Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200105 (University of Belgrade, Faculty of Mechanical Engineering)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200105/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200105 (University of Belgrade, Faculty of Mechanical Engineering) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200105 (Univerzitet u Beogradu, Mašinski fakultet) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200105 (Универзитет у Београду, Машински факултет) (sr)
Authors

Publications

Magnesium substitution with nickel and its influence on the sensing properties of MgFe2O4

Dojčinović, Milena; Vasiljević, Zorka Ž.; Rakočević, Lazar; Pavlović, Vera P.; Ammar-Merah, Souad; Vujančević, Jelena; Nikolić, Maria Vesna

(University of Novi Sad, Faculty of Technology, Novi Sad, Serbia, 2023)

TY  - CONF
AU  - Dojčinović, Milena
AU  - Vasiljević, Zorka Ž.
AU  - Rakočević, Lazar
AU  - Pavlović, Vera P.
AU  - Ammar-Merah, Souad
AU  - Vujančević, Jelena
AU  - Nikolić, Maria Vesna
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16331
AB  - Mixed spinel ferrites MgxNi1-xFe2O4 were synthesized via sol-gel combustion synthesis with citric acid as fuel, followed by calcination at 700 °C for 3 hours. Obtained powders were characterized via X-ray diffraction analysis (XRD), X-ray photoelectron (XPS), FTIR and Raman spectroscopy and FESEM microscopy. Elemental composition was examined via energy dispersive spectroscopy (EDS). Humidity sensing properties were tested by measuring AC impedance in a climactic chamber at 25 °C and in the relative humidity range of 40–90%. Temperature sensing properties were tested by measuring DC resistance at 40% RH in the temperature range 40–90 °C. Synthesized powders were proven to be pure spinel Fd 3m phase with spherical, slightly agglomerated particles. Substitution of Mg with Ni results in structural changes such as a change in inversion parameter and particle agglomeration, which influences sensing properties of the material. Results show that the sensing properties of magnesium ferrite, which is already a well-established NTC sensor, can be improved by incorporating 10% of nickel in the spinel lattice structure. Mg0.9Ni0.1Fe2O4 exhibited higher temperature sensitivity and higher sensitivity towards humidity compared to MgFe2O4, while further substitution of Mg with Ni resulted in the decline of sensing properties, increase in particle size and agglomeration degree.
PB  - University of Novi Sad, Faculty of Technology, Novi Sad, Serbia
C3  - CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, Programme and Book of Abstracts; October 11-14, 2023, Novi Sad, Serbia
T1  - Magnesium substitution with nickel and its influence on the sensing properties of MgFe2O4
UR  - https://hdl.handle.net/21.15107/rcub_machinery_7269
ER  - 
@conference{
author = "Dojčinović, Milena and Vasiljević, Zorka Ž. and Rakočević, Lazar and Pavlović, Vera P. and Ammar-Merah, Souad and Vujančević, Jelena and Nikolić, Maria Vesna",
year = "2023",
abstract = "Mixed spinel ferrites MgxNi1-xFe2O4 were synthesized via sol-gel combustion synthesis with citric acid as fuel, followed by calcination at 700 °C for 3 hours. Obtained powders were characterized via X-ray diffraction analysis (XRD), X-ray photoelectron (XPS), FTIR and Raman spectroscopy and FESEM microscopy. Elemental composition was examined via energy dispersive spectroscopy (EDS). Humidity sensing properties were tested by measuring AC impedance in a climactic chamber at 25 °C and in the relative humidity range of 40–90%. Temperature sensing properties were tested by measuring DC resistance at 40% RH in the temperature range 40–90 °C. Synthesized powders were proven to be pure spinel Fd 3m phase with spherical, slightly agglomerated particles. Substitution of Mg with Ni results in structural changes such as a change in inversion parameter and particle agglomeration, which influences sensing properties of the material. Results show that the sensing properties of magnesium ferrite, which is already a well-established NTC sensor, can be improved by incorporating 10% of nickel in the spinel lattice structure. Mg0.9Ni0.1Fe2O4 exhibited higher temperature sensitivity and higher sensitivity towards humidity compared to MgFe2O4, while further substitution of Mg with Ni resulted in the decline of sensing properties, increase in particle size and agglomeration degree.",
publisher = "University of Novi Sad, Faculty of Technology, Novi Sad, Serbia",
journal = "CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, Programme and Book of Abstracts; October 11-14, 2023, Novi Sad, Serbia",
title = "Magnesium substitution with nickel and its influence on the sensing properties of MgFe2O4",
url = "https://hdl.handle.net/21.15107/rcub_machinery_7269"
}
Dojčinović, M., Vasiljević, Z. Ž., Rakočević, L., Pavlović, V. P., Ammar-Merah, S., Vujančević, J.,& Nikolić, M. V.. (2023). Magnesium substitution with nickel and its influence on the sensing properties of MgFe2O4. in CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, Programme and Book of Abstracts; October 11-14, 2023, Novi Sad, Serbia
University of Novi Sad, Faculty of Technology, Novi Sad, Serbia..
https://hdl.handle.net/21.15107/rcub_machinery_7269
Dojčinović M, Vasiljević ZŽ, Rakočević L, Pavlović VP, Ammar-Merah S, Vujančević J, Nikolić MV. Magnesium substitution with nickel and its influence on the sensing properties of MgFe2O4. in CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, Programme and Book of Abstracts; October 11-14, 2023, Novi Sad, Serbia. 2023;.
https://hdl.handle.net/21.15107/rcub_machinery_7269 .
Dojčinović, Milena, Vasiljević, Zorka Ž., Rakočević, Lazar, Pavlović, Vera P., Ammar-Merah, Souad, Vujančević, Jelena, Nikolić, Maria Vesna, "Magnesium substitution with nickel and its influence on the sensing properties of MgFe2O4" in CYSC-2023 : 15th EcerS Conference for Young Scientists in Ceramics, Programme and Book of Abstracts; October 11-14, 2023, Novi Sad, Serbia (2023),
https://hdl.handle.net/21.15107/rcub_machinery_7269 .

Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material

Janićijević, Aleksandra; Pavlović, Vera P.; Kovačević, Danijela; Đorđević, Nenad; Marinković, Aleksandar; Vlahović, Branislav; Karoui, Abdennaceur; Pavlović, Vladimir B.; Filipović, Suzana

(Springer, 2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Pavlović, Vera P.
AU  - Kovačević, Danijela
AU  - Đorđević, Nenad
AU  - Marinković, Aleksandar
AU  - Vlahović, Branislav
AU  - Karoui, Abdennaceur
AU  - Pavlović, Vladimir B.
AU  - Filipović, Suzana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16160
AB  - The hybrid multifunctional magnetic organic/inorganic composite materials, with addition of optimal filler type and quantities are attractive due to wide range of potential application, from various pressure sensors, through smart packaging, to tissue engineering and medicine. The structural, morphological and magnetic properties of polyvinylidene fluoride/nanocellulose/magnetite@BaTiO3 hybrid films were investigated. The presented study revealed significant impact of nanocellulose (NC) content on formation of the polymorphs of PVDF, responsible for ferro-, piezo- and pyroelectric properties. The structural characterization, XRD and Raman measurements confirmed enhancement of the β and γ phases when the loading of NC higher then 4 wt% in multi-component hybrid films. The saturation magnetization value gradually raises with increasing amount of NC and reaches its maximum value of 41.2 emu/g at content of 4 wt% NC. Further, addition of NC decreases saturation magnetization value regardless of constant amount of magnetite, indicating optimal content of NC substrate for co-precipitation of Fe3O4 onto NC matrix.
PB  - Springer
T2  - Journal of Inorganic and Organometallic Polymers and Materials
T1  - Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material
DO  - 10.1007/s10904-023-02953-w
UR  - https://hdl.handle.net/21.15107/rcub_dais_16160
ER  - 
@article{
author = "Janićijević, Aleksandra and Pavlović, Vera P. and Kovačević, Danijela and Đorđević, Nenad and Marinković, Aleksandar and Vlahović, Branislav and Karoui, Abdennaceur and Pavlović, Vladimir B. and Filipović, Suzana",
year = "2023",
abstract = "The hybrid multifunctional magnetic organic/inorganic composite materials, with addition of optimal filler type and quantities are attractive due to wide range of potential application, from various pressure sensors, through smart packaging, to tissue engineering and medicine. The structural, morphological and magnetic properties of polyvinylidene fluoride/nanocellulose/magnetite@BaTiO3 hybrid films were investigated. The presented study revealed significant impact of nanocellulose (NC) content on formation of the polymorphs of PVDF, responsible for ferro-, piezo- and pyroelectric properties. The structural characterization, XRD and Raman measurements confirmed enhancement of the β and γ phases when the loading of NC higher then 4 wt% in multi-component hybrid films. The saturation magnetization value gradually raises with increasing amount of NC and reaches its maximum value of 41.2 emu/g at content of 4 wt% NC. Further, addition of NC decreases saturation magnetization value regardless of constant amount of magnetite, indicating optimal content of NC substrate for co-precipitation of Fe3O4 onto NC matrix.",
publisher = "Springer",
journal = "Journal of Inorganic and Organometallic Polymers and Materials",
title = "Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material",
doi = "10.1007/s10904-023-02953-w",
url = "https://hdl.handle.net/21.15107/rcub_dais_16160"
}
Janićijević, A., Pavlović, V. P., Kovačević, D., Đorđević, N., Marinković, A., Vlahović, B., Karoui, A., Pavlović, V. B.,& Filipović, S.. (2023). Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. in Journal of Inorganic and Organometallic Polymers and Materials
Springer..
https://doi.org/10.1007/s10904-023-02953-w
https://hdl.handle.net/21.15107/rcub_dais_16160
Janićijević A, Pavlović VP, Kovačević D, Đorđević N, Marinković A, Vlahović B, Karoui A, Pavlović VB, Filipović S. Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. in Journal of Inorganic and Organometallic Polymers and Materials. 2023;.
doi:10.1007/s10904-023-02953-w
https://hdl.handle.net/21.15107/rcub_dais_16160 .
Janićijević, Aleksandra, Pavlović, Vera P., Kovačević, Danijela, Đorđević, Nenad, Marinković, Aleksandar, Vlahović, Branislav, Karoui, Abdennaceur, Pavlović, Vladimir B., Filipović, Suzana, "Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material" in Journal of Inorganic and Organometallic Polymers and Materials (2023),
https://doi.org/10.1007/s10904-023-02953-w .,
https://hdl.handle.net/21.15107/rcub_dais_16160 .

Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material

Janićijević, Aleksandra; Pavlović, Vera P.; Kovačević, Danijela; Đorđević, Nenad; Marinković, Aleksandar; Vlahović, Branislav; Karoui, Abdennaceur; Pavlović, Vladimir B.; Filipović, Suzana

