Jugović, Dragana

Link to this page

Authority KeyName Variants
orcid::0000-0001-6363-0825
  • Jugović, Dragana (121)
Projects
Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them Magnetic and radionuclide labeled nanostructured materials for medical applications
Lithium-ion batteries and fuel cells - research and development Sinteza funkcionalnih materijala sa kontrolisanom strukturom na molekularnom i nano nivou
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) Serbian Academy of Sciences and Arts, Project F-190
Investigation of intermetallics and semiconductors and possible application in renewable energy sources Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry)
Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes HiSuperBat - High-Capacity Electrodes for Aqueous Rechargeable Multivalent-Ion Batteries and Supercapacitors: Next Step Towards a Hybrid Model
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Bilateral collaboration between Serbia and Slovenia (06-00-118/2018-09/32/02)
Bilateral collaboration between Serbia and Slovenia (BI-RS/18-19-031) Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia, Project 651-03-1251/2012-09/05
Bilateral project between Serbia and Slovenia "Developments of novel materials for alkaline-ion batteries" The electrical breakdown of gases, surface processes and applications
Synthesis, processing and applications of nanostructured multifunctional materials with defined properties Development, optimization and application of energy-harvesting sensors technology
Bilateral project Montenegro-Serbia: Bilateral project between Serbia and Slovenia "Developments of novel materials for alkaline-ion batteries" Fundação para a Ciência e Tecnologia, Portugal for postdoctoral research grant SFRH/BPD/97453/2013
http://dx.doi.org/10.13039/501100004564 Electronic, transport and optical properties of nanostructured materials
Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions Electroconducting and redox-active polymers and oligomers: synthesis, structure, properties and applications
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy)
Ministry for Scientific and Technological Development, Higher Education and Information Society of Republic of Srpska, project No. 19.032/961-78/19 COST Action FIT4NANO CA19140
European Structural Development Funds (Project No. ITMS2014 + 313011W085) European Structural Development Funds (Project No. ITMS2014+ 313011W085)

Author's Bibliography

Investigating on the microstructure and optical properties of Au, Ag and Cu implanted TiN thin films: The effects of surface oxidation and ion-induced defects

Popović, M.; Novaković, M.; Pjević, Dejan J.; Vaňa, Dušan; Jugović, Dragana; Tošić, D.; Noga, Pavol

(Elsevier, 2024)

TY  - JOUR
AU  - Popović, M.
AU  - Novaković, M.
AU  - Pjević, Dejan J.
AU  - Vaňa, Dušan
AU  - Jugović, Dragana
AU  - Tošić, D.
AU  - Noga, Pavol
PY  - 2024
UR  - https://dais.sanu.ac.rs/123456789/16162
AB  - In the present paper, the effects of metal ion implantation on the structural and optical properties of TiN thin films have been investigated. TiN films of 170 nm thickness were grown by d.c. reactive sputtering on Si (100) wafers and then irradiated at 5 × 1016 ions/cm2 with either Au, Ag, or Cu ions by using two different energies per each implanted metal. The results showed that as deposited TiN crystallizes in the form of a fcc cubic structure, with the crystallites preferentially oriented along the (111) plane. For all implanted layers, the cubic structure was preserved, but compared to as deposited TiN the crystallites were smaller and the lattice was contracted. These changes were correlated with the depth distribution of Au, Ag and Cu ions and assigned to implantation-induced damage that was larger when higher ion energies were used. High-resolution XPS spectra of the surface of as deposited sample showed the coexistence of TiN, TiO2 and TiOxNy phases and this was related to the surface oxidation of the films due to the exposure to air. After implantation, the results were almost similar for all metals, showing an increase in TiO2 contribution and the formation of pure metallic Au and Ag phases, while copper is in the Cu2+ state, which is attributed to Cu(II)-oxide and Cu(OH)2. The microstructural characteristics including defect formation, changes in crystallite size and lattice contraction, and also growth of different metallic phases during implantations were correlated with the findings of the optical characterization of the implanted films. For the as deposited film we found an energy gap of 2.91 eV, which was lower than the value typical for TiN. After implantation the gap was shifted to higher energies, while at the visible part of the region, the existence of additional energy levels, at photon energies below 2.9 eV was observed. Besides, all implanted films showed degraded photocatalytic activity compared to as deposited TiN, among which Cu-implanted samples exhibited the best photocatalytic performances. The lower photocatalytic activity of Au and Ag implanted films compared to Cu implantations was ascribed to larger structural defects and the formation of less favorable electronic states.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Investigating on the microstructure and optical properties of Au, Ag and Cu implanted TiN thin films: The effects of surface oxidation and ion-induced defects
SP  - 173046
VL  - 976
DO  - 10.1016/j.jallcom.2023.173046
UR  - https://hdl.handle.net/21.15107/rcub_dais_16162
ER  - 
@article{
author = "Popović, M. and Novaković, M. and Pjević, Dejan J. and Vaňa, Dušan and Jugović, Dragana and Tošić, D. and Noga, Pavol",
year = "2024",
abstract = "In the present paper, the effects of metal ion implantation on the structural and optical properties of TiN thin films have been investigated. TiN films of 170 nm thickness were grown by d.c. reactive sputtering on Si (100) wafers and then irradiated at 5 × 1016 ions/cm2 with either Au, Ag, or Cu ions by using two different energies per each implanted metal. The results showed that as deposited TiN crystallizes in the form of a fcc cubic structure, with the crystallites preferentially oriented along the (111) plane. For all implanted layers, the cubic structure was preserved, but compared to as deposited TiN the crystallites were smaller and the lattice was contracted. These changes were correlated with the depth distribution of Au, Ag and Cu ions and assigned to implantation-induced damage that was larger when higher ion energies were used. High-resolution XPS spectra of the surface of as deposited sample showed the coexistence of TiN, TiO2 and TiOxNy phases and this was related to the surface oxidation of the films due to the exposure to air. After implantation, the results were almost similar for all metals, showing an increase in TiO2 contribution and the formation of pure metallic Au and Ag phases, while copper is in the Cu2+ state, which is attributed to Cu(II)-oxide and Cu(OH)2. The microstructural characteristics including defect formation, changes in crystallite size and lattice contraction, and also growth of different metallic phases during implantations were correlated with the findings of the optical characterization of the implanted films. For the as deposited film we found an energy gap of 2.91 eV, which was lower than the value typical for TiN. After implantation the gap was shifted to higher energies, while at the visible part of the region, the existence of additional energy levels, at photon energies below 2.9 eV was observed. Besides, all implanted films showed degraded photocatalytic activity compared to as deposited TiN, among which Cu-implanted samples exhibited the best photocatalytic performances. The lower photocatalytic activity of Au and Ag implanted films compared to Cu implantations was ascribed to larger structural defects and the formation of less favorable electronic states.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Investigating on the microstructure and optical properties of Au, Ag and Cu implanted TiN thin films: The effects of surface oxidation and ion-induced defects",
pages = "173046",
volume = "976",
doi = "10.1016/j.jallcom.2023.173046",
url = "https://hdl.handle.net/21.15107/rcub_dais_16162"
}
Popović, M., Novaković, M., Pjević, D. J., Vaňa, D., Jugović, D., Tošić, D.,& Noga, P.. (2024). Investigating on the microstructure and optical properties of Au, Ag and Cu implanted TiN thin films: The effects of surface oxidation and ion-induced defects. in Journal of Alloys and Compounds
Elsevier., 976, 173046.
https://doi.org/10.1016/j.jallcom.2023.173046
https://hdl.handle.net/21.15107/rcub_dais_16162
Popović M, Novaković M, Pjević DJ, Vaňa D, Jugović D, Tošić D, Noga P. Investigating on the microstructure and optical properties of Au, Ag and Cu implanted TiN thin films: The effects of surface oxidation and ion-induced defects. in Journal of Alloys and Compounds. 2024;976:173046.
doi:10.1016/j.jallcom.2023.173046
https://hdl.handle.net/21.15107/rcub_dais_16162 .
Popović, M., Novaković, M., Pjević, Dejan J., Vaňa, Dušan, Jugović, Dragana, Tošić, D., Noga, Pavol, "Investigating on the microstructure and optical properties of Au, Ag and Cu implanted TiN thin films: The effects of surface oxidation and ion-induced defects" in Journal of Alloys and Compounds, 976 (2024):173046,
https://doi.org/10.1016/j.jallcom.2023.173046 .,
https://hdl.handle.net/21.15107/rcub_dais_16162 .

Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell

Popović, Aleksandra S.; Jugović, Dragana; Grgur, Branimir

(Springer Science and Business Media LLC, 2023)

TY  - JOUR
AU  - Popović, Aleksandra S.
AU  - Jugović, Dragana
AU  - Grgur, Branimir
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16174
AB  - Primary seawater magnesium-based cell with AgCl or PbCl2 cathodes is widely used as power sources. In this paper, we consider the cyclic galvanostatic formation of silver and lead chlorides and their electrochemical behavior for potential applications in the new concept of the seawater quasi-rechargeable magnesium cell. For potential cells, the voltage for Mg alloy AZ63 and AgCl is ~ 1.5 V, and for the PbCl2, ~ 1 V. High discharge specific capacity, energy, and power are obtained under the very high discharge rate. It is also presented that systems could be potentially used in emergency situations for a few days up to a few weeks as a power source in the life-saving boat for sporadic emitting GPS-SOS tacking signals and night signal lights.
PB  - Springer Science and Business Media LLC
T2  - Journal of Materials Science: Materials in Electronics
T1  - Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell
SP  - 1155
VL  - 34
IS  - 14
DO  - 10.1007/s10854-023-10558-9
UR  - https://hdl.handle.net/21.15107/rcub_dais_16174
ER  - 
@article{
author = "Popović, Aleksandra S. and Jugović, Dragana and Grgur, Branimir",
year = "2023",
abstract = "Primary seawater magnesium-based cell with AgCl or PbCl2 cathodes is widely used as power sources. In this paper, we consider the cyclic galvanostatic formation of silver and lead chlorides and their electrochemical behavior for potential applications in the new concept of the seawater quasi-rechargeable magnesium cell. For potential cells, the voltage for Mg alloy AZ63 and AgCl is ~ 1.5 V, and for the PbCl2, ~ 1 V. High discharge specific capacity, energy, and power are obtained under the very high discharge rate. It is also presented that systems could be potentially used in emergency situations for a few days up to a few weeks as a power source in the life-saving boat for sporadic emitting GPS-SOS tacking signals and night signal lights.",
publisher = "Springer Science and Business Media LLC",
journal = "Journal of Materials Science: Materials in Electronics",
title = "Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell",
pages = "1155",
volume = "34",
number = "14",
doi = "10.1007/s10854-023-10558-9",
url = "https://hdl.handle.net/21.15107/rcub_dais_16174"
}
Popović, A. S., Jugović, D.,& Grgur, B.. (2023). Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell. in Journal of Materials Science: Materials in Electronics
Springer Science and Business Media LLC., 34(14), 1155.
https://doi.org/10.1007/s10854-023-10558-9
https://hdl.handle.net/21.15107/rcub_dais_16174
Popović AS, Jugović D, Grgur B. Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell. in Journal of Materials Science: Materials in Electronics. 2023;34(14):1155.
doi:10.1007/s10854-023-10558-9
https://hdl.handle.net/21.15107/rcub_dais_16174 .
Popović, Aleksandra S., Jugović, Dragana, Grgur, Branimir, "Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell" in Journal of Materials Science: Materials in Electronics, 34, no. 14 (2023):1155,
https://doi.org/10.1007/s10854-023-10558-9 .,
https://hdl.handle.net/21.15107/rcub_dais_16174 .

Electrochemical study of Li-ion intercalation into anatase TiO2 nanotubes at different temperatures

Latas, Nemanja; Rajić, Vladimir; Jugović, Dragana; Cvjetićanin, Nikola

(Belgrade : Serbian Chemical Society, 2023)

TY  - CONF
AU  - Latas, Nemanja
AU  - Rajić, Vladimir
AU  - Jugović, Dragana
AU  - Cvjetićanin, Nikola
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16167
UR  - https://www.shd.org.rs/wp-content/uploads/2023/11/9CYCS_Book-of-Abstracts.pdf
AB  - Lithium-ion batteries (LIBs) are the most promising energy storage devices on the market today. Their importance is reflected in the fact that LIBs power numerous portable devices and that they are being developed for electric and hybrid electric vehicles [1]. Most commercial LIBs are composed of a graphite anode, which cannot meet high performace requirements [2]. Several transition metal-oxide based hosts have been considered as potential alternatives to the graphite anode, including TiO2. Low cost, high Li-ion insertion potential, low volume expansion and good cycling life make TiO2 a promising anode material. Different polymorphs of TiO2 have been investigated, and preference is given to the anatase phase. Herein, anatase TiO2 nanotube arrays (NTAs) electrode was preapred by anodic oxidation of Ti-foil and subesquent annealing at 400 oC. SEM micrographs show that the nanotubes (NTs) are cylindrical in shape, with an average inner diameter of about 95 nm and wall thickness ~15 nm. In the Raman spectrum, five active modes which correspond to the anatase phase are present. XRD pattern of as-prepared Ti/TiO2 NTAs electrode was recorded, and the strongest diffraction maximum of anatase phase was used for the claculation of the mean crystallite size. The obtained value is 19 ± 1 nm. Electrochemical experiments, which included cyclic voltammery (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic (GS) cycling, were carried out using a termostat in the temperature range from 25 – 55 oC. The 1 M solution of LiClO4 in propylene carbonate was used as an electrolyte in all cases. CV experiments demonstrated an increase in the redox peak intensity and a decrease in peak-to-peak separation at higher temperatures, indicating improvement in Li-ion storage capability and better reversibilty of Li-ion intercalation/deintercalation process. GS cycling showed a large Li-ion insertion capacity of Ti/TiO2 NTAs electrode, high Coulombic efficiency (CE) and good capcity retention. Lithiation capacity at 55 oC attains 357 mAh·g-1 at current rate 5.3 C, with CE of 97.5% and capacity retention of 98.5% after 50 cycles. EIS showed with increasing temperature a multifold decrease in solid electrolyte interphase (SEI) layer resistance and charge transfer resistance. EDS and FTIR spectra of Ti/TiO2 NTAs electrode were recorded to better underastand the nature of the formed SEI film.
PB  - Belgrade : Serbian Chemical Society
PB  - Belgrade : Serbian Young Chemists Club
C3  - Book of abstracts / 9th Conference of the Young Chemists of Serbia, 4th November 2023, Novi Sad
T1  - Electrochemical study of Li-ion intercalation into anatase TiO2 nanotubes at different temperatures
SP  - 160
EP  - 160
UR  - https://hdl.handle.net/21.15107/rcub_dais_16167
ER  - 
@conference{
author = "Latas, Nemanja and Rajić, Vladimir and Jugović, Dragana and Cvjetićanin, Nikola",
year = "2023",
abstract = "Lithium-ion batteries (LIBs) are the most promising energy storage devices on the market today. Their importance is reflected in the fact that LIBs power numerous portable devices and that they are being developed for electric and hybrid electric vehicles [1]. Most commercial LIBs are composed of a graphite anode, which cannot meet high performace requirements [2]. Several transition metal-oxide based hosts have been considered as potential alternatives to the graphite anode, including TiO2. Low cost, high Li-ion insertion potential, low volume expansion and good cycling life make TiO2 a promising anode material. Different polymorphs of TiO2 have been investigated, and preference is given to the anatase phase. Herein, anatase TiO2 nanotube arrays (NTAs) electrode was preapred by anodic oxidation of Ti-foil and subesquent annealing at 400 oC. SEM micrographs show that the nanotubes (NTs) are cylindrical in shape, with an average inner diameter of about 95 nm and wall thickness ~15 nm. In the Raman spectrum, five active modes which correspond to the anatase phase are present. XRD pattern of as-prepared Ti/TiO2 NTAs electrode was recorded, and the strongest diffraction maximum of anatase phase was used for the claculation of the mean crystallite size. The obtained value is 19 ± 1 nm. Electrochemical experiments, which included cyclic voltammery (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic (GS) cycling, were carried out using a termostat in the temperature range from 25 – 55 oC. The 1 M solution of LiClO4 in propylene carbonate was used as an electrolyte in all cases. CV experiments demonstrated an increase in the redox peak intensity and a decrease in peak-to-peak separation at higher temperatures, indicating improvement in Li-ion storage capability and better reversibilty of Li-ion intercalation/deintercalation process. GS cycling showed a large Li-ion insertion capacity of Ti/TiO2 NTAs electrode, high Coulombic efficiency (CE) and good capcity retention. Lithiation capacity at 55 oC attains 357 mAh·g-1 at current rate 5.3 C, with CE of 97.5% and capacity retention of 98.5% after 50 cycles. EIS showed with increasing temperature a multifold decrease in solid electrolyte interphase (SEI) layer resistance and charge transfer resistance. EDS and FTIR spectra of Ti/TiO2 NTAs electrode were recorded to better underastand the nature of the formed SEI film.",
publisher = "Belgrade : Serbian Chemical Society, Belgrade : Serbian Young Chemists Club",
journal = "Book of abstracts / 9th Conference of the Young Chemists of Serbia, 4th November 2023, Novi Sad",
title = "Electrochemical study of Li-ion intercalation into anatase TiO2 nanotubes at different temperatures",
pages = "160-160",
url = "https://hdl.handle.net/21.15107/rcub_dais_16167"
}
Latas, N., Rajić, V., Jugović, D.,& Cvjetićanin, N.. (2023). Electrochemical study of Li-ion intercalation into anatase TiO2 nanotubes at different temperatures. in Book of abstracts / 9th Conference of the Young Chemists of Serbia, 4th November 2023, Novi Sad
Belgrade : Serbian Chemical Society., 160-160.
https://hdl.handle.net/21.15107/rcub_dais_16167
Latas N, Rajić V, Jugović D, Cvjetićanin N. Electrochemical study of Li-ion intercalation into anatase TiO2 nanotubes at different temperatures. in Book of abstracts / 9th Conference of the Young Chemists of Serbia, 4th November 2023, Novi Sad. 2023;:160-160.
https://hdl.handle.net/21.15107/rcub_dais_16167 .
Latas, Nemanja, Rajić, Vladimir, Jugović, Dragana, Cvjetićanin, Nikola, "Electrochemical study of Li-ion intercalation into anatase TiO2 nanotubes at different temperatures" in Book of abstracts / 9th Conference of the Young Chemists of Serbia, 4th November 2023, Novi Sad (2023):160-160,
https://hdl.handle.net/21.15107/rcub_dais_16167 .

Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell

Popović, Aleksandra S.; Jugović, Dragana; Grgur, Branimir

(Springer Science and Business Media LLC, 2023)

TY  - JOUR
AU  - Popović, Aleksandra S.
AU  - Jugović, Dragana
AU  - Grgur, Branimir
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14544
AB  - Primary seawater magnesium-based cell with AgCl or PbCl2 cathodes is widely used as power sources. In this paper, we consider the cyclic galvanostatic formation of silver and lead chlorides and their electrochemical behavior for potential applications in the new concept of the seawater quasi-rechargeable magnesium cell. For potential cells, the voltage for Mg alloy AZ63 and AgCl is ~ 1.5 V, and for the PbCl2, ~ 1 V. High discharge specific capacity, energy, and power are obtained under the very high discharge rate. It is also presented that systems could be potentially used in emergency situations for a few days up to a few weeks as a power source in the life-saving boat for sporadic emitting GPS-SOS tacking signals and night signal lights.
PB  - Springer Science and Business Media LLC
T2  - Journal of Materials Science: Materials in Electronics
T1  - Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell
SP  - 1155
VL  - 34
DO  - 10.1007/s10854-023-10558-9
UR  - https://hdl.handle.net/21.15107/rcub_dais_14544
ER  - 
@article{
author = "Popović, Aleksandra S. and Jugović, Dragana and Grgur, Branimir",
year = "2023",
abstract = "Primary seawater magnesium-based cell with AgCl or PbCl2 cathodes is widely used as power sources. In this paper, we consider the cyclic galvanostatic formation of silver and lead chlorides and their electrochemical behavior for potential applications in the new concept of the seawater quasi-rechargeable magnesium cell. For potential cells, the voltage for Mg alloy AZ63 and AgCl is ~ 1.5 V, and for the PbCl2, ~ 1 V. High discharge specific capacity, energy, and power are obtained under the very high discharge rate. It is also presented that systems could be potentially used in emergency situations for a few days up to a few weeks as a power source in the life-saving boat for sporadic emitting GPS-SOS tacking signals and night signal lights.",
publisher = "Springer Science and Business Media LLC",
journal = "Journal of Materials Science: Materials in Electronics",
title = "Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell",
pages = "1155",
volume = "34",
doi = "10.1007/s10854-023-10558-9",
url = "https://hdl.handle.net/21.15107/rcub_dais_14544"
}
Popović, A. S., Jugović, D.,& Grgur, B.. (2023). Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell. in Journal of Materials Science: Materials in Electronics
Springer Science and Business Media LLC., 34, 1155.
https://doi.org/10.1007/s10854-023-10558-9
https://hdl.handle.net/21.15107/rcub_dais_14544
Popović AS, Jugović D, Grgur B. Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell. in Journal of Materials Science: Materials in Electronics. 2023;34:1155.
doi:10.1007/s10854-023-10558-9
https://hdl.handle.net/21.15107/rcub_dais_14544 .
Popović, Aleksandra S., Jugović, Dragana, Grgur, Branimir, "Electrochemical formation and behavior of silver and lead chlorides as potential cathodes for quasi-rechargeable magnesium seawater cell" in Journal of Materials Science: Materials in Electronics, 34 (2023):1155,
https://doi.org/10.1007/s10854-023-10558-9 .,
https://hdl.handle.net/21.15107/rcub_dais_14544 .

Metal ion-implanted TiN thin films: Induced effects on structural and optical properties

Popović, M.; Novaković, M.; Pjević, Dejan J.; Vaňa, Dušan; Jugović, Dragana; Noga, Pavol

(Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, 2023)

