Tan, Z.

Link to this page

Authority KeyName Variants
76d7f871-9d77-4da5-99b0-50d0aa3e82a4
  • Tan, Z. (5)
Projects

Author's Bibliography

Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles

Dugandžić, Ivan; Mančić, Lidija; Tan, Z.; Hashishin, Takeshi; Ohara, Satoshi; Milošević, Olivera

(Osaka : Osaka University, 2014)

TY  - CONF
AU  - Dugandžić, Ivan
AU  - Mančić, Lidija
AU  - Tan, Z.
AU  - Hashishin, Takeshi
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
PY  - 2014
UR  - https://dais.sanu.ac.rs/123456789/822
AB  - Hierarchical structures, which refers to the materials that have more than one length scale, organized as the assemblage of primary units with high surface-to-volume ratio, play an important role in advanced materials design. Especially, the building of complex hierarchical structures exhibiting the hybrid organic-inorganic interfaces might be of special importance for the creation of advanced nanostructured materials having either improved or novel characteristics that bridges various scientific areas for the future diverse technological applications in catalysis, optics, energy, life science etc. Applying the bottom-up building blocks approaches, it is possible to create the hierarchical structures in a controlled manner having different morphologies, starting from aqueous, organic or colloidal precursor solutions. Among the diversity of the “bottom-up” chemical approaches, synthesis through dispersion phase (aerosol) enables generation of ultrafine, either single or complex structures with controlled stoichiometry, chemical and phase content. The opportunities of the hot wall aerosol processing, provided by high heating and cooling rates, short residence time and high surface reaction, refers to the synthesis of spherical three-dimensional (3D), hierarchically organized nanostructured particles with uniformly distributed components and phases. The particles composite inner structure, representing an assembly of nanosized primary particles, opens the possibility for particle surface modification and functionalization emphasizing their application in photovoltaics, energy transfer and bioimaging. This versatile technique has been used for the successful synthesis of hierarchically organized submicronic titanium (IV) oxide or Y2O3 up-conversion phosphor particles having the diverse levels of structural, morphological and functional complexity explored by means of appropriate selection of different precursor solutions, either true or colloid, surface modification and proper selection of rare-earth based dopants.
PB  - Osaka : Osaka University
C3  - Workshop of Advanced Nanocrystals and Processing towards Low Carbon Society Ibaraki, Osaka, Japan, 19th-21st February 2014
T1  - Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles
UR  - https://hdl.handle.net/21.15107/rcub_dais_822
ER  - 
@conference{
author = "Dugandžić, Ivan and Mančić, Lidija and Tan, Z. and Hashishin, Takeshi and Ohara, Satoshi and Milošević, Olivera",
year = "2014",
abstract = "Hierarchical structures, which refers to the materials that have more than one length scale, organized as the assemblage of primary units with high surface-to-volume ratio, play an important role in advanced materials design. Especially, the building of complex hierarchical structures exhibiting the hybrid organic-inorganic interfaces might be of special importance for the creation of advanced nanostructured materials having either improved or novel characteristics that bridges various scientific areas for the future diverse technological applications in catalysis, optics, energy, life science etc. Applying the bottom-up building blocks approaches, it is possible to create the hierarchical structures in a controlled manner having different morphologies, starting from aqueous, organic or colloidal precursor solutions. Among the diversity of the “bottom-up” chemical approaches, synthesis through dispersion phase (aerosol) enables generation of ultrafine, either single or complex structures with controlled stoichiometry, chemical and phase content. The opportunities of the hot wall aerosol processing, provided by high heating and cooling rates, short residence time and high surface reaction, refers to the synthesis of spherical three-dimensional (3D), hierarchically organized nanostructured particles with uniformly distributed components and phases. The particles composite inner structure, representing an assembly of nanosized primary particles, opens the possibility for particle surface modification and functionalization emphasizing their application in photovoltaics, energy transfer and bioimaging. This versatile technique has been used for the successful synthesis of hierarchically organized submicronic titanium (IV) oxide or Y2O3 up-conversion phosphor particles having the diverse levels of structural, morphological and functional complexity explored by means of appropriate selection of different precursor solutions, either true or colloid, surface modification and proper selection of rare-earth based dopants.",
publisher = "Osaka : Osaka University",
journal = "Workshop of Advanced Nanocrystals and Processing towards Low Carbon Society Ibaraki, Osaka, Japan, 19th-21st February 2014",
title = "Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles",
url = "https://hdl.handle.net/21.15107/rcub_dais_822"
}
Dugandžić, I., Mančić, L., Tan, Z., Hashishin, T., Ohara, S.,& Milošević, O.. (2014). Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles. in Workshop of Advanced Nanocrystals and Processing towards Low Carbon Society Ibaraki, Osaka, Japan, 19th-21st February 2014
Osaka : Osaka University..
https://hdl.handle.net/21.15107/rcub_dais_822
Dugandžić I, Mančić L, Tan Z, Hashishin T, Ohara S, Milošević O. Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles. in Workshop of Advanced Nanocrystals and Processing towards Low Carbon Society Ibaraki, Osaka, Japan, 19th-21st February 2014. 2014;.
https://hdl.handle.net/21.15107/rcub_dais_822 .
Dugandžić, Ivan, Mančić, Lidija, Tan, Z., Hashishin, Takeshi, Ohara, Satoshi, Milošević, Olivera, "Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles" in Workshop of Advanced Nanocrystals and Processing towards Low Carbon Society Ibaraki, Osaka, Japan, 19th-21st February 2014 (2014),
https://hdl.handle.net/21.15107/rcub_dais_822 .

Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing

Dugandžić, Ivan; Lojpur, Vesna; Mančić, Lidija; Dramićanin, Miroslav; Hashishin, Takeshi; Tan, Z.; Ohara, Satoshi; Milošević, Olivera

(Elsevier, 2013)

TY  - JOUR
AU  - Dugandžić, Ivan
AU  - Lojpur, Vesna
AU  - Mančić, Lidija
AU  - Dramićanin, Miroslav
AU  - Hashishin, Takeshi
AU  - Tan, Z.
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/15971
AB  - The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing
SP  - 852
EP  - 857
VL  - 25
IS  - 5
DO  - 10.1016/j.apt.2013.02.011
UR  - https://hdl.handle.net/21.15107/rcub_dais_15971
ER  - 
@article{
author = "Dugandžić, Ivan and Lojpur, Vesna and Mančić, Lidija and Dramićanin, Miroslav and Hashishin, Takeshi and Tan, Z. and Ohara, Satoshi and Milošević, Olivera",
year = "2013",
abstract = "The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing",
pages = "852-857",
volume = "25",
number = "5",
doi = "10.1016/j.apt.2013.02.011",
url = "https://hdl.handle.net/21.15107/rcub_dais_15971"
}
Dugandžić, I., Lojpur, V., Mančić, L., Dramićanin, M., Hashishin, T., Tan, Z., Ohara, S.,& Milošević, O.. (2013). Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing. in Advanced Powder Technology
Elsevier., 25(5), 852-857.
https://doi.org/10.1016/j.apt.2013.02.011
https://hdl.handle.net/21.15107/rcub_dais_15971
Dugandžić I, Lojpur V, Mančić L, Dramićanin M, Hashishin T, Tan Z, Ohara S, Milošević O. Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing. in Advanced Powder Technology. 2013;25(5):852-857.
doi:10.1016/j.apt.2013.02.011
https://hdl.handle.net/21.15107/rcub_dais_15971 .
Dugandžić, Ivan, Lojpur, Vesna, Mančić, Lidija, Dramićanin, Miroslav, Hashishin, Takeshi, Tan, Z., Ohara, Satoshi, Milošević, Olivera, "Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing" in Advanced Powder Technology, 25, no. 5 (2013):852-857,
https://doi.org/10.1016/j.apt.2013.02.011 .,
https://hdl.handle.net/21.15107/rcub_dais_15971 .
10
12
12

Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route

Lojpur, Vesna; Rabanal Jiménez, Maria Eugenia; Dramićanin, Miroslav; Tan, Z.; Hashishin, Takeshi; Ohara, Satoshi; Milošević, Olivera; Mančić, Lidija

(Elsevier, 2013)