(Springer, 2023)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Pavlović, Vera P.
AU  - Kovačević, Danijela
AU  - Đorđević, Nenad
AU  - Marinković, Aleksandar
AU  - Vlahović, Branislav
AU  - Karoui, Abdennaceur
AU  - Pavlović, Vladimir B.
AU  - Filipović, Suzana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16160
UR  - https://dais.sanu.ac.rs/123456789/16161
AB  - The hybrid multifunctional magnetic organic/inorganic composite materials, with addition of optimal filler type and quantities are attractive due to wide range of potential application, from various pressure sensors, through smart packaging, to tissue engineering and medicine. The structural, morphological and magnetic properties of polyvinylidene fluoride/nanocellulose/magnetite@BaTiO3 hybrid films were investigated. The presented study revealed significant impact of nanocellulose (NC) content on formation of the polymorphs of PVDF, responsible for ferro-, piezo- and pyroelectric properties. The structural characterization, XRD and Raman measurements confirmed enhancement of the β and γ phases when the loading of NC higher then 4 wt% in multi-component hybrid films. The saturation magnetization value gradually raises with increasing amount of NC and reaches its maximum value of 41.2 emu/g at content of 4 wt% NC. Further, addition of NC decreases saturation magnetization value regardless of constant amount of magnetite, indicating optimal content of NC substrate for co-precipitation of Fe3O4 onto NC matrix.
PB  - Springer
T2  - Journal of Inorganic and Organometallic Polymers and Materials
T1  - Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material
DO  - 10.1007/s10904-023-02953-w
UR  - https://hdl.handle.net/21.15107/rcub_dais_16161
ER  - 
@article{
author = "Janićijević, Aleksandra and Pavlović, Vera P. and Kovačević, Danijela and Đorđević, Nenad and Marinković, Aleksandar and Vlahović, Branislav and Karoui, Abdennaceur and Pavlović, Vladimir B. and Filipović, Suzana",
year = "2023",
abstract = "The hybrid multifunctional magnetic organic/inorganic composite materials, with addition of optimal filler type and quantities are attractive due to wide range of potential application, from various pressure sensors, through smart packaging, to tissue engineering and medicine. The structural, morphological and magnetic properties of polyvinylidene fluoride/nanocellulose/magnetite@BaTiO3 hybrid films were investigated. The presented study revealed significant impact of nanocellulose (NC) content on formation of the polymorphs of PVDF, responsible for ferro-, piezo- and pyroelectric properties. The structural characterization, XRD and Raman measurements confirmed enhancement of the β and γ phases when the loading of NC higher then 4 wt% in multi-component hybrid films. The saturation magnetization value gradually raises with increasing amount of NC and reaches its maximum value of 41.2 emu/g at content of 4 wt% NC. Further, addition of NC decreases saturation magnetization value regardless of constant amount of magnetite, indicating optimal content of NC substrate for co-precipitation of Fe3O4 onto NC matrix.",
publisher = "Springer",
journal = "Journal of Inorganic and Organometallic Polymers and Materials",
title = "Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material",
doi = "10.1007/s10904-023-02953-w",
url = "https://hdl.handle.net/21.15107/rcub_dais_16161"
}
Janićijević, A., Pavlović, V. P., Kovačević, D., Đorđević, N., Marinković, A., Vlahović, B., Karoui, A., Pavlović, V. B.,& Filipović, S.. (2023). Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. in Journal of Inorganic and Organometallic Polymers and Materials
Springer..
https://doi.org/10.1007/s10904-023-02953-w
https://hdl.handle.net/21.15107/rcub_dais_16161
Janićijević A, Pavlović VP, Kovačević D, Đorđević N, Marinković A, Vlahović B, Karoui A, Pavlović VB, Filipović S. Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material. in Journal of Inorganic and Organometallic Polymers and Materials. 2023;.
doi:10.1007/s10904-023-02953-w
https://hdl.handle.net/21.15107/rcub_dais_16161 .
Janićijević, Aleksandra, Pavlović, Vera P., Kovačević, Danijela, Đorđević, Nenad, Marinković, Aleksandar, Vlahović, Branislav, Karoui, Abdennaceur, Pavlović, Vladimir B., Filipović, Suzana, "Impact of Nanocellulose Loading on the Crystal Structure, Morphology and Properties of PVDF/Magnetite@NC/BaTiO3 Multi-component Hybrid Ceramic/Polymer Composite Material" in Journal of Inorganic and Organometallic Polymers and Materials (2023),
https://doi.org/10.1007/s10904-023-02953-w .,
https://hdl.handle.net/21.15107/rcub_dais_16161 .

Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal

Vujančević, Jelena; Andričević, Pavao; Đokić, Veljko; Blagojević, Vladimir A.; Pavlović, Vera P.; Ćirković, Jovana; Horváth, Endre; Forró, László; Karoui, Abdennaceur; Pavlović, Vladimir B.; Janaćković, Đorđe

(MDPI, 2023)

TY  - JOUR
AU  - Vujančević, Jelena
AU  - Andričević, Pavao
AU  - Đokić, Veljko
AU  - Blagojević, Vladimir A.
AU  - Pavlović, Vera P.
AU  - Ćirković, Jovana
AU  - Horváth, Endre
AU  - Forró, László
AU  - Karoui, Abdennaceur
AU  - Pavlović, Vladimir B.
AU  - Janaćković, Đorđe
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14229
AB  - In this study, we report the influence of vanadium oxide (VO), as a photosensitive component, on the photoactivity of TiO2 nanotubes (TNTs). A series of TNTs of varying tube diameter were synthesized by the anodization of titanium foils at different voltages, while vanadium oxide was deposited on TNTs by wet chemical deposition. An improvement in the optical properties of nanotubes was observed after the deposition of vanadium oxide. An improvement in the optical properties (redshift in UV-Vis spectra) of TNTs and TNT/VO was noted. The photocatalytic activity was improved with increasing tube diameter, while it was weakened after the deposition of VO. Furthermore, photoactivity was investigated in photodiodes based on TNTs or TNT/VO and single crystals of CH3NH3PbI3. The photoelectric measurement revealed that different TNT diameters did not influence the I-V characteristic of the photodiodes, while the deposition of VO improved the photocurrent for smaller TNTs.
PB  - MDPI
T2  - Catalysts
T1  - Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal
SP  - 352
VL  - 13
IS  - 2
DO  - 10.3390/catal13020352
UR  - https://hdl.handle.net/21.15107/rcub_dais_14229
ER  - 
@article{
author = "Vujančević, Jelena and Andričević, Pavao and Đokić, Veljko and Blagojević, Vladimir A. and Pavlović, Vera P. and Ćirković, Jovana and Horváth, Endre and Forró, László and Karoui, Abdennaceur and Pavlović, Vladimir B. and Janaćković, Đorđe",
year = "2023",
abstract = "In this study, we report the influence of vanadium oxide (VO), as a photosensitive component, on the photoactivity of TiO2 nanotubes (TNTs). A series of TNTs of varying tube diameter were synthesized by the anodization of titanium foils at different voltages, while vanadium oxide was deposited on TNTs by wet chemical deposition. An improvement in the optical properties of nanotubes was observed after the deposition of vanadium oxide. An improvement in the optical properties (redshift in UV-Vis spectra) of TNTs and TNT/VO was noted. The photocatalytic activity was improved with increasing tube diameter, while it was weakened after the deposition of VO. Furthermore, photoactivity was investigated in photodiodes based on TNTs or TNT/VO and single crystals of CH3NH3PbI3. The photoelectric measurement revealed that different TNT diameters did not influence the I-V characteristic of the photodiodes, while the deposition of VO improved the photocurrent for smaller TNTs.",
publisher = "MDPI",
journal = "Catalysts",
title = "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal",
pages = "352",
volume = "13",
number = "2",
doi = "10.3390/catal13020352",
url = "https://hdl.handle.net/21.15107/rcub_dais_14229"
}
Vujančević, J., Andričević, P., Đokić, V., Blagojević, V. A., Pavlović, V. P., Ćirković, J., Horváth, E., Forró, L., Karoui, A., Pavlović, V. B.,& Janaćković, Đ.. (2023). Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. in Catalysts
MDPI., 13(2), 352.
https://doi.org/10.3390/catal13020352
https://hdl.handle.net/21.15107/rcub_dais_14229
Vujančević J, Andričević P, Đokić V, Blagojević VA, Pavlović VP, Ćirković J, Horváth E, Forró L, Karoui A, Pavlović VB, Janaćković Đ. Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal. in Catalysts. 2023;13(2):352.
doi:10.3390/catal13020352
https://hdl.handle.net/21.15107/rcub_dais_14229 .
Vujančević, Jelena, Andričević, Pavao, Đokić, Veljko, Blagojević, Vladimir A., Pavlović, Vera P., Ćirković, Jovana, Horváth, Endre, Forró, László, Karoui, Abdennaceur, Pavlović, Vladimir B., Janaćković, Đorđe, "Effect of the Deposition of Vanadium-Oxide on the Photocatalytic Activity of TiO2 Nanotubes and Its Photodiode Performance Interfaced with CH3NH3PbI3 Single Crystal" in Catalysts, 13, no. 2 (2023):352,
https://doi.org/10.3390/catal13020352 .,
https://hdl.handle.net/21.15107/rcub_dais_14229 .

Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites

Dojčinović, Milena P.; Vasiljević, Zorka Ž.; Rakočević, Lazar; Pavlović, Vera P.; Ammar-Merah, Souad; Vujančević, Jelena D.; Nikolić, Maria Vesna

(Basel : MDPI AG, 2023)

TY  - JOUR
AU  - Dojčinović, Milena P.
AU  - Vasiljević, Zorka Ž.
AU  - Rakočević, Lazar
AU  - Pavlović, Vera P.
AU  - Ammar-Merah, Souad
AU  - Vujančević, Jelena D.
AU  - Nikolić, Maria Vesna
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14025
AB  - Temperature- and humidity-sensing properties were evaluated of NixMg1-x spinel ferrites (0 ≤ x ≤ 1) synthesized by a sol-gel combustion method using citric acid as fuel and nitrate ions as oxidizing agents. After the exothermic reaction, amorphous powders were calcined at 700 °C followed by characterization with XRD, FTIR, XPS, EDS and Raman spectroscopy and FESEM microscopy. Synthesized powders were tested as humidity- and temperature-sensing materials in the form of thick films on interdigitated electrodes on alumina substrate in a climatic chamber. The physicochemical investigation of synthesized materials revealed a cubic spinel Fd3¯m phase, nanosized but agglomerated particles with a partially to completely inverse spinel structure with increasing Ni content. Ni0.1Mg0.9Fe2O4 showed the highest material constant (B30,90) value of 3747 K and temperature sensitivity (α) of −4.08%/K compared to pure magnesium ferrite (B30,90 value of 3426 K and α of −3.73%/K) and the highest average sensitivity towards humidity of 922 kΩ/%RH in the relative humidity (RH) range of 40–90% at the working temperature of 25 °C.
PB  - Basel : MDPI AG
T2  - Chemosensors
T1  - Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites
SP  - 34
VL  - 11
IS  - 1
DO  - 10.3390/chemosensors11010034
UR  - https://hdl.handle.net/21.15107/rcub_dais_14025
ER  - 
@article{
author = "Dojčinović, Milena P. and Vasiljević, Zorka Ž. and Rakočević, Lazar and Pavlović, Vera P. and Ammar-Merah, Souad and Vujančević, Jelena D. and Nikolić, Maria Vesna",
year = "2023",
abstract = "Temperature- and humidity-sensing properties were evaluated of NixMg1-x spinel ferrites (0 ≤ x ≤ 1) synthesized by a sol-gel combustion method using citric acid as fuel and nitrate ions as oxidizing agents. After the exothermic reaction, amorphous powders were calcined at 700 °C followed by characterization with XRD, FTIR, XPS, EDS and Raman spectroscopy and FESEM microscopy. Synthesized powders were tested as humidity- and temperature-sensing materials in the form of thick films on interdigitated electrodes on alumina substrate in a climatic chamber. The physicochemical investigation of synthesized materials revealed a cubic spinel Fd3¯m phase, nanosized but agglomerated particles with a partially to completely inverse spinel structure with increasing Ni content. Ni0.1Mg0.9Fe2O4 showed the highest material constant (B30,90) value of 3747 K and temperature sensitivity (α) of −4.08%/K compared to pure magnesium ferrite (B30,90 value of 3426 K and α of −3.73%/K) and the highest average sensitivity towards humidity of 922 kΩ/%RH in the relative humidity (RH) range of 40–90% at the working temperature of 25 °C.",
publisher = "Basel : MDPI AG",
journal = "Chemosensors",
title = "Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites",
pages = "34",
volume = "11",
number = "1",
doi = "10.3390/chemosensors11010034",
url = "https://hdl.handle.net/21.15107/rcub_dais_14025"
}
Dojčinović, M. P., Vasiljević, Z. Ž., Rakočević, L., Pavlović, V. P., Ammar-Merah, S., Vujančević, J. D.,& Nikolić, M. V.. (2023). Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites. in Chemosensors
Basel : MDPI AG., 11(1), 34.
https://doi.org/10.3390/chemosensors11010034
https://hdl.handle.net/21.15107/rcub_dais_14025
Dojčinović MP, Vasiljević ZŽ, Rakočević L, Pavlović VP, Ammar-Merah S, Vujančević JD, Nikolić MV. Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites. in Chemosensors. 2023;11(1):34.
doi:10.3390/chemosensors11010034
https://hdl.handle.net/21.15107/rcub_dais_14025 .
Dojčinović, Milena P., Vasiljević, Zorka Ž., Rakočević, Lazar, Pavlović, Vera P., Ammar-Merah, Souad, Vujančević, Jelena D., Nikolić, Maria Vesna, "Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites" in Chemosensors, 11, no. 1 (2023):34,
https://doi.org/10.3390/chemosensors11010034 .,
https://hdl.handle.net/21.15107/rcub_dais_14025 .
4
3

Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials

Janićijević, Aleksandra; Pavlović, Vera P.; Kovačević, Danijela; Perić, Marko; Vlahović, Branislav; Pavlović, Vladimir B.; Filipović, Suzana

(2022)

TY  - JOUR
AU  - Janićijević, Aleksandra
AU  - Pavlović, Vera P.
AU  - Kovačević, Danijela
AU  - Perić, Marko
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
AU  - Filipović, Suzana
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13152
AB  - The rise of innovation in the electrical industry is driven by the controlled design of new materials. The hybrid materials based on magnetite/nanocellulose are highly interesting due to their various applications in medicine, ecology, catalysis and electronics. In this study, the structure and morphology of nanocellulose/magnetite hybrid nanomaterials were investigated. The effect of nanocellulose loading on the crystal structure of synthesized composites was investigated by XRD and FTIR methods. The presented study reveals that the interaction between the cellulose and magnetic nanoparticles depends on the nanocellulose content. Further, a transition from cellulose II to cellulose I allomorph is observed. SEM and EDS are employed to determine the variation in morphology with changes in component concentrations. By the calculation of magnetic interactions between adjacent Fe3+ and Fe2+ ions within composites, it is determined that ferromagnetic coupling predominates.
T2  - Polymers
T1  - Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials
SP  - 1819
VL  - 14
IS  - 9
DO  - 10.3390/polym14091819
UR  - https://hdl.handle.net/21.15107/rcub_dais_13152
ER  - 
@article{
author = "Janićijević, Aleksandra and Pavlović, Vera P. and Kovačević, Danijela and Perić, Marko and Vlahović, Branislav and Pavlović, Vladimir B. and Filipović, Suzana",
year = "2022",
abstract = "The rise of innovation in the electrical industry is driven by the controlled design of new materials. The hybrid materials based on magnetite/nanocellulose are highly interesting due to their various applications in medicine, ecology, catalysis and electronics. In this study, the structure and morphology of nanocellulose/magnetite hybrid nanomaterials were investigated. The effect of nanocellulose loading on the crystal structure of synthesized composites was investigated by XRD and FTIR methods. The presented study reveals that the interaction between the cellulose and magnetic nanoparticles depends on the nanocellulose content. Further, a transition from cellulose II to cellulose I allomorph is observed. SEM and EDS are employed to determine the variation in morphology with changes in component concentrations. By the calculation of magnetic interactions between adjacent Fe3+ and Fe2+ ions within composites, it is determined that ferromagnetic coupling predominates.",
journal = "Polymers",
title = "Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials",
pages = "1819",
volume = "14",
number = "9",
doi = "10.3390/polym14091819",
url = "https://hdl.handle.net/21.15107/rcub_dais_13152"
}
Janićijević, A., Pavlović, V. P., Kovačević, D., Perić, M., Vlahović, B., Pavlović, V. B.,& Filipović, S.. (2022). Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials. in Polymers, 14(9), 1819.
https://doi.org/10.3390/polym14091819
https://hdl.handle.net/21.15107/rcub_dais_13152
Janićijević A, Pavlović VP, Kovačević D, Perić M, Vlahović B, Pavlović VB, Filipović S. Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials. in Polymers. 2022;14(9):1819.
doi:10.3390/polym14091819
https://hdl.handle.net/21.15107/rcub_dais_13152 .
Janićijević, Aleksandra, Pavlović, Vera P., Kovačević, Danijela, Perić, Marko, Vlahović, Branislav, Pavlović, Vladimir B., Filipović, Suzana, "Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials" in Polymers, 14, no. 9 (2022):1819,
https://doi.org/10.3390/polym14091819 .,
https://hdl.handle.net/21.15107/rcub_dais_13152 .
7
7

Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics

Živojinović, Jelena; Kosanović, Darko; Blagojević, Vladimir A.; Pavlović, Vera P.; Tadić, Nenad; Vlahović, Branislav; Pavlović, Vladimir B.

(2022)