TY  - CONF
AU  - Popović, M.
AU  - Novaković, M.
AU  - Pjević, Dejan J.
AU  - Vaňa, Dušan
AU  - Jugović, Dragana
AU  - Noga, Pavol
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14869
AB  - The ion implantation technique has a number of advantages over conventional methods for the improvement of thin films that offer the various possibilities of their use in different industrial and technological fields. Herein, we present the effects of metal ion implantation on the structural and optical properties of TiN thin films. TiN films of 170 nm thickness were grown by d.c. reactive sputtering on Si (100) wafers and then irradiated at 5×1016 ions/cm2 with either Au, Ag, or Cu ions by using two different energies per each implanted metal. The results showed that as deposited TiN crystallizes in form of fcc cubic structure, with the crystallites preferentially oriented along the (111) plane. For all implanted layers the cubic crystallographic structure was preserved, but compared to as deposited TiN the crystallites were smaller and the lattice was contracted. Besides, the surface compositional analysis of as deposited sample showed the coexistence of TiN, TiO2 and TiOxNy phases and this was related to the surface oxidation of the films due to the exposure to air. After implantation, the results were almost similar for all metals, showing an increase in TiO2 contribution and the formation of pure metallic Au and Ag phases, while copper is in the Cu2+ state, which is attributed to Cu(II)-oxide and Cu(OH)2. The microstructural characteristics including defect formation, changes in the crystallite size and lattice contraction, and also growth of different metallic phases during implantations were correlated with the findings of the optical characterization of the implanted films. For as deposited film we found energy gap of 2.91 eV, which was lower than the value typical for TiN. After implantation the gap was shifted to higher energies, while at the visible part of the region, additional energy levels, at photon energies below 2.9 eV were observed. Further, all implanted films showed degraded photocatalytic activity compared to as deposited TiN, among which Cu-implanted samples exhibited the best photocatalytic performances. The lower photocatalytic activity of Au and Ag-implanted films compared to Cu implantations was ascribed to larger structural defects and formation of less favorable electronic states.
PB  - Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade
C3  - Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia
T1  - Metal ion-implanted TiN thin films: Induced effects on structural and optical properties
SP  - 63
EP  - 63
UR  - https://hdl.handle.net/21.15107/rcub_dais_14869
ER  - 
@conference{
author = "Popović, M. and Novaković, M. and Pjević, Dejan J. and Vaňa, Dušan and Jugović, Dragana and Noga, Pavol",
year = "2023",
abstract = "The ion implantation technique has a number of advantages over conventional methods for the improvement of thin films that offer the various possibilities of their use in different industrial and technological fields. Herein, we present the effects of metal ion implantation on the structural and optical properties of TiN thin films. TiN films of 170 nm thickness were grown by d.c. reactive sputtering on Si (100) wafers and then irradiated at 5×1016 ions/cm2 with either Au, Ag, or Cu ions by using two different energies per each implanted metal. The results showed that as deposited TiN crystallizes in form of fcc cubic structure, with the crystallites preferentially oriented along the (111) plane. For all implanted layers the cubic crystallographic structure was preserved, but compared to as deposited TiN the crystallites were smaller and the lattice was contracted. Besides, the surface compositional analysis of as deposited sample showed the coexistence of TiN, TiO2 and TiOxNy phases and this was related to the surface oxidation of the films due to the exposure to air. After implantation, the results were almost similar for all metals, showing an increase in TiO2 contribution and the formation of pure metallic Au and Ag phases, while copper is in the Cu2+ state, which is attributed to Cu(II)-oxide and Cu(OH)2. The microstructural characteristics including defect formation, changes in the crystallite size and lattice contraction, and also growth of different metallic phases during implantations were correlated with the findings of the optical characterization of the implanted films. For as deposited film we found energy gap of 2.91 eV, which was lower than the value typical for TiN. After implantation the gap was shifted to higher energies, while at the visible part of the region, additional energy levels, at photon energies below 2.9 eV were observed. Further, all implanted films showed degraded photocatalytic activity compared to as deposited TiN, among which Cu-implanted samples exhibited the best photocatalytic performances. The lower photocatalytic activity of Au and Ag-implanted films compared to Cu implantations was ascribed to larger structural defects and formation of less favorable electronic states.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade",
journal = "Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia",
title = "Metal ion-implanted TiN thin films: Induced effects on structural and optical properties",
pages = "63-63",
url = "https://hdl.handle.net/21.15107/rcub_dais_14869"
}
Popović, M., Novaković, M., Pjević, D. J., Vaňa, D., Jugović, D.,& Noga, P.. (2023). Metal ion-implanted TiN thin films: Induced effects on structural and optical properties. in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia
Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade., 63-63.
https://hdl.handle.net/21.15107/rcub_dais_14869
Popović M, Novaković M, Pjević DJ, Vaňa D, Jugović D, Noga P. Metal ion-implanted TiN thin films: Induced effects on structural and optical properties. in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia. 2023;:63-63.
https://hdl.handle.net/21.15107/rcub_dais_14869 .
Popović, M., Novaković, M., Pjević, Dejan J., Vaňa, Dušan, Jugović, Dragana, Noga, Pavol, "Metal ion-implanted TiN thin films: Induced effects on structural and optical properties" in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia (2023):63-63,
https://hdl.handle.net/21.15107/rcub_dais_14869 .

Structure-dependent optical properties of Au/Ag irradiated TiN thin films

Popović, Maja; Novaković, Mirjana; Vaňa, Dušan; Ronning, Carsten; Jugović, Dragana; Rajić, Vladimir; Noga, Pavol

(Elsevier BV, 2023)

TY  - JOUR
AU  - Popović, Maja
AU  - Novaković, Mirjana
AU  - Vaňa, Dušan
AU  - Ronning, Carsten
AU  - Jugović, Dragana
AU  - Rajić, Vladimir
AU  - Noga, Pavol
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14289
AB  - Titanium nitride (TiN) is an attractive alternative for modern and future photonic applications, as its optical properties can be engineered over a wide spectral range. In this study, we have used sequential implantation of gold and silver ions with varying ion fluence, as well as subsequent annealing, in order to modify the optical and plasmonic properties of TiN thin films and correlated this to their structural properties. Our investigations show that the columnar structure of the TiN films is partially destroyed upon implantation, but metallic Au and Ag nanoparticles are formed. The irradiation further induces a reduction of the lattice constant as well as changes the TiN stoichiometry and grain size. From the optical point of view, the implanted films possess less metallicity with increasing Ag fluence and losses several times lower than the as-deposited film, which can be correlated with the deficiency of nitrogen and additional defects. Subsequent annealing partially recovered the destroyed columnar structure, and the films become more metallic where the optical losses are much smaller in comparison to the as-implanted situation, being comparable to those of pure Au and Ag. In this way, by varying the implantation fluence of silver ions properly while keeping the gold fluence constant, we were able to optimize experimental parameters in such a way to ensure the formation of TiN with desirable optical performances.
PB  - Elsevier BV
T2  - Optical Materials
T1  - Structure-dependent optical properties of Au/Ag irradiated TiN thin films
SP  - 113684
VL  - 138
DO  - 10.1016/j.optmat.2023.113684
UR  - https://hdl.handle.net/21.15107/rcub_dais_14289
ER  - 
@article{
author = "Popović, Maja and Novaković, Mirjana and Vaňa, Dušan and Ronning, Carsten and Jugović, Dragana and Rajić, Vladimir and Noga, Pavol",
year = "2023",
abstract = "Titanium nitride (TiN) is an attractive alternative for modern and future photonic applications, as its optical properties can be engineered over a wide spectral range. In this study, we have used sequential implantation of gold and silver ions with varying ion fluence, as well as subsequent annealing, in order to modify the optical and plasmonic properties of TiN thin films and correlated this to their structural properties. Our investigations show that the columnar structure of the TiN films is partially destroyed upon implantation, but metallic Au and Ag nanoparticles are formed. The irradiation further induces a reduction of the lattice constant as well as changes the TiN stoichiometry and grain size. From the optical point of view, the implanted films possess less metallicity with increasing Ag fluence and losses several times lower than the as-deposited film, which can be correlated with the deficiency of nitrogen and additional defects. Subsequent annealing partially recovered the destroyed columnar structure, and the films become more metallic where the optical losses are much smaller in comparison to the as-implanted situation, being comparable to those of pure Au and Ag. In this way, by varying the implantation fluence of silver ions properly while keeping the gold fluence constant, we were able to optimize experimental parameters in such a way to ensure the formation of TiN with desirable optical performances.",
publisher = "Elsevier BV",
journal = "Optical Materials",
title = "Structure-dependent optical properties of Au/Ag irradiated TiN thin films",
pages = "113684",
volume = "138",
doi = "10.1016/j.optmat.2023.113684",
url = "https://hdl.handle.net/21.15107/rcub_dais_14289"
}
Popović, M., Novaković, M., Vaňa, D., Ronning, C., Jugović, D., Rajić, V.,& Noga, P.. (2023). Structure-dependent optical properties of Au/Ag irradiated TiN thin films. in Optical Materials
Elsevier BV., 138, 113684.
https://doi.org/10.1016/j.optmat.2023.113684
https://hdl.handle.net/21.15107/rcub_dais_14289
Popović M, Novaković M, Vaňa D, Ronning C, Jugović D, Rajić V, Noga P. Structure-dependent optical properties of Au/Ag irradiated TiN thin films. in Optical Materials. 2023;138:113684.
doi:10.1016/j.optmat.2023.113684
https://hdl.handle.net/21.15107/rcub_dais_14289 .
Popović, Maja, Novaković, Mirjana, Vaňa, Dušan, Ronning, Carsten, Jugović, Dragana, Rajić, Vladimir, Noga, Pavol, "Structure-dependent optical properties of Au/Ag irradiated TiN thin films" in Optical Materials, 138 (2023):113684,
https://doi.org/10.1016/j.optmat.2023.113684 .,
https://hdl.handle.net/21.15107/rcub_dais_14289 .
2
2

