Manojlović-Stojanoski, Milica

Link to this page

Authority KeyName Variants
ecaabd82-9d7b-4682-abc7-80efd8094dd6
  • Manojlović-Stojanoski, Milica (2)
Projects

Author's Bibliography

Supplementary material for: Manojlović-Stojanoski, M., Borković-Mitić, S., Nestorović, N., Ristić, N., Trifunović, S., Stevanović, M., Filipović, N., Stojsavljević, A., & Pavlović, S. (2022). The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta. International Journal of Molecular Sciences, 23(21), 13068. https://doi.org/10.3390/ijms232113068

Manojlović-Stojanoski, Milica; Borković-Mitić, Slavica; Nestorović, Nataša; Ristić, Nataša; Trifunović, Svetlana; Stevanović, Magdalena; Filipović, Nenad; Stojsavljević, Aleksandar; Pavlović, Slađan

(MDPI, 2022)

TY  - DATA
AU  - Manojlović-Stojanoski, Milica
AU  - Borković-Mitić, Slavica
AU  - Nestorović, Nataša
AU  - Ristić, Nataša
AU  - Trifunović, Svetlana
AU  - Stevanović, Magdalena
AU  - Filipović, Nenad
AU  - Stojsavljević, Aleksandar
AU  - Pavlović, Slađan
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13564
AB  - The chemical element selenium (Se) is a nonmetal that is in trace amounts indispensable for normal cellular functioning. During pregnancy, a low Se status can increase the risk of oxidative stress. However, elevated concentrations of Se in the body can also cause oxidative stress. This study aimed to compare the effects of BSA-stabilized Se nanoparticles (SeNPs, Se0) (BSA-bovine serum albumin) and inorganic sodium selenite (NaSe, Se+4) supplementation on the histological structure of the placenta, oxidative stress parameters and the total placental Se concentration of Wistar rats during pregnancy. Pregnant females were randomized into four groups: (i) intact controls; (ii) controls that were dosed by daily oral gavage with 8.6% bovine serum albumin (BSA) and 0.125 M vit C; (iii) the SeNP group that was administered 0.5 mg of SeNPs stabilized with 8.6% BSA and 0.125 M vit C/kg bw/day by oral gavage dosing; (iv) the NaSe group, gavage dosed with 0.5 mg Na2SeO3/kg bw/day. The treatment of pregnant females started on gestational day one, lasted until day 20, and on day 21 of gestation, the fetuses with the placenta were removed from the uterus. Our findings show that the mode of action of equivalent concentrations of Se in SeNPs and NaSe depended on its redox state and chemical structure. Administration of SeNPs (Se0) increased fetal lethality and induced changes in the antioxidative defense parameters in the placenta. The accumulation of Se in the placenta was highest in SeNP-treated animals. All obtained data indicate an increased bioavailability of Se in its organic nano form and Se0 redox state in comparison to its inorganic sodium selenite form and Se+4 redox state.
PB  - MDPI
T2  - International Journal of Molecular Sciences
T1  - Supplementary material for: Manojlović-Stojanoski, M., Borković-Mitić, S., Nestorović, N., Ristić, N., Trifunović, S., Stevanović, M., Filipović, N., Stojsavljević, A., & Pavlović, S. (2022). The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta. International Journal of Molecular Sciences, 23(21), 13068. https://doi.org/10.3390/ijms232113068
VL  - 23
IS  - 21
UR  - https://hdl.handle.net/21.15107/rcub_cherry_5705
ER  - 
@misc{
author = "Manojlović-Stojanoski, Milica and Borković-Mitić, Slavica and Nestorović, Nataša and Ristić, Nataša and Trifunović, Svetlana and Stevanović, Magdalena and Filipović, Nenad and Stojsavljević, Aleksandar and Pavlović, Slađan",
year = "2022",