TY  - JOUR
AU  - Lojpur, Vesna
AU  - Rabanal Jiménez, Maria Eugenia
AU  - Dramićanin, Miroslav
AU  - Tan, Z.
AU  - Hashishin, Takeshi
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/15980
AB  - Nanocrystalline up-converting Y₂ O₃Yb³⁺ Er³⁺ phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm3/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: ²H₉/₂ → ⁴I₁₅/₂ (blue: 407–420 nm), (²H₁₁/₂̦ ⁴S₃/₂) → ⁴I₁₅/₂ (green: 510–590 nm), and ⁴F₉/₂ → ⁴I₁₅/₂ (red: 640–720 nm). The significant improvement of the emission decay times were observed after thermal treatment and this effect is correlated further with the structural and morphological particles characteristics. For the anneal-ing time of 12 h a quite high emission decay times were achieved (blue: 0.14 ms, green: 0.32 ms and red: 0.39 ms).
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route
SP  - 584
EP  - 591
VL  - 580
DO  - 10.1016/j.jallcom.2013.07.125
UR  - https://hdl.handle.net/21.15107/rcub_dais_15980
ER  - 
@article{
author = "Lojpur, Vesna and Rabanal Jiménez, Maria Eugenia and Dramićanin, Miroslav and Tan, Z. and Hashishin, Takeshi and Ohara, Satoshi and Milošević, Olivera and Mančić, Lidija",
year = "2013",
abstract = "Nanocrystalline up-converting Y₂ O₃Yb³⁺ Er³⁺ phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm3/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: ²H₉/₂ → ⁴I₁₅/₂ (blue: 407–420 nm), (²H₁₁/₂̦ ⁴S₃/₂) → ⁴I₁₅/₂ (green: 510–590 nm), and ⁴F₉/₂ → ⁴I₁₅/₂ (red: 640–720 nm). The significant improvement of the emission decay times were observed after thermal treatment and this effect is correlated further with the structural and morphological particles characteristics. For the anneal-ing time of 12 h a quite high emission decay times were achieved (blue: 0.14 ms, green: 0.32 ms and red: 0.39 ms).",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route",
pages = "584-591",
volume = "580",
doi = "10.1016/j.jallcom.2013.07.125",
url = "https://hdl.handle.net/21.15107/rcub_dais_15980"
}
Lojpur, V., Rabanal Jiménez, M. E., Dramićanin, M., Tan, Z., Hashishin, T., Ohara, S., Milošević, O.,& Mančić, L.. (2013). Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route. in Journal of Alloys and Compounds
Elsevier., 580, 584-591.
https://doi.org/10.1016/j.jallcom.2013.07.125
https://hdl.handle.net/21.15107/rcub_dais_15980
Lojpur V, Rabanal Jiménez ME, Dramićanin M, Tan Z, Hashishin T, Ohara S, Milošević O, Mančić L. Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route. in Journal of Alloys and Compounds. 2013;580:584-591.
doi:10.1016/j.jallcom.2013.07.125
https://hdl.handle.net/21.15107/rcub_dais_15980 .
Lojpur, Vesna, Rabanal Jiménez, Maria Eugenia, Dramićanin, Miroslav, Tan, Z., Hashishin, Takeshi, Ohara, Satoshi, Milošević, Olivera, Mančić, Lidija, "Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route" in Journal of Alloys and Compounds, 580 (2013):584-591,
https://doi.org/10.1016/j.jallcom.2013.07.125 .,
https://hdl.handle.net/21.15107/rcub_dais_15980 .
10
11
12

Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route

Lojpur, Vesna; Mančić, Lidija; Rabanal, Maria Eugenia; Dramićanin, Miroslav; Tan, Z.; Hashishin, Takeshi; Ohara, Satoshi; Milošević, Olivera

(Elsevier, 2013)

