  - Živković, Predrag
AU  - Rogan, Jelena
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15363
AB  - In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.
PB  - Basel : MDPI
T2  - Polymers
T1  - Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite
SP  - 4080
VL  - 15
IS  - 20
DO  - 10.3390/polym15204080
UR  - https://hdl.handle.net/21.15107/rcub_dais_15363
ER  - 
@article{
author = "Janićijević, Aleksandra and Filipović, Suzana and Sknepnek, Aleksandra and Vlahović, Branislav and Đorđević, Nenad and Kovacević, Danijela and Mirković, Miljana and Petronijević, Ivan and Živković, Predrag and Rogan, Jelena and Pavlović, Vladimir B.",
year = "2023",
abstract = "In the search for environmentally friendly materials with a wide range of properties, polymer composites have emerged as a promising alternative due to their multifunctional properties. This study focuses on the synthesis of composite materials consisting of four components: bacterial nanocellulose (BNC) modified with magnetic Fe3O4, and a mixture of BaTiO3 (BT) and polyvinylidene fluoride (PVDF). The BT powder was mechanically activated prior to mixing with PVDF. The influence of BT mechanical activation and BNC with magnetic particles on the PVDF matrix was investigated. The obtained composite films’ structural characteristics, morphology, and dielectric properties are presented. This research provides insights into the relationship between mechanical activation of the filler and structural and dielectric properties in the PVDF/BT/BNC/Fe3O4 system, creating the way for the development of materials with a wide range of diverse properties that support the concept of green technologies.",
publisher = "Basel : MDPI",
journal = "Polymers",
title = "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite",
pages = "4080",
volume = "15",
number = "20",
doi = "10.3390/polym15204080",
url = "https://hdl.handle.net/21.15107/rcub_dais_15363"
}
Janićijević, A., Filipović, S., Sknepnek, A., Vlahović, B., Đorđević, N., Kovacević, D., Mirković, M., Petronijević, I., Živković, P., Rogan, J.,& Pavlović, V. B.. (2023). Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers
Basel : MDPI., 15(20), 4080.
https://doi.org/10.3390/polym15204080
https://hdl.handle.net/21.15107/rcub_dais_15363
Janićijević A, Filipović S, Sknepnek A, Vlahović B, Đorđević N, Kovacević D, Mirković M, Petronijević I, Živković P, Rogan J, Pavlović VB. Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite. in Polymers. 2023;15(20):4080.
doi:10.3390/polym15204080
https://hdl.handle.net/21.15107/rcub_dais_15363 .
Janićijević, Aleksandra, Filipović, Suzana, Sknepnek, Aleksandra, Vlahović, Branislav, Đorđević, Nenad, Kovacević, Danijela, Mirković, Miljana, Petronijević, Ivan, Živković, Predrag, Rogan, Jelena, Pavlović, Vladimir B., "Dielectric and Structural Properties of the Hybrid Material Polyvinylidene Fluoride-Bacterial Nanocellulose-Based Composite" in Polymers, 15, no. 20 (2023):4080,
https://doi.org/10.3390/polym15204080 .,
https://hdl.handle.net/21.15107/rcub_dais_15363 .
1

Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials

Peleš Tadić, Adriana; Vuković, George; Kojović, Aleksandar; Stojanović, Dušica; Vlahović, Branislav; Milosavljević, Nataša; Obradović, Nina; Pavlović, Vladimir B.

(Belgrade : University of Belgrade - Faculty of Mechanical Engineering, 2023)