TY  - JOUR
AU  - Živojinović, Jelena
AU  - Kosanović, Darko
AU  - Blagojević, Vladimir A.
AU  - Pavlović, Vera P.
AU  - Tadić, Nenad
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13510
AB  - In this study, microstructure evolution and dielectric properties of SrTiO3 ceramic have been investigated, whereby mechanical activation of SrTiO3 powders was used to modify the functional properties of ceramic materials. Microstructural SEM analysis of SrTiO3 ceramics showed that the increase in mechanical activation time results in less porous samples. Raman spectroscopy indicated changes in the broadening and asymmetry of the TO2 mode with a change in the time of mechanical activation. TO2 mode showed a Fano asymmetry due to its interaction with polarization fluctuations in polar micro-regions, which are a consequence of the presence of oxygen vacancies caused by activation. The maximum value of dielectric permittivity was observed in the sample activated for 10 min. Also, the sample activated for 10 min exhibits relatively low values of loss tangent, compared to the other mechanically activated samples, providing the best overall dielectric performance compared to other samples.
T2  - Science of Sintering
T1  - Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics
SP  - 401
EP  - 414
VL  - 54
IS  - 4
DO  - 10.2298/SOS2204401Z
UR  - https://hdl.handle.net/21.15107/rcub_dais_13510
ER  - 
@article{
author = "Živojinović, Jelena and Kosanović, Darko and Blagojević, Vladimir A. and Pavlović, Vera P. and Tadić, Nenad and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2022",
abstract = "In this study, microstructure evolution and dielectric properties of SrTiO3 ceramic have been investigated, whereby mechanical activation of SrTiO3 powders was used to modify the functional properties of ceramic materials. Microstructural SEM analysis of SrTiO3 ceramics showed that the increase in mechanical activation time results in less porous samples. Raman spectroscopy indicated changes in the broadening and asymmetry of the TO2 mode with a change in the time of mechanical activation. TO2 mode showed a Fano asymmetry due to its interaction with polarization fluctuations in polar micro-regions, which are a consequence of the presence of oxygen vacancies caused by activation. The maximum value of dielectric permittivity was observed in the sample activated for 10 min. Also, the sample activated for 10 min exhibits relatively low values of loss tangent, compared to the other mechanically activated samples, providing the best overall dielectric performance compared to other samples.",
journal = "Science of Sintering",
title = "Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics",
pages = "401-414",
volume = "54",
number = "4",
doi = "10.2298/SOS2204401Z",
url = "https://hdl.handle.net/21.15107/rcub_dais_13510"
}
Živojinović, J., Kosanović, D., Blagojević, V. A., Pavlović, V. P., Tadić, N., Vlahović, B.,& Pavlović, V. B.. (2022). Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics. in Science of Sintering, 54(4), 401-414.
https://doi.org/10.2298/SOS2204401Z
https://hdl.handle.net/21.15107/rcub_dais_13510
Živojinović J, Kosanović D, Blagojević VA, Pavlović VP, Tadić N, Vlahović B, Pavlović VB. Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics. in Science of Sintering. 2022;54(4):401-414.
doi:10.2298/SOS2204401Z
https://hdl.handle.net/21.15107/rcub_dais_13510 .
Živojinović, Jelena, Kosanović, Darko, Blagojević, Vladimir A., Pavlović, Vera P., Tadić, Nenad, Vlahović, Branislav, Pavlović, Vladimir B., "Dielectric Properties of Mechanically Activated Strontium Titanate Ceramics" in Science of Sintering, 54, no. 4 (2022):401-414,
https://doi.org/10.2298/SOS2204401Z .,
https://hdl.handle.net/21.15107/rcub_dais_13510 .
3

Mixed Ni-Mg Spinel Ferrites Used as Materials for Charge Storage Electrodes

Dojčinović, Milena P.; Vasiljević, Zorka Ž.; Pavlović, Vera P.; Vujančević, Jelena; Tadić, Nenad; Nikolić, Maria Vesna

(Belgrade : University of Belgrade, Faculty of Physical Chemistry, 2022)

TY  - CONF
AU  - Dojčinović, Milena P.
AU  - Vasiljević, Zorka Ž.
AU  - Pavlović, Vera P.
AU  - Vujančević, Jelena
AU  - Tadić, Nenad
AU  - Nikolić, Maria Vesna
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13642
AB  - Problems that countries all over the world have in common are dependence of economy and energy production on fossil fuels. There is a growing need for energy production and storage routes that are safe for the environment, renewable, efficient and cheap. One of the directions in which science is moving forward is discovering materials suitable for use in batteries and supercapacitors to improve their operating potential, electrical capacity or biocompatibility. The objective is also to synthesize materials for batteries or supercapacitors that are cheap, consist of earth abundant elements and have high electrochemical activity.
In this work, mixed nickel-magnesium ferrites NixMg1−xFe2O4, with x being 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1, were synthesized via sol-gel combustion synthesis with citric acid used as fuel and nitrate ions used as oxidizing agents. Combusted powders were calcined at 700 °C. The structure and morphology of the powders were characterized with X-ray diffraction method (XRD), field emission scanning electron microscopy (FESEM), Raman and FTIR spectroscopy. The band gap was calculated by using UV/Vis diffuse reflectance spectroscopy (DRS). Samples were cast on nickel foam and tested as energy storage materials in a three-electrode setup in 3 M KOH aqueous solution as electrolyte. The methods used were cyclic voltammetry (CV) and constant current chronopotentiometry to obtain galvanostatic charge-discharge (GCD) curves. Results show that all of the synthesized materials show battery-type charge storage in alkaline electrolyte due to the formation of metal cation oxyhydroxides. With increasing nickel content, electrochemical activity drops. The highest value of capacity, 34.3 mA h g-1 at the current density of 500 mA g-1 is ascribed to magnesium ferrite, MgFe2O4.
PB  - Belgrade : University of Belgrade, Faculty of Physical Chemistry
C3  - Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022
T1  - Mixed Ni-Mg Spinel Ferrites Used as Materials for Charge Storage Electrodes
SP  - 47
EP  - 47
UR  - https://hdl.handle.net/21.15107/rcub_dais_13642
ER  - 
@conference{
author = "Dojčinović, Milena P. and Vasiljević, Zorka Ž. and Pavlović, Vera P. and Vujančević, Jelena and Tadić, Nenad and Nikolić, Maria Vesna",
year = "2022",
abstract = "Problems that countries all over the world have in common are dependence of economy and energy production on fossil fuels. There is a growing need for energy production and storage routes that are safe for the environment, renewable, efficient and cheap. One of the directions in which science is moving forward is discovering materials suitable for use in batteries and supercapacitors to improve their operating potential, electrical capacity or biocompatibility. The objective is also to synthesize materials for batteries or supercapacitors that are cheap, consist of earth abundant elements and have high electrochemical activity.
In this work, mixed nickel-magnesium ferrites NixMg1−xFe2O4, with x being 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1, were synthesized via sol-gel combustion synthesis with citric acid used as fuel and nitrate ions used as oxidizing agents. Combusted powders were calcined at 700 °C. The structure and morphology of the powders were characterized with X-ray diffraction method (XRD), field emission scanning electron microscopy (FESEM), Raman and FTIR spectroscopy. The band gap was calculated by using UV/Vis diffuse reflectance spectroscopy (DRS). Samples were cast on nickel foam and tested as energy storage materials in a three-electrode setup in 3 M KOH aqueous solution as electrolyte. The methods used were cyclic voltammetry (CV) and constant current chronopotentiometry to obtain galvanostatic charge-discharge (GCD) curves. Results show that all of the synthesized materials show battery-type charge storage in alkaline electrolyte due to the formation of metal cation oxyhydroxides. With increasing nickel content, electrochemical activity drops. The highest value of capacity, 34.3 mA h g-1 at the current density of 500 mA g-1 is ascribed to magnesium ferrite, MgFe2O4.",
publisher = "Belgrade : University of Belgrade, Faculty of Physical Chemistry",
journal = "Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022",
title = "Mixed Ni-Mg Spinel Ferrites Used as Materials for Charge Storage Electrodes",
pages = "47-47",
url = "https://hdl.handle.net/21.15107/rcub_dais_13642"
}
Dojčinović, M. P., Vasiljević, Z. Ž., Pavlović, V. P., Vujančević, J., Tadić, N.,& Nikolić, M. V.. (2022). Mixed Ni-Mg Spinel Ferrites Used as Materials for Charge Storage Electrodes. in Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022
Belgrade : University of Belgrade, Faculty of Physical Chemistry., 47-47.
https://hdl.handle.net/21.15107/rcub_dais_13642
Dojčinović MP, Vasiljević ZŽ, Pavlović VP, Vujančević J, Tadić N, Nikolić MV. Mixed Ni-Mg Spinel Ferrites Used as Materials for Charge Storage Electrodes. in Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022. 2022;:47-47.
https://hdl.handle.net/21.15107/rcub_dais_13642 .
Dojčinović, Milena P., Vasiljević, Zorka Ž., Pavlović, Vera P., Vujančević, Jelena, Tadić, Nenad, Nikolić, Maria Vesna, "Mixed Ni-Mg Spinel Ferrites Used as Materials for Charge Storage Electrodes" in Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022 (2022):47-47,
https://hdl.handle.net/21.15107/rcub_dais_13642 .

Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions

Zdolšek, Nikola; Janković, Bojan; Milović, Miloš; Brković, Snežana; Krstić, Jugoslav; Perović, Ivana; Vujković, Milica

(2022)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Janković, Bojan
AU  - Milović, Miloš
AU  - Brković, Snežana
AU  - Krstić, Jugoslav
AU  - Perović, Ivana
AU  - Vujković, Milica
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13511
AB  - The development of carbon materials with desirable textures and new aqueous electrolytes is the key strategy to improve the performance of supercapacitors. Herein, a deep eutectic solvent (DES) was used for in situ templating of a carbon material. A carbon material was characterized (XRD, N2-physisorption, FTIR, SEM and EDS) and used as an electrode material for the first time in multivalent-based supercapacitors. In situ templating of carbon was performed using a novel DES, which serves as a precursor for carbon and for in situ generation of MgO. The generation of MgO and its roles in templating of carbon were discussed. Templating of carbon with MgO lead to an increase in surface area and a microporous texture. The obtained carbon was tested in multivalent-ion (Al3+ and Mg2+) electrolytes and compared with H2SO4. The charge-storage mechanism was investigated and elaborated. The highest specific capacitance was obtained for the Al(NO3)3 electrolyte, while the operating voltage follows the order: Mg(NO3)2 > Al(NO3)3 > H2SO4. Electrical double-layer capacitance (versus pseudocapacitance) was dominant in all investigated electrolytes. The larger operating voltage in multivalent electrolytes is a consequence of the lower fraction of free water, which suppresses hydrogen evolution (when compared with H2SO4). The GCD was experimentally performed on the Al(NO3)3 electrolyte, which showed good cyclic stability, with an energy density of 22.3 Wh kg−1 at 65 W kg−1.
T2  - Batteries
T1  - Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions
SP  - 284
VL  - 8
IS  - 12
DO  - 10.3390/batteries8120284
UR  - https://hdl.handle.net/21.15107/rcub_dais_13511
ER  - 
@article{
author = "Zdolšek, Nikola and Janković, Bojan and Milović, Miloš and Brković, Snežana and Krstić, Jugoslav and Perović, Ivana and Vujković, Milica",
year = "2022",
abstract = "The development of carbon materials with desirable textures and new aqueous electrolytes is the key strategy to improve the performance of supercapacitors. Herein, a deep eutectic solvent (DES) was used for in situ templating of a carbon material. A carbon material was characterized (XRD, N2-physisorption, FTIR, SEM and EDS) and used as an electrode material for the first time in multivalent-based supercapacitors. In situ templating of carbon was performed using a novel DES, which serves as a precursor for carbon and for in situ generation of MgO. The generation of MgO and its roles in templating of carbon were discussed. Templating of carbon with MgO lead to an increase in surface area and a microporous texture. The obtained carbon was tested in multivalent-ion (Al3+ and Mg2+) electrolytes and compared with H2SO4. The charge-storage mechanism was investigated and elaborated. The highest specific capacitance was obtained for the Al(NO3)3 electrolyte, while the operating voltage follows the order: Mg(NO3)2 > Al(NO3)3 > H2SO4. Electrical double-layer capacitance (versus pseudocapacitance) was dominant in all investigated electrolytes. The larger operating voltage in multivalent electrolytes is a consequence of the lower fraction of free water, which suppresses hydrogen evolution (when compared with H2SO4). The GCD was experimentally performed on the Al(NO3)3 electrolyte, which showed good cyclic stability, with an energy density of 22.3 Wh kg−1 at 65 W kg−1.",
journal = "Batteries",
title = "Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions",
pages = "284",
volume = "8",
number = "12",
doi = "10.3390/batteries8120284",
url = "https://hdl.handle.net/21.15107/rcub_dais_13511"
}
Zdolšek, N., Janković, B., Milović, M., Brković, S., Krstić, J., Perović, I.,& Vujković, M.. (2022). Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. in Batteries, 8(12), 284.
https://doi.org/10.3390/batteries8120284
https://hdl.handle.net/21.15107/rcub_dais_13511
Zdolšek N, Janković B, Milović M, Brković S, Krstić J, Perović I, Vujković M. Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. in Batteries. 2022;8(12):284.
doi:10.3390/batteries8120284
https://hdl.handle.net/21.15107/rcub_dais_13511 .
Zdolšek, Nikola, Janković, Bojan, Milović, Miloš, Brković, Snežana, Krstić, Jugoslav, Perović, Ivana, Vujković, Milica, "Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions" in Batteries, 8, no. 12 (2022):284,
https://doi.org/10.3390/batteries8120284 .,
https://hdl.handle.net/21.15107/rcub_dais_13511 .