Synthesis and characterization of luminescent Pr3+–doped hydroxyapatite nanopowder as a potential biomaterial for bioimaging applications

Stanić, Vojislav; Omerašević, Mia; Mutavdžić, Dragosav; Jugović, Dragana; Bučevac, Dušan; Gerić, Tamara; Jelić, Ivana

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Stanić, Vojislav
AU  - Omerašević, Mia
AU  - Mutavdžić, Dragosav
AU  - Jugović, Dragana
AU  - Bučevac, Dušan
AU  - Gerić, Tamara
AU  - Jelić, Ivana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15157
AB  - Praseodymium doped calcium hydroxyapatite (PrHAP) nanopowder was synthesized by the co-precipitation method and characterized by X-Ray Diffraction, Fourier Transform Infrared, and Fluorescence Spectroscopy. Characterization studies from XRD and FTIR spectra showed that obtained crystals are monophase hydroxyapatites and that the sample particles are of nano size. A fluorescence study has shown that PrHAP particles have fluorescent emission under UV‐ Visible excitation. These results may open new avenues for developing bioactive materials for bone regeneration and fluorescent probes for bio-imaging applications.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.
T1  - Synthesis and characterization of luminescent Pr3+–doped hydroxyapatite nanopowder as a potential biomaterial for bioimaging applications
SP  - 72
EP  - 72
UR  - https://hdl.handle.net/21.15107/rcub_dais_15157
ER  - 
@conference{
author = "Stanić, Vojislav and Omerašević, Mia and Mutavdžić, Dragosav and Jugović, Dragana and Bučevac, Dušan and Gerić, Tamara and Jelić, Ivana",
year = "2023",
abstract = "Praseodymium doped calcium hydroxyapatite (PrHAP) nanopowder was synthesized by the co-precipitation method and characterized by X-Ray Diffraction, Fourier Transform Infrared, and Fluorescence Spectroscopy. Characterization studies from XRD and FTIR spectra showed that obtained crystals are monophase hydroxyapatites and that the sample particles are of nano size. A fluorescence study has shown that PrHAP particles have fluorescent emission under UV‐ Visible excitation. These results may open new avenues for developing bioactive materials for bone regeneration and fluorescent probes for bio-imaging applications.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.",
title = "Synthesis and characterization of luminescent Pr3+–doped hydroxyapatite nanopowder as a potential biomaterial for bioimaging applications",
pages = "72-72",
url = "https://hdl.handle.net/21.15107/rcub_dais_15157"
}
Stanić, V., Omerašević, M., Mutavdžić, D., Jugović, D., Bučevac, D., Gerić, T.,& Jelić, I.. (2023). Synthesis and characterization of luminescent Pr3+–doped hydroxyapatite nanopowder as a potential biomaterial for bioimaging applications. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.
Belgrade : Serbian Ceramic Society., 72-72.
https://hdl.handle.net/21.15107/rcub_dais_15157
Stanić V, Omerašević M, Mutavdžić D, Jugović D, Bučevac D, Gerić T, Jelić I. Synthesis and characterization of luminescent Pr3+–doped hydroxyapatite nanopowder as a potential biomaterial for bioimaging applications. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.. 2023;:72-72.
https://hdl.handle.net/21.15107/rcub_dais_15157 .
Stanić, Vojislav, Omerašević, Mia, Mutavdžić, Dragosav, Jugović, Dragana, Bučevac, Dušan, Gerić, Tamara, Jelić, Ivana, "Synthesis and characterization of luminescent Pr3+–doped hydroxyapatite nanopowder as a potential biomaterial for bioimaging applications" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. (2023):72-72,
https://hdl.handle.net/21.15107/rcub_dais_15157 .

The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte

Jugović, Dragana; Milović, Miloš; Barudžija, Tanja; Kuzmanović, Maja; Vujković, Milica; Mitrić, Miodrag

(Basel : MDPI, 2022)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Barudžija, Tanja
AU  - Kuzmanović, Maja
AU  - Vujković, Milica
AU  - Mitrić, Miodrag
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13692
AB  - Layered VOPO4·2H2O is synthesized by the sonochemical method. An X-ray powder diffraction is used to examine the crystal structure, while scanning electron microscopy is used to reveal the morphology of the powder. The crystal structure refinement is performed in the P4/nmmZ space group. The electrochemical intercalation of several cations (Na+, Mg2+, Ca2+, and Al3+) in saturated nitrate aqueous solutions is investigated. The most notable reversible activity is found for the cycling in aluminium nitrate aqueous solution in the voltage range from −0.1 to 0.8 V vs. SCE. During the preparation of the electrode, it is observed that the structure is prone to changes that have not been recorded in the literature so far. Namely, the use of conventional binder PVDF in NMP solution deteriorates the structure and lowers the powder’s crystallinity, while the use of Nafion solution causes the rearrangement of the atoms in a new crystal form that can be described in the monoclinic P21/c space group. Consequently, these structural changes affect electrochemical performances. The observed differences in electrochemical performances are a result of structural rearrangements.
PB  - Basel : MDPI
T2  - Materials
T1  - The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte
VL  - 15
IS  - 24
DO  - 10.3390/ma15249041
UR  - https://hdl.handle.net/21.15107/rcub_dais_13692
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Barudžija, Tanja and Kuzmanović, Maja and Vujković, Milica and Mitrić, Miodrag",
year = "2022",
abstract = "Layered VOPO4·2H2O is synthesized by the sonochemical method. An X-ray powder diffraction is used to examine the crystal structure, while scanning electron microscopy is used to reveal the morphology of the powder. The crystal structure refinement is performed in the P4/nmmZ space group. The electrochemical intercalation of several cations (Na+, Mg2+, Ca2+, and Al3+) in saturated nitrate aqueous solutions is investigated. The most notable reversible activity is found for the cycling in aluminium nitrate aqueous solution in the voltage range from −0.1 to 0.8 V vs. SCE. During the preparation of the electrode, it is observed that the structure is prone to changes that have not been recorded in the literature so far. Namely, the use of conventional binder PVDF in NMP solution deteriorates the structure and lowers the powder’s crystallinity, while the use of Nafion solution causes the rearrangement of the atoms in a new crystal form that can be described in the monoclinic P21/c space group. Consequently, these structural changes affect electrochemical performances. The observed differences in electrochemical performances are a result of structural rearrangements.",
publisher = "Basel : MDPI",
journal = "Materials",
title = "The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte",
volume = "15",
number = "24",
doi = "10.3390/ma15249041",
url = "https://hdl.handle.net/21.15107/rcub_dais_13692"
}
Jugović, D., Milović, M., Barudžija, T., Kuzmanović, M., Vujković, M.,& Mitrić, M.. (2022). The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte. in Materials
Basel : MDPI., 15(24).
https://doi.org/10.3390/ma15249041
https://hdl.handle.net/21.15107/rcub_dais_13692
Jugović D, Milović M, Barudžija T, Kuzmanović M, Vujković M, Mitrić M. The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte. in Materials. 2022;15(24).
doi:10.3390/ma15249041
https://hdl.handle.net/21.15107/rcub_dais_13692 .
Jugović, Dragana, Milović, Miloš, Barudžija, Tanja, Kuzmanović, Maja, Vujković, Milica, Mitrić, Miodrag, "The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte" in Materials, 15, no. 24 (2022),
https://doi.org/10.3390/ma15249041 .,
https://hdl.handle.net/21.15107/rcub_dais_13692 .
1

Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4

Jokić, Nikolina; Jugović, Dragana; Škapin, Srečo Davor; Stojković Simatović, Ivana