TY  - CONF
AU  - Peleš Tadić, Adriana
AU  - Vuković, George
AU  - Kojović, Aleksandar
AU  - Stojanović, Dušica
AU  - Vlahović, Branislav
AU  - Milosavljević, Nataša
AU  - Obradović, Nina
AU  - Pavlović, Vladimir B.
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14969
AB  - Barium titanate (BaTiO3) and polyvinylidene fluoride (PVDF) based multifunctional materials are attracting a great scientific interest due to their excellent piezoelectric, pyroelectric and ferroelectric properties. These materials undergo controlled transformations through physical interactions and respond to environmental stimuli, such as temperature, pressure, electric and magnetic fields. Their properties strongly depend on synthesis procedures and obtained microstructures. This include intergranular contact surfaces of BaTiO3 based materials, as well as, porous structure and cross-linking patterns of PVDF prepared by electrospinning. It has been found that these microstructures can have fractal structure and that the fractal analysis can be used as a powerful tool for describing structural and functional properties of these materials. Having this in mind, in this research we have used different fractal methods for the reconstructions of various BaTiO3 and PVDF microstructure morphologies. Fractal analysis has been performed by using scanning electron microscope micrographs and computational modeling tools. Fractal dimension of irregular morphologies which exhibit fractal regularity were determined by using box-counting method. This method enables the analysis of self-similar microstructure morphologies by quantifying the rate at which an object's geometrical details develop at increasingly fine scales. Theory of Iterated Function Systems and Voronoi tessellation, have been used for modeling BaTiO3 random microstructures and PVDF porous structures. A python algorithm was created to determine the distribution of pore areas in SEM micrographs. Algorithm’s distribution of calculated pore surface areas was compared with measured pore surface areas and fractal reconstructions of different morphologies and their connection with functional properties were analyzed.
PB  - Belgrade : University of Belgrade - Faculty of Mechanical Engineering
C3  - Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia
T1  - Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials
SP  - 46
UR  - https://hdl.handle.net/21.15107/rcub_dais_14969
ER  - 
@conference{
author = "Peleš Tadić, Adriana and Vuković, George and Kojović, Aleksandar and Stojanović, Dušica and Vlahović, Branislav and Milosavljević, Nataša and Obradović, Nina and Pavlović, Vladimir B.",
year = "2023",
abstract = "Barium titanate (BaTiO3) and polyvinylidene fluoride (PVDF) based multifunctional materials are attracting a great scientific interest due to their excellent piezoelectric, pyroelectric and ferroelectric properties. These materials undergo controlled transformations through physical interactions and respond to environmental stimuli, such as temperature, pressure, electric and magnetic fields. Their properties strongly depend on synthesis procedures and obtained microstructures. This include intergranular contact surfaces of BaTiO3 based materials, as well as, porous structure and cross-linking patterns of PVDF prepared by electrospinning. It has been found that these microstructures can have fractal structure and that the fractal analysis can be used as a powerful tool for describing structural and functional properties of these materials. Having this in mind, in this research we have used different fractal methods for the reconstructions of various BaTiO3 and PVDF microstructure morphologies. Fractal analysis has been performed by using scanning electron microscope micrographs and computational modeling tools. Fractal dimension of irregular morphologies which exhibit fractal regularity were determined by using box-counting method. This method enables the analysis of self-similar microstructure morphologies by quantifying the rate at which an object's geometrical details develop at increasingly fine scales. Theory of Iterated Function Systems and Voronoi tessellation, have been used for modeling BaTiO3 random microstructures and PVDF porous structures. A python algorithm was created to determine the distribution of pore areas in SEM micrographs. Algorithm’s distribution of calculated pore surface areas was compared with measured pore surface areas and fractal reconstructions of different morphologies and their connection with functional properties were analyzed.",
publisher = "Belgrade : University of Belgrade - Faculty of Mechanical Engineering",
journal = "Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia",
title = "Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials",
pages = "46",
url = "https://hdl.handle.net/21.15107/rcub_dais_14969"
}
Peleš Tadić, A., Vuković, G., Kojović, A., Stojanović, D., Vlahović, B., Milosavljević, N., Obradović, N.,& Pavlović, V. B.. (2023). Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia
Belgrade : University of Belgrade - Faculty of Mechanical Engineering., 46.
https://hdl.handle.net/21.15107/rcub_dais_14969
Peleš Tadić A, Vuković G, Kojović A, Stojanović D, Vlahović B, Milosavljević N, Obradović N, Pavlović VB. Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia. 2023;:46.
https://hdl.handle.net/21.15107/rcub_dais_14969 .
Peleš Tadić, Adriana, Vuković, George, Kojović, Aleksandar, Stojanović, Dušica, Vlahović, Branislav, Milosavljević, Nataša, Obradović, Nina, Pavlović, Vladimir B., "Fractal analysis and microstructure development of BaTiO3 and PVDF based multifunctional materials" in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia (2023):46,
https://hdl.handle.net/21.15107/rcub_dais_14969 .

Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal

Vujančević, Jelena; Andričević, Pavao; Đokić, Veljko; Blagojević, Vladimir A.; Pavlović, Vera P.; Ćirković, Jovana; Horváth, Endre; Forró, László; Karoui, Abdennaceur; Pavlović, Vladimir B.; Janaćković, Đorđe

(MDPI, 2023)

TY  - JOUR
AU  - Vujančević, Jelena
AU  - Andričević, Pavao
AU  - Đokić, Veljko
AU  - Blagojević, Vladimir A.
AU  - Pavlović, Vera P.
AU  - Ćirković, Jovana
AU  - Horváth, Endre
AU  - Forró, László
AU  - Karoui, Abdennaceur
AU  - Pavlović, Vladimir B.
AU  - Janaćković, Đorđe
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14229
AB  - In this study, we report the influence of vanadium oxide (VO), as a photosensitive component, on the photoactivity of TiO2 nanotubes (TNTs). A series of TNTs of varying tube diameter were synthesized by the anodization of titanium foils at different voltages, while vanadium oxide was deposited on TNTs by wet chemical deposition. An improvement in the optical properties of nanotubes was observed after the deposition of vanadium oxide. An improvement in the optical properties (redshift in UV-Vis spectra) of TNTs and TNT/VO was noted. The photocatalytic activity was improved with increasing tube diameter, while it was weakened after the deposition of VO. Furthermore, photoactivity was investigated in photodiodes based on TNTs or TNT/VO and single crystals of CH3NH3PbI3. The photoelectric measurement revealed that different TNT diameters did not influence the I-V characteristic of the photodiodes, while the deposition of VO improved the photocurrent for smaller TNTs.
PB  - MDPI
T2  - Catalysts
T1  - Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal
SP  - 352
VL  - 13
IS  - 2
DO  - 10.3390/catal13020352
UR  - https://hdl.handle.net/21.15107/rcub_dais_14229
ER  - 
@article{
author = "Vujančević, Jelena and Andričević, Pavao and Đokić, Veljko and Blagojević, Vladimir A. and Pavlović, Vera P. and Ćirković, Jovana and Horváth, Endre and Forró, László and Karoui, Abdennaceur and Pavlović, Vladimir B. and Janaćković, Đorđe",
year = "2023",
abstract = "In this study, we report the influence of vanadium oxide (VO), as a photosensitive component, on the photoactivity of TiO2 nanotubes (TNTs). A series of TNTs of varying tube diameter were synthesized by the anodization of titanium foils at different voltages, while vanadium oxide was deposited on TNTs by wet chemical deposition. An improvement in the optical properties of nanotubes was observed after the deposition of vanadium oxide. An improvement in the optical properties (redshift in UV-Vis spectra) of TNTs and TNT/VO was noted. The photocatalytic activity was improved with increasing tube diameter, while it was weakened after the deposition of VO. Furthermore, photoactivity was investigated in photodiodes based on TNTs or TNT/VO and single crystals of CH3NH3PbI3. The photoelectric measurement revealed that different TNT diameters did not influence the I-V characteristic of the photodiodes, while the deposition of VO improved the photocurrent for smaller TNTs.",
publisher = "MDPI",
journal = "Catalysts",
title = "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal",
pages = "352",
volume = "13",
number = "2",
doi = "10.3390/catal13020352",
url = "https://hdl.handle.net/21.15107/rcub_dais_14229"
}
Vujančević, J., Andričević, P., Đokić, V., Blagojević, V. A., Pavlović, V. P., Ćirković, J., Horváth, E., Forró, L., Karoui, A., Pavlović, V. B.,& Janaćković, Đ.. (2023). Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. in Catalysts
MDPI., 13(2), 352.
https://doi.org/10.3390/catal13020352
https://hdl.handle.net/21.15107/rcub_dais_14229
Vujančević J, Andričević P, Đokić V, Blagojević VA, Pavlović VP, Ćirković J, Horváth E, Forró L, Karoui A, Pavlović VB, Janaćković Đ. Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. in Catalysts. 2023;13(2):352.
doi:10.3390/catal13020352
https://hdl.handle.net/21.15107/rcub_dais_14229 .
Vujančević, Jelena, Andričević, Pavao, Đokić, Veljko, Blagojević, Vladimir A., Pavlović, Vera P., Ćirković, Jovana, Horváth, Endre, Forró, László, Karoui, Abdennaceur, Pavlović, Vladimir B., Janaćković, Đorđe, "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal" in Catalysts, 13, no. 2 (2023):352,
https://doi.org/10.3390/catal13020352 .,
https://hdl.handle.net/21.15107/rcub_dais_14229 .

Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties

Mirković, Miljana; Filipović, Suzana; Kalijadis, Ana; Mašković, Pavle; Mašković, Jelena; Vlahović, Branislav; Pavlović, Vladimir B.

(2022)

TY  - JOUR
AU  - Mirković, Miljana
AU  - Filipović, Suzana
AU  - Kalijadis, Ana
AU  - Mašković, Pavle
AU  - Mašković, Jelena
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13153
AB  - Due to the growing number of people infected with the new coronavirus globally, which weakens immunity, there has been an increase in bacterial infections. Hence, knowledge about simple and low-cost synthesis methods of materials with good structural and antimicrobial properties is of great importance. A material obtained through the combination of a nanoscale hydroxyapatite material (with good biocompatibility) and titanium dioxide (with good degradation properties of organic molecules) can absorb and decompose bacteria. In this investigation, three different synthesis routes used to prepare hydroxyapatite/titanium dioxide nanomaterials are examined. The morphology and semiquantitative chemical composition are characterized by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). The obtained materials’ phase and structural characterization are determined using the X-ray powder diffraction method (XRD). The crystallite sizes of the obtained materials are in the range of 8 nm to 15 nm. Based on XRD peak positions, the hexagonal hydroxyapatite phases are formed in all samples along with TiO2 anatase and rutile phases. According to SEM and TEM analyses, the morphology of the prepared samples differs depending on the synthesis route. The EDX analysis confirmed the presence of Ti, Ca, P, and O in the obtained materials. The IR spectroscopy verified the vibration bands characteristic for HAp and titanium. The investigated materials show excellent antimicrobial and photocatalytic properties.
T2  - Antibiotics
T1  - Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties
SP  - 592
VL  - 11
IS  - 5
DO  - 10.3390/antibiotics11050592
UR  - https://hdl.handle.net/21.15107/rcub_dais_13153
ER  - 
@article{
author = "Mirković, Miljana and Filipović, Suzana and Kalijadis, Ana and Mašković, Pavle and Mašković, Jelena and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2022",
abstract = "Due to the growing number of people infected with the new coronavirus globally, which weakens immunity, there has been an increase in bacterial infections. Hence, knowledge about simple and low-cost synthesis methods of materials with good structural and antimicrobial properties is of great importance. A material obtained through the combination of a nanoscale hydroxyapatite material (with good biocompatibility) and titanium dioxide (with good degradation properties of organic molecules) can absorb and decompose bacteria. In this investigation, three different synthesis routes used to prepare hydroxyapatite/titanium dioxide nanomaterials are examined. The morphology and semiquantitative chemical composition are characterized by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). The obtained materials’ phase and structural characterization are determined using the X-ray powder diffraction method (XRD). The crystallite sizes of the obtained materials are in the range of 8 nm to 15 nm. Based on XRD peak positions, the hexagonal hydroxyapatite phases are formed in all samples along with TiO2 anatase and rutile phases. According to SEM and TEM analyses, the morphology of the prepared samples differs depending on the synthesis route. The EDX analysis confirmed the presence of Ti, Ca, P, and O in the obtained materials. The IR spectroscopy verified the vibration bands characteristic for HAp and titanium. The investigated materials show excellent antimicrobial and photocatalytic properties.",
journal = "Antibiotics",
title = "Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties",
pages = "592",
volume = "11",
number = "5",
doi = "10.3390/antibiotics11050592",
url = "https://hdl.handle.net/21.15107/rcub_dais_13153"
}
Mirković, M., Filipović, S., Kalijadis, A., Mašković, P., Mašković, J., Vlahović, B.,& Pavlović, V. B.. (2022). Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties. in Antibiotics, 11(5), 592.
https://doi.org/10.3390/antibiotics11050592
https://hdl.handle.net/21.15107/rcub_dais_13153
Mirković M, Filipović S, Kalijadis A, Mašković P, Mašković J, Vlahović B, Pavlović VB. Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties. in Antibiotics. 2022;11(5):592.
doi:10.3390/antibiotics11050592
https://hdl.handle.net/21.15107/rcub_dais_13153 .
Mirković, Miljana, Filipović, Suzana, Kalijadis, Ana, Mašković, Pavle, Mašković, Jelena, Vlahović, Branislav, Pavlović, Vladimir B., "Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties" in Antibiotics, 11, no. 5 (2022):592,
https://doi.org/10.3390/antibiotics11050592 .,
https://hdl.handle.net/21.15107/rcub_dais_13153 .
10
11