Raman spectra of the materials based on mechanically activated alkaline earth metal titanates

Pavlović, Vera P.; Tshantshapanyan, Ani; Vlahović, Branislav; Živojinović, Jelena; Kosanović, Darko; Pavlović, Vladimir B.

(Belgrade : ETRAN Society, 2020)

TY  - CONF
AU  - Pavlović, Vera P.
AU  - Tshantshapanyan, Ani
AU  - Vlahović, Branislav
AU  - Živojinović, Jelena
AU  - Kosanović, Darko
AU  - Pavlović, Vladimir B.
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/14758
AB  - The changes in the Raman spectra of electronic materials obtained from mechanically activated BaTiO3 and SrTiO3 powders, with or without additives, are presented in this paper. Mechanical activation, performed in a high-energy planetary ball mill, was chosen as the method for the production of fine-grained nanocrystalline powders with an increased surface activity and an altered micro and/or crystal structure. Having in mind the growing relevance of the development of multiferroic materials, the analysis of Raman spectra was used not only for the structural investigations of the mechanically activated undoped titanate powder, but also for the examination of the mechanically activated Fe/BaTiO3 system and the subsequent hexaferrite formation during the sintering process. Additionally, Raman spectroscopy was applied in the study of the emergence of electroactive crystalline phases in nanocomposites based on semi-crystalline fluoropolymers, such as PVDF (polyvinylidene fluoride), in the case when mechanically activated BaTiO3 powder was used as a filler in the polymer matrix. Furthermore, the effects of the mechanical activation of SrTiO3 powder on the occurrence of polar nano and micro-regions at room temperature, as well as the simultaneous influence of activation and MnO2 addition on structural changes in ceramic SrTiO3 samples, have also been analysed using Raman spectroscopy.
PB  - Belgrade : ETRAN Society
PB  - Belgrade : Academic Mind
C3  - Зборник радова [Електронски извор] / 64. годишњa конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику EТРАН 2020 и 7. интернационалнa конференцијa за електротехнику, електронику и рачунарство ИцЕТРАН 2020 = 7th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2020 and 64th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020
T1  - Raman spectra of the materials based on mechanically activated alkaline earth metal titanates
SP  - NMI 1.1.1
EP  - NMI 1.1.8
UR  - https://hdl.handle.net/21.15107/rcub_dais_14758
ER  - 
@conference{
author = "Pavlović, Vera P. and Tshantshapanyan, Ani and Vlahović, Branislav and Živojinović, Jelena and Kosanović, Darko and Pavlović, Vladimir B.",
year = "2020",
abstract = "The changes in the Raman spectra of electronic materials obtained from mechanically activated BaTiO3 and SrTiO3 powders, with or without additives, are presented in this paper. Mechanical activation, performed in a high-energy planetary ball mill, was chosen as the method for the production of fine-grained nanocrystalline powders with an increased surface activity and an altered micro and/or crystal structure. Having in mind the growing relevance of the development of multiferroic materials, the analysis of Raman spectra was used not only for the structural investigations of the mechanically activated undoped titanate powder, but also for the examination of the mechanically activated Fe/BaTiO3 system and the subsequent hexaferrite formation during the sintering process. Additionally, Raman spectroscopy was applied in the study of the emergence of electroactive crystalline phases in nanocomposites based on semi-crystalline fluoropolymers, such as PVDF (polyvinylidene fluoride), in the case when mechanically activated BaTiO3 powder was used as a filler in the polymer matrix. Furthermore, the effects of the mechanical activation of SrTiO3 powder on the occurrence of polar nano and micro-regions at room temperature, as well as the simultaneous influence of activation and MnO2 addition on structural changes in ceramic SrTiO3 samples, have also been analysed using Raman spectroscopy.",
publisher = "Belgrade : ETRAN Society, Belgrade : Academic Mind",
journal = "Зборник радова [Електронски извор] / 64. годишњa конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику EТРАН 2020 и 7. интернационалнa конференцијa за електротехнику, електронику и рачунарство ИцЕТРАН 2020 = 7th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2020 and 64th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020",
title = "Raman spectra of the materials based on mechanically activated alkaline earth metal titanates",
pages = "NMI 1.1.1-NMI 1.1.8",
url = "https://hdl.handle.net/21.15107/rcub_dais_14758"
}
Pavlović, V. P., Tshantshapanyan, A., Vlahović, B., Živojinović, J., Kosanović, D.,& Pavlović, V. B.. (2020). Raman spectra of the materials based on mechanically activated alkaline earth metal titanates. in Зборник радова [Електронски извор] / 64. годишњa конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику EТРАН 2020 и 7. интернационалнa конференцијa за електротехнику, електронику и рачунарство ИцЕТРАН 2020 = 7th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2020 and 64th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020
Belgrade : ETRAN Society., NMI 1.1.1-NMI 1.1.8.
https://hdl.handle.net/21.15107/rcub_dais_14758
Pavlović VP, Tshantshapanyan A, Vlahović B, Živojinović J, Kosanović D, Pavlović VB. Raman spectra of the materials based on mechanically activated alkaline earth metal titanates. in Зборник радова [Електронски извор] / 64. годишњa конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику EТРАН 2020 и 7. интернационалнa конференцијa за електротехнику, електронику и рачунарство ИцЕТРАН 2020 = 7th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2020 and 64th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020. 2020;:NMI 1.1.1-NMI 1.1.8.
https://hdl.handle.net/21.15107/rcub_dais_14758 .
Pavlović, Vera P., Tshantshapanyan, Ani, Vlahović, Branislav, Živojinović, Jelena, Kosanović, Darko, Pavlović, Vladimir B., "Raman spectra of the materials based on mechanically activated alkaline earth metal titanates" in Зборник радова [Електронски извор] / 64. годишњa конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику EТРАН 2020 и 7. интернационалнa конференцијa за електротехнику, електронику и рачунарство ИцЕТРАН 2020 = 7th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2020 and 64th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020 (2020):NMI 1.1.1-NMI 1.1.8,
https://hdl.handle.net/21.15107/rcub_dais_14758 .