(Belgrade : Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Jokić, Nikolina
AU  - Jugović, Dragana
AU  - Škapin, Srečo Davor
AU  - Stojković Simatović, Ivana
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13635
AB  - Electrochemical energy storage systems, primarily lithium-ion batteries, have experienced a huge expansion in the last couple of decades, but as they are very expensive to manufacture a lot of effort is being put into finding a more affordable replacement. For this purpose, multivalent cation compounds whose crystal structure is similar to the crystal structures of lithium compounds used in lithium-ion batteries are often studied. Magnesium cation is particularly interesting due to its high availability, significantly lower cost and high theoretical capacity. [1] In this work, the glycine-nitrate method (GNM) was applied for the synthesis of cathode material MgMn2O4 after which its electrochemical properties were studied. As it is known that the addition of chromium ions to the lithium form of this compound increases the stability of capacity during cycling [2,3], the glycine-nitrate method was also used to synthesize MgCr0.15Mn1.85O4. One part of the synthesized MgCr0.15Mn1.85O4 was annealed at 700 oC, and the other part at 800 oC, and all three of the obtained materials were tested in parallel. Structural analysis of the materials was performed by X-ray diffraction and morphology was determined by scanning electron microscopy (FESEM). To study the electrochemical behavior of the materials the following methods were used: cyclic voltammetry and galvanostatic cycling.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
T1  - Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4
SP  - 175
EP  - 174
UR  - https://hdl.handle.net/21.15107/rcub_dais_13635
ER  - 
@conference{
author = "Jokić, Nikolina and Jugović, Dragana and Škapin, Srečo Davor and Stojković Simatović, Ivana",
year = "2022",
abstract = "Electrochemical energy storage systems, primarily lithium-ion batteries, have experienced a huge expansion in the last couple of decades, but as they are very expensive to manufacture a lot of effort is being put into finding a more affordable replacement. For this purpose, multivalent cation compounds whose crystal structure is similar to the crystal structures of lithium compounds used in lithium-ion batteries are often studied. Magnesium cation is particularly interesting due to its high availability, significantly lower cost and high theoretical capacity. [1] In this work, the glycine-nitrate method (GNM) was applied for the synthesis of cathode material MgMn2O4 after which its electrochemical properties were studied. As it is known that the addition of chromium ions to the lithium form of this compound increases the stability of capacity during cycling [2,3], the glycine-nitrate method was also used to synthesize MgCr0.15Mn1.85O4. One part of the synthesized MgCr0.15Mn1.85O4 was annealed at 700 oC, and the other part at 800 oC, and all three of the obtained materials were tested in parallel. Structural analysis of the materials was performed by X-ray diffraction and morphology was determined by scanning electron microscopy (FESEM). To study the electrochemical behavior of the materials the following methods were used: cyclic voltammetry and galvanostatic cycling.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022",
title = "Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4",
pages = "175-174",
url = "https://hdl.handle.net/21.15107/rcub_dais_13635"
}
Jokić, N., Jugović, D., Škapin, S. D.,& Stojković Simatović, I.. (2022). Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
Belgrade : Serbian Academy of Sciences and Arts., 175-174.
https://hdl.handle.net/21.15107/rcub_dais_13635
Jokić N, Jugović D, Škapin SD, Stojković Simatović I. Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022. 2022;:175-174.
https://hdl.handle.net/21.15107/rcub_dais_13635 .
Jokić, Nikolina, Jugović, Dragana, Škapin, Srečo Davor, Stojković Simatović, Ivana, "Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4" in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022 (2022):175-174,
https://hdl.handle.net/21.15107/rcub_dais_13635 .

Vanadyl phosphate as a host material for aluminium intercalation

Jugović, Dragana; Milović, Miloš; Barudžija, Tanja; Mitrić, Miodrag

(Split : University of Split, 2022)

TY  - CONF
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Barudžija, Tanja
AU  - Mitrić, Miodrag
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13647
AB  - The development of safe, durable, cheap, and environmentally friendly batteries is one of the most important challenges of modern electrochemistry. Hence, there is an interest in the investigation of aqueous batteries with multivalent ions such as calcium, magnesium, or aluminium. Furthermore, the use of polyanionic compounds as cathode material can provide multi-electron transport. VOPO4·2H2O with its layered structure is a particularly interesting and promising material.
The current study is focused on the investigation of VOPO4·2H2O as cathode material in aluminium aqueous rechargeable cells. According to the literature data, the conventional reflux method is mostly used for the material’s synthesis [1]. Here is presented a sonochemical synthesis as a less time- and energy-consuming method, that starts from the mixture of vanadium(V)-oxide, phosphoric acid and water as a reaction media. The synthesis is done within 20 min.
The characterization of the synthesized material includes X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and cyclovoltammetry (CV).
XRD data were used for both the powders’ phase identification and crystal structure refinement. The structure of the powder was refined in the tetragonal space group P4/nmmZ (No. 129). Crystal structure refinement was based on the Rietveld full profile method [2]. The structure is characterized by infinite layers of PO4 tetrahedra linked to VO6 octahedra by shared oxygen atoms that form 2D sheets in the ab-planes; water molecules are located in the interlayer space. The refined cell parameters, a = b = 6.2136 Å, c = 7.4141 Å, are in good agreement with the literature data. Lattice parameter c is a measure of the interlayer distance, thus varies with water content. The value of the refined c parameter implies that the structure consists two water molecules per formula unit.
The working electrode is prepared from a slurry of sonochemically derived VOPO4·2H2O as an active material, carbon black, and a binder dispersed in a solvent. Two different binders are used: polyvinylidene fluoride (PVDF), 2.4 wt% solution in N-methyl-2-pyrrolidone or Nafion, 5 wt% solution in a mixture of lower aliphatic alcohols and water. Cyclic voltammetry measurements are done in several electrolytes to probe the intercalation of various cations such as magnesium, calcium, and aluminium. The best results are obtained when the electrode is cycled in 1M Al(NO3)3 aqueous solution.
This probably originates in different ionic radii.
During the process of electrode preparation, structural changes in the powder are noticed. The structural changes were followed step by step through the combined XRD and FTIR analysis. It turns out that the structure is prone to release water molecules even when the powder is mixed with carbon black and also with the addition of a solvent, which could lead to the formation of a bilayered vanadyl phosphate. It was shown that using different solvents has a diverse impact on the structure, and consequently on powders’ cyclic performances.
PB  - Split : University of Split
C3  - Book of Abstracts / eESC-IS2022 : 6th International Symposium on Materials for Energy Storage and Conversion, 5. - 8. 7.2022. Bol, island of Brač, Croatia
T1  - Vanadyl phosphate as a host material for aluminium intercalation
UR  - https://hdl.handle.net/21.15107/rcub_dais_13647
ER  - 
@conference{
author = "Jugović, Dragana and Milović, Miloš and Barudžija, Tanja and Mitrić, Miodrag",
year = "2022",
abstract = "The development of safe, durable, cheap, and environmentally friendly batteries is one of the most important challenges of modern electrochemistry. Hence, there is an interest in the investigation of aqueous batteries with multivalent ions such as calcium, magnesium, or aluminium. Furthermore, the use of polyanionic compounds as cathode material can provide multi-electron transport. VOPO4·2H2O with its layered structure is a particularly interesting and promising material.
The current study is focused on the investigation of VOPO4·2H2O as cathode material in aluminium aqueous rechargeable cells. According to the literature data, the conventional reflux method is mostly used for the material’s synthesis [1]. Here is presented a sonochemical synthesis as a less time- and energy-consuming method, that starts from the mixture of vanadium(V)-oxide, phosphoric acid and water as a reaction media. The synthesis is done within 20 min.
The characterization of the synthesized material includes X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and cyclovoltammetry (CV).
XRD data were used for both the powders’ phase identification and crystal structure refinement. The structure of the powder was refined in the tetragonal space group P4/nmmZ (No. 129). Crystal structure refinement was based on the Rietveld full profile method [2]. The structure is characterized by infinite layers of PO4 tetrahedra linked to VO6 octahedra by shared oxygen atoms that form 2D sheets in the ab-planes; water molecules are located in the interlayer space. The refined cell parameters, a = b = 6.2136 Å, c = 7.4141 Å, are in good agreement with the literature data. Lattice parameter c is a measure of the interlayer distance, thus varies with water content. The value of the refined c parameter implies that the structure consists two water molecules per formula unit.
The working electrode is prepared from a slurry of sonochemically derived VOPO4·2H2O as an active material, carbon black, and a binder dispersed in a solvent. Two different binders are used: polyvinylidene fluoride (PVDF), 2.4 wt% solution in N-methyl-2-pyrrolidone or Nafion, 5 wt% solution in a mixture of lower aliphatic alcohols and water. Cyclic voltammetry measurements are done in several electrolytes to probe the intercalation of various cations such as magnesium, calcium, and aluminium. The best results are obtained when the electrode is cycled in 1M Al(NO3)3 aqueous solution.
This probably originates in different ionic radii.
During the process of electrode preparation, structural changes in the powder are noticed. The structural changes were followed step by step through the combined XRD and FTIR analysis. It turns out that the structure is prone to release water molecules even when the powder is mixed with carbon black and also with the addition of a solvent, which could lead to the formation of a bilayered vanadyl phosphate. It was shown that using different solvents has a diverse impact on the structure, and consequently on powders’ cyclic performances.",
publisher = "Split : University of Split",
journal = "Book of Abstracts / eESC-IS2022 : 6th International Symposium on Materials for Energy Storage and Conversion, 5. - 8. 7.2022. Bol, island of Brač, Croatia",
title = "Vanadyl phosphate as a host material for aluminium intercalation",
url = "https://hdl.handle.net/21.15107/rcub_dais_13647"
}
Jugović, D., Milović, M., Barudžija, T.,& Mitrić, M.. (2022). Vanadyl phosphate as a host material for aluminium intercalation. in Book of Abstracts / eESC-IS2022 : 6th International Symposium on Materials for Energy Storage and Conversion, 5. - 8. 7.2022. Bol, island of Brač, Croatia
Split : University of Split..
https://hdl.handle.net/21.15107/rcub_dais_13647
Jugović D, Milović M, Barudžija T, Mitrić M. Vanadyl phosphate as a host material for aluminium intercalation. in Book of Abstracts / eESC-IS2022 : 6th International Symposium on Materials for Energy Storage and Conversion, 5. - 8. 7.2022. Bol, island of Brač, Croatia. 2022;.
https://hdl.handle.net/21.15107/rcub_dais_13647 .
Jugović, Dragana, Milović, Miloš, Barudžija, Tanja, Mitrić, Miodrag, "Vanadyl phosphate as a host material for aluminium intercalation" in Book of Abstracts / eESC-IS2022 : 6th International Symposium on Materials for Energy Storage and Conversion, 5. - 8. 7.2022. Bol, island of Brač, Croatia (2022),
https://hdl.handle.net/21.15107/rcub_dais_13647 .

Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix

Milović, Miloš; Jugović, Dragana; Vujković, Milica; Kuzmanović, Maja; Mraković, Ana; Mitrić, Miodrag

(Springer Science and Business Media LLC, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Jugović, Dragana
AU  - Vujković, Milica
AU  - Kuzmanović, Maja
AU  - Mraković, Ana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11635
AB  - The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.
PB  - Springer Science and Business Media LLC
T2  - Bulletin of Materials Science
T1  - Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix
SP  - 144
VL  - 44
IS  - 2
DO  - 10.1007/s12034-021-02397-3
UR  - https://hdl.handle.net/21.15107/rcub_dais_11635
ER  - 
@article{
author = "Milović, Miloš and Jugović, Dragana and Vujković, Milica and Kuzmanović, Maja and Mraković, Ana and Mitrić, Miodrag",
year = "2021",
abstract = "The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.",
publisher = "Springer Science and Business Media LLC",
journal = "Bulletin of Materials Science",
title = "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix",
pages = "144",
volume = "44",
number = "2",
doi = "10.1007/s12034-021-02397-3",
url = "https://hdl.handle.net/21.15107/rcub_dais_11635"
}
Milović, M., Jugović, D., Vujković, M., Kuzmanović, M., Mraković, A.,& Mitrić, M.. (2021). Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. in Bulletin of Materials Science
Springer Science and Business Media LLC., 44(2), 144.
https://doi.org/10.1007/s12034-021-02397-3
https://hdl.handle.net/21.15107/rcub_dais_11635
Milović M, Jugović D, Vujković M, Kuzmanović M, Mraković A, Mitrić M. Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. in Bulletin of Materials Science. 2021;44(2):144.
doi:10.1007/s12034-021-02397-3
https://hdl.handle.net/21.15107/rcub_dais_11635 .
Milović, Miloš, Jugović, Dragana, Vujković, Milica, Kuzmanović, Maja, Mraković, Ana, Mitrić, Miodrag, "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix" in Bulletin of Materials Science, 44, no. 2 (2021):144,
https://doi.org/10.1007/s12034-021-02397-3 .,
https://hdl.handle.net/21.15107/rcub_dais_11635 .
3
3

Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix

Milović, Miloš; Jugović, Dragana; Vujković, Milica; Kuzmanović, Maja; Mraković, Ana; Mitrić, Miodrag

(Springer Science and Business Media LLC, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Jugović, Dragana
AU  - Vujković, Milica
AU  - Kuzmanović, Maja
AU  - Mraković, Ana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11636
AB  - The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.
PB  - Springer Science and Business Media LLC
T2  - Bulletin of Materials Science
T1  - Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix
SP  - 144
VL  - 44
IS  - 2
DO  - 10.1007/s12034-021-02397-3
UR  - https://hdl.handle.net/21.15107/rcub_dais_11636
ER  - 
@article{
author = "Milović, Miloš and Jugović, Dragana and Vujković, Milica and Kuzmanović, Maja and Mraković, Ana and Mitrić, Miodrag",
year = "2021",
abstract = "The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.",
publisher = "Springer Science and Business Media LLC",
journal = "Bulletin of Materials Science",
title = "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix",
pages = "144",
volume = "44",
number = "2",
doi = "10.1007/s12034-021-02397-3",
url = "https://hdl.handle.net/21.15107/rcub_dais_11636"
}
Milović, M., Jugović, D., Vujković, M., Kuzmanović, M., Mraković, A.,& Mitrić, M.. (2021). Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. in Bulletin of Materials Science
Springer Science and Business Media LLC., 44(2), 144.
https://doi.org/10.1007/s12034-021-02397-3
https://hdl.handle.net/21.15107/rcub_dais_11636
Milović M, Jugović D, Vujković M, Kuzmanović M, Mraković A, Mitrić M. Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. in Bulletin of Materials Science. 2021;44(2):144.
doi:10.1007/s12034-021-02397-3
https://hdl.handle.net/21.15107/rcub_dais_11636 .
Milović, Miloš, Jugović, Dragana, Vujković, Milica, Kuzmanović, Maja, Mraković, Ana, Mitrić, Miodrag, "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix" in Bulletin of Materials Science, 44, no. 2 (2021):144,
https://doi.org/10.1007/s12034-021-02397-3 .,
https://hdl.handle.net/21.15107/rcub_dais_11636 .
3
3

The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries

Rakočević, Lazar; Štrbac, Svetlana; Potočnik, Jelena; Popović, Maja; Jugović, Dragana; Stojković Simatović, Ivana

(Elsevier BV, 2021)