abstract = "The chemical element selenium (Se) is a nonmetal that is in trace amounts indispensable for normal cellular functioning. During pregnancy, a low Se status can increase the risk of oxidative stress. However, elevated concentrations of Se in the body can also cause oxidative stress. This study aimed to compare the effects of BSA-stabilized Se nanoparticles (SeNPs, Se0) (BSA-bovine serum albumin) and inorganic sodium selenite (NaSe, Se+4) supplementation on the histological structure of the placenta, oxidative stress parameters and the total placental Se concentration of Wistar rats during pregnancy. Pregnant females were randomized into four groups: (i) intact controls; (ii) controls that were dosed by daily oral gavage with 8.6% bovine serum albumin (BSA) and 0.125 M vit C; (iii) the SeNP group that was administered 0.5 mg of SeNPs stabilized with 8.6% BSA and 0.125 M vit C/kg bw/day by oral gavage dosing; (iv) the NaSe group, gavage dosed with 0.5 mg Na2SeO3/kg bw/day. The treatment of pregnant females started on gestational day one, lasted until day 20, and on day 21 of gestation, the fetuses with the placenta were removed from the uterus. Our findings show that the mode of action of equivalent concentrations of Se in SeNPs and NaSe depended on its redox state and chemical structure. Administration of SeNPs (Se0) increased fetal lethality and induced changes in the antioxidative defense parameters in the placenta. The accumulation of Se in the placenta was highest in SeNP-treated animals. All obtained data indicate an increased bioavailability of Se in its organic nano form and Se0 redox state in comparison to its inorganic sodium selenite form and Se+4 redox state.",
publisher = "MDPI",
journal = "International Journal of Molecular Sciences",
title = "Supplementary material for: Manojlović-Stojanoski, M., Borković-Mitić, S., Nestorović, N., Ristić, N., Trifunović, S., Stevanović, M., Filipović, N., Stojsavljević, A., & Pavlović, S. (2022). The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta. International Journal of Molecular Sciences, 23(21), 13068. https://doi.org/10.3390/ijms232113068",
volume = "23",
number = "21",
url = "https://hdl.handle.net/21.15107/rcub_cherry_5705"
}
Manojlović-Stojanoski, M., Borković-Mitić, S., Nestorović, N., Ristić, N., Trifunović, S., Stevanović, M., Filipović, N., Stojsavljević, A.,& Pavlović, S.. (2022). Supplementary material for: Manojlović-Stojanoski, M., Borković-Mitić, S., Nestorović, N., Ristić, N., Trifunović, S., Stevanović, M., Filipović, N., Stojsavljević, A., & Pavlović, S. (2022). The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta. International Journal of Molecular Sciences, 23(21), 13068. https://doi.org/10.3390/ijms232113068. in International Journal of Molecular Sciences
MDPI., 23(21).
https://hdl.handle.net/21.15107/rcub_cherry_5705
Manojlović-Stojanoski M, Borković-Mitić S, Nestorović N, Ristić N, Trifunović S, Stevanović M, Filipović N, Stojsavljević A, Pavlović S. Supplementary material for: Manojlović-Stojanoski, M., Borković-Mitić, S., Nestorović, N., Ristić, N., Trifunović, S., Stevanović, M., Filipović, N., Stojsavljević, A., & Pavlović, S. (2022). The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta. International Journal of Molecular Sciences, 23(21), 13068. https://doi.org/10.3390/ijms232113068. in International Journal of Molecular Sciences. 2022;23(21).
https://hdl.handle.net/21.15107/rcub_cherry_5705 .
Manojlović-Stojanoski, Milica, Borković-Mitić, Slavica, Nestorović, Nataša, Ristić, Nataša, Trifunović, Svetlana, Stevanović, Magdalena, Filipović, Nenad, Stojsavljević, Aleksandar, Pavlović, Slađan, "Supplementary material for: Manojlović-Stojanoski, M., Borković-Mitić, S., Nestorović, N., Ristić, N., Trifunović, S., Stevanović, M., Filipović, N., Stojsavljević, A., & Pavlović, S. (2022). The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta. International Journal of Molecular Sciences, 23(21), 13068. https://doi.org/10.3390/ijms232113068" in International Journal of Molecular Sciences, 23, no. 21 (2022),
https://hdl.handle.net/21.15107/rcub_cherry_5705 .
3