TY  - JOUR
AU  - Lojpur, Vesna
AU  - Mančić, Lidija
AU  - Rabanal, Maria Eugenia
AU  - Dramićanin, Miroslav
AU  - Tan, Z.
AU  - Hashishin, Takeshi
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/359
AB  - Nanocrystalline up-converting Y2O3:Yb3+, Er3+ phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm3/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: 2H9/2 → 4I15/2 (blue: 407–420 nm), (2H11/2, 4S3/2) → 4I15/2 (green: 510–590 nm), and 4F9/2 → 4I15/2 (red: 640–720 nm). The significant improvement of the emission decay times were observed after thermal treatment and this effect is correlated further with the structural and morphological particles characteristics. For the annealing time of 12 h a quite high emission decay times were achieved (blue: 0.14 ms, green: 0.32 ms and red: 0.39 ms).
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route
SP  - 584
EP  - 591
VL  - 580
DO  - 10.1016/j.jallcom.2013.07.125
UR  - https://hdl.handle.net/21.15107/rcub_dais_359
ER  - 
@article{
author = "Lojpur, Vesna and Mančić, Lidija and Rabanal, Maria Eugenia and Dramićanin, Miroslav and Tan, Z. and Hashishin, Takeshi and Ohara, Satoshi and Milošević, Olivera",
year = "2013",
abstract = "Nanocrystalline up-converting Y2O3:Yb3+, Er3+ phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm3/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: 2H9/2 → 4I15/2 (blue: 407–420 nm), (2H11/2, 4S3/2) → 4I15/2 (green: 510–590 nm), and 4F9/2 → 4I15/2 (red: 640–720 nm). The significant improvement of the emission decay times were observed after thermal treatment and this effect is correlated further with the structural and morphological particles characteristics. For the annealing time of 12 h a quite high emission decay times were achieved (blue: 0.14 ms, green: 0.32 ms and red: 0.39 ms).",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route",
pages = "584-591",
volume = "580",
doi = "10.1016/j.jallcom.2013.07.125",
url = "https://hdl.handle.net/21.15107/rcub_dais_359"
}
Lojpur, V., Mančić, L., Rabanal, M. E., Dramićanin, M., Tan, Z., Hashishin, T., Ohara, S.,& Milošević, O.. (2013). Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route. in Journal of Alloys and Compounds
Elsevier., 580, 584-591.
https://doi.org/10.1016/j.jallcom.2013.07.125
https://hdl.handle.net/21.15107/rcub_dais_359
Lojpur V, Mančić L, Rabanal ME, Dramićanin M, Tan Z, Hashishin T, Ohara S, Milošević O. Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route. in Journal of Alloys and Compounds. 2013;580:584-591.
doi:10.1016/j.jallcom.2013.07.125
https://hdl.handle.net/21.15107/rcub_dais_359 .
Lojpur, Vesna, Mančić, Lidija, Rabanal, Maria Eugenia, Dramićanin, Miroslav, Tan, Z., Hashishin, Takeshi, Ohara, Satoshi, Milošević, Olivera, "Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route" in Journal of Alloys and Compounds, 580 (2013):584-591,
https://doi.org/10.1016/j.jallcom.2013.07.125 .,
https://hdl.handle.net/21.15107/rcub_dais_359 .
10
11
12

Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing

Dugandžić, Ivan; Lojpur, Vesna; Mančić, Lidija; Dramićanin, Miroslav; Rabanal, Maria Eugenia; Hashishin, Takeshi; Tan, Z.; Ohara, Satoshi; Milošević, Olivera

(Elsevier, 2013)

TY  - JOUR
AU  - Dugandžić, Ivan
AU  - Lojpur, Vesna
AU  - Mančić, Lidija
AU  - Dramićanin, Miroslav
AU  - Rabanal, Maria Eugenia
AU  - Hashishin, Takeshi
AU  - Tan, Z.
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/345
AB  - The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing
SP  - 852
EP  - 857
VL  - 24
IS  - 5
DO  - 10.1016/j.apt.2013.02.011
UR  - https://hdl.handle.net/21.15107/rcub_dais_345
ER  - 
@article{
author = "Dugandžić, Ivan and Lojpur, Vesna and Mančić, Lidija and Dramićanin, Miroslav and Rabanal, Maria Eugenia and Hashishin, Takeshi and Tan, Z. and Ohara, Satoshi and Milošević, Olivera",
year = "2013",
abstract = "The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing",
pages = "852-857",
volume = "24",
number = "5",
doi = "10.1016/j.apt.2013.02.011",
url = "https://hdl.handle.net/21.15107/rcub_dais_345"
}
Dugandžić, I., Lojpur, V., Mančić, L., Dramićanin, M., Rabanal, M. E., Hashishin, T., Tan, Z., Ohara, S.,& Milošević, O.. (2013). Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing. in Advanced Powder Technology
Elsevier., 24(5), 852-857.
https://doi.org/10.1016/j.apt.2013.02.011
https://hdl.handle.net/21.15107/rcub_dais_345
Dugandžić I, Lojpur V, Mančić L, Dramićanin M, Rabanal ME, Hashishin T, Tan Z, Ohara S, Milošević O. Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing. in Advanced Powder Technology. 2013;24(5):852-857.
doi:10.1016/j.apt.2013.02.011
https://hdl.handle.net/21.15107/rcub_dais_345 .
Dugandžić, Ivan, Lojpur, Vesna, Mančić, Lidija, Dramićanin, Miroslav, Rabanal, Maria Eugenia, Hashishin, Takeshi, Tan, Z., Ohara, Satoshi, Milošević, Olivera, "Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing" in Advanced Powder Technology, 24, no. 5 (2013):852-857,
https://doi.org/10.1016/j.apt.2013.02.011 .,
https://hdl.handle.net/21.15107/rcub_dais_345 .
10
12
12