The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta

Manojlović-Stojanoski, Milica; Borković-Mitić, Slavica; Nestorović, Nataša; Ristić, Nataša; Trifunović, Svetlana; Stevanović, Magdalena; Filipović, Nenad; Stojsavljević, Aleksandar; Pavlović, Slađan

(Basel : MDPI AG, 2022)

TY  - JOUR
AU  - Manojlović-Stojanoski, Milica
AU  - Borković-Mitić, Slavica
AU  - Nestorović, Nataša
AU  - Ristić, Nataša
AU  - Trifunović, Svetlana
AU  - Stevanović, Magdalena
AU  - Filipović, Nenad
AU  - Stojsavljević, Aleksandar
AU  - Pavlović, Slađan
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13438
AB  - The chemical element selenium (Se) is a nonmetal that is in trace amounts indispensable for normal cellular functioning. During pregnancy, a low Se status can increase the risk of oxidative stress. However, elevated concentrations of Se in the body can also cause oxidative stress. This study aimed to compare the effects of BSA-stabilized Se nanoparticles (SeNPs, Se0) (BSA-bovine serum albumin) and inorganic sodium selenite (NaSe, Se+4) supplementation on the histological structure of the placenta, oxidative stress parameters and the total placental Se concentration of Wistar rats during pregnancy. Pregnant females were randomized into four groups: (i) intact controls; (ii) controls that were dosed by daily oral gavage with 8.6% bovine serum albumin (BSA) and 0.125 M vit C; (iii) the SeNP group that was administered 0.5 mg of SeNPs stabilized with 8.6% BSA and 0.125 M vit C/kg bw/day by oral gavage dosing; (iv) the NaSe group, gavage dosed with 0.5 mg Na2SeO3/kg bw/day. The treatment of pregnant females started on gestational day one, lasted until day 20, and on day 21 of gestation, the fetuses with the placenta were removed from the uterus. Our findings show that the mode of action of equivalent concentrations of Se in SeNPs and NaSe depended on its redox state and chemical structure. Administration of SeNPs (Se0) increased fetal lethality and induced changes in the antioxidative defense parameters in the placenta. The accumulation of Se in the placenta was highest in SeNP-treated animals. All obtained data indicate an increased bioavailability of Se in its organic nano form and Se0 redox state in comparison to its inorganic sodium selenite form and Se+4 redox state.
PB  - Basel : MDPI AG
T2  - International Journal of Molecular Sciences
T1  - The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta
SP  - 13068
VL  - 23
IS  - 21
DO  - 10.3390/ijms232113068
UR  - https://hdl.handle.net/21.15107/rcub_dais_13438
ER  - 
@article{
author = "Manojlović-Stojanoski, Milica and Borković-Mitić, Slavica and Nestorović, Nataša and Ristić, Nataša and Trifunović, Svetlana and Stevanović, Magdalena and Filipović, Nenad and Stojsavljević, Aleksandar and Pavlović, Slađan",
year = "2022",
abstract = "The chemical element selenium (Se) is a nonmetal that is in trace amounts indispensable for normal cellular functioning. During pregnancy, a low Se status can increase the risk of oxidative stress. However, elevated concentrations of Se in the body can also cause oxidative stress. This study aimed to compare the effects of BSA-stabilized Se nanoparticles (SeNPs, Se0) (BSA-bovine serum albumin) and inorganic sodium selenite (NaSe, Se+4) supplementation on the histological structure of the placenta, oxidative stress parameters and the total placental Se concentration of Wistar rats during pregnancy. Pregnant females were randomized into four groups: (i) intact controls; (ii) controls that were dosed by daily oral gavage with 8.6% bovine serum albumin (BSA) and 0.125 M vit C; (iii) the SeNP group that was administered 0.5 mg of SeNPs stabilized with 8.6% BSA and 0.125 M vit C/kg bw/day by oral gavage dosing; (iv) the NaSe group, gavage dosed with 0.5 mg Na2SeO3/kg bw/day. The treatment of pregnant females started on gestational day one, lasted until day 20, and on day 21 of gestation, the fetuses with the placenta were removed from the uterus. Our findings show that the mode of action of equivalent concentrations of Se in SeNPs and NaSe depended on its redox state and chemical structure. Administration of SeNPs (Se0) increased fetal lethality and induced changes in the antioxidative defense parameters in the placenta. The accumulation of Se in the placenta was highest in SeNP-treated animals. All obtained data indicate an increased bioavailability of Se in its organic nano form and Se0 redox state in comparison to its inorganic sodium selenite form and Se+4 redox state.",
publisher = "Basel : MDPI AG",
journal = "International Journal of Molecular Sciences",
title = "The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta",
pages = "13068",
volume = "23",
number = "21",
doi = "10.3390/ijms232113068",
url = "https://hdl.handle.net/21.15107/rcub_dais_13438"
}
Manojlović-Stojanoski, M., Borković-Mitić, S., Nestorović, N., Ristić, N., Trifunović, S., Stevanović, M., Filipović, N., Stojsavljević, A.,& Pavlović, S.. (2022). The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta. in International Journal of Molecular Sciences
Basel : MDPI AG., 23(21), 13068.
https://doi.org/10.3390/ijms232113068
https://hdl.handle.net/21.15107/rcub_dais_13438
Manojlović-Stojanoski M, Borković-Mitić S, Nestorović N, Ristić N, Trifunović S, Stevanović M, Filipović N, Stojsavljević A, Pavlović S. The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta. in International Journal of Molecular Sciences. 2022;23(21):13068.
doi:10.3390/ijms232113068
https://hdl.handle.net/21.15107/rcub_dais_13438 .
Manojlović-Stojanoski, Milica, Borković-Mitić, Slavica, Nestorović, Nataša, Ristić, Nataša, Trifunović, Svetlana, Stevanović, Magdalena, Filipović, Nenad, Stojsavljević, Aleksandar, Pavlović, Slađan, "The Effects of BSA-Stabilized Selenium Nanoparticles and Sodium Selenite Supplementation on the Structure, Oxidative Stress Parameters and Selenium Redox Biology in Rat Placenta" in International Journal of Molecular Sciences, 23, no. 21 (2022):13068,
https://doi.org/10.3390/ijms232113068 .,
https://hdl.handle.net/21.15107/rcub_dais_13438 .
3
3