TY  - JOUR
AU  - Rakočević, Lazar
AU  - Štrbac, Svetlana
AU  - Potočnik, Jelena
AU  - Popović, Maja
AU  - Jugović, Dragana
AU  - Stojković Simatović, Ivana
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/10035
AB  - Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 °C, while 3-D tunnel structured Na0·4MnO2 and Na0·44MnO2, both with rod-like morphology, were obtained at 800 °C and 900 °C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0·44MnO2 obtained at 900 °C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.
PB  - Elsevier BV
T2  - Ceramics International
T1  - The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries
SP  - 4595
EP  - 4603
VL  - 47
IS  - 4
DO  - 10.1016/j.ceramint.2020.10.025
UR  - https://hdl.handle.net/21.15107/rcub_dais_10035
ER  - 
@article{
author = "Rakočević, Lazar and Štrbac, Svetlana and Potočnik, Jelena and Popović, Maja and Jugović, Dragana and Stojković Simatović, Ivana",
year = "2021",
abstract = "Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 °C, while 3-D tunnel structured Na0·4MnO2 and Na0·44MnO2, both with rod-like morphology, were obtained at 800 °C and 900 °C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0·44MnO2 obtained at 900 °C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries",
pages = "4595-4603",
volume = "47",
number = "4",
doi = "10.1016/j.ceramint.2020.10.025",
url = "https://hdl.handle.net/21.15107/rcub_dais_10035"
}
Rakočević, L., Štrbac, S., Potočnik, J., Popović, M., Jugović, D.,& Stojković Simatović, I.. (2021). The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. in Ceramics International
Elsevier BV., 47(4), 4595-4603.
https://doi.org/10.1016/j.ceramint.2020.10.025
https://hdl.handle.net/21.15107/rcub_dais_10035
Rakočević L, Štrbac S, Potočnik J, Popović M, Jugović D, Stojković Simatović I. The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. in Ceramics International. 2021;47(4):4595-4603.
doi:10.1016/j.ceramint.2020.10.025
https://hdl.handle.net/21.15107/rcub_dais_10035 .
Rakočević, Lazar, Štrbac, Svetlana, Potočnik, Jelena, Popović, Maja, Jugović, Dragana, Stojković Simatović, Ivana, "The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries" in Ceramics International, 47, no. 4 (2021):4595-4603,
https://doi.org/10.1016/j.ceramint.2020.10.025 .,
https://hdl.handle.net/21.15107/rcub_dais_10035 .
15
14

Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen

Jelić, Dijana; Zeljković, Saša; Jugović, Dragana; Mentus, Slavko

(Elsevier BV, 2021)

TY  - JOUR
AU  - Jelić, Dijana
AU  - Zeljković, Saša
AU  - Jugović, Dragana
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/10533
AB  - The oxide mixtures xCuO-(1-x) MoO3 were synthesized by gel-combustion procedure. The existence of phase mixture CuO + Cu3Mo2O9 and MoO3 + CuMoO4 in CuO-rich and MoO3 -rich composition region, respectively, were evidenced. The constant heating rate thermogravimetry in hydrogen atmosphere revealed that the reduction reactions proceed within the two clearly separated temperature regions. On the basis of mass changes, the mechanism of reduction processes was discussed. The measurements revealed considerable inhibition of CuO reduction by MoO3, and huge acceleration of MoO3 → MoO2 reduction step by copper. The particularities found in this system were commented in relation to our similar studies in NiO-MoO3 and CuO-WO3 systems. For particular composition, x = 0.5, existing preferably in form of a-CuMoO4, kinetic parameters of reduction were determined. The composition of oxide mixture influenced the particle size and morphology of resulting metallic Cu-Mo composites.
PB  - Elsevier BV
T2  - International Journal of Refractory Metals and Hard Materials
T1  - Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen
SP  - 105480
VL  - 96
DO  - 10.1016/j.ijrmhm.2021.105480
UR  - https://hdl.handle.net/21.15107/rcub_dais_10533
ER  - 
@article{
author = "Jelić, Dijana and Zeljković, Saša and Jugović, Dragana and Mentus, Slavko",
year = "2021",
abstract = "The oxide mixtures xCuO-(1-x) MoO3 were synthesized by gel-combustion procedure. The existence of phase mixture CuO + Cu3Mo2O9 and MoO3 + CuMoO4 in CuO-rich and MoO3 -rich composition region, respectively, were evidenced. The constant heating rate thermogravimetry in hydrogen atmosphere revealed that the reduction reactions proceed within the two clearly separated temperature regions. On the basis of mass changes, the mechanism of reduction processes was discussed. The measurements revealed considerable inhibition of CuO reduction by MoO3, and huge acceleration of MoO3 → MoO2 reduction step by copper. The particularities found in this system were commented in relation to our similar studies in NiO-MoO3 and CuO-WO3 systems. For particular composition, x = 0.5, existing preferably in form of a-CuMoO4, kinetic parameters of reduction were determined. The composition of oxide mixture influenced the particle size and morphology of resulting metallic Cu-Mo composites.",
publisher = "Elsevier BV",
journal = "International Journal of Refractory Metals and Hard Materials",
title = "Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen",
pages = "105480",
volume = "96",
doi = "10.1016/j.ijrmhm.2021.105480",
url = "https://hdl.handle.net/21.15107/rcub_dais_10533"
}
Jelić, D., Zeljković, S., Jugović, D.,& Mentus, S.. (2021). Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen. in International Journal of Refractory Metals and Hard Materials
Elsevier BV., 96, 105480.
https://doi.org/10.1016/j.ijrmhm.2021.105480
https://hdl.handle.net/21.15107/rcub_dais_10533
Jelić D, Zeljković S, Jugović D, Mentus S. Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen. in International Journal of Refractory Metals and Hard Materials. 2021;96:105480.
doi:10.1016/j.ijrmhm.2021.105480
https://hdl.handle.net/21.15107/rcub_dais_10533 .
Jelić, Dijana, Zeljković, Saša, Jugović, Dragana, Mentus, Slavko, "Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen" in International Journal of Refractory Metals and Hard Materials, 96 (2021):105480,
https://doi.org/10.1016/j.ijrmhm.2021.105480 .,
https://hdl.handle.net/21.15107/rcub_dais_10533 .

Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen

Jelić, Dijana; Zeljković, Saša; Jugović, Dragana; Mentus, Slavko

(Elsevier BV, 2021)

TY  - JOUR
AU  - Jelić, Dijana
AU  - Zeljković, Saša
AU  - Jugović, Dragana
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/10534
AB  - The oxide mixtures xCuO-(1-x) MoO3 were synthesized by gel-combustion procedure. The existence of phase mixture CuO + Cu3Mo2O9 and MoO3 + CuMoO4 in CuO-rich and MoO3 -rich composition region, respectively, were evidenced. The constant heating rate thermogravimetry in hydrogen atmosphere revealed that the reduction reactions proceed within the two clearly separated temperature regions. On the basis of mass changes, the mechanism of reduction processes was discussed. The measurements revealed considerable inhibition of CuO reduction by MoO3, and huge acceleration of MoO3 → MoO2 reduction step by copper. The particularities found in this system were commented in relation to our similar studies in NiO-MoO3 and CuO-WO3 systems. For particular composition, x = 0.5, existing preferably in form of a-CuMoO4, kinetic parameters of reduction were determined. The composition of oxide mixture influenced the particle size and morphology of resulting metallic Cu-Mo composites.
PB  - Elsevier BV
T2  - International Journal of Refractory Metals and Hard Materials
T1  - Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen
SP  - 105480
VL  - 96
DO  - 10.1016/j.ijrmhm.2021.105480
UR  - https://hdl.handle.net/21.15107/rcub_dais_10534
ER  - 
@article{
author = "Jelić, Dijana and Zeljković, Saša and Jugović, Dragana and Mentus, Slavko",
year = "2021",
abstract = "The oxide mixtures xCuO-(1-x) MoO3 were synthesized by gel-combustion procedure. The existence of phase mixture CuO + Cu3Mo2O9 and MoO3 + CuMoO4 in CuO-rich and MoO3 -rich composition region, respectively, were evidenced. The constant heating rate thermogravimetry in hydrogen atmosphere revealed that the reduction reactions proceed within the two clearly separated temperature regions. On the basis of mass changes, the mechanism of reduction processes was discussed. The measurements revealed considerable inhibition of CuO reduction by MoO3, and huge acceleration of MoO3 → MoO2 reduction step by copper. The particularities found in this system were commented in relation to our similar studies in NiO-MoO3 and CuO-WO3 systems. For particular composition, x = 0.5, existing preferably in form of a-CuMoO4, kinetic parameters of reduction were determined. The composition of oxide mixture influenced the particle size and morphology of resulting metallic Cu-Mo composites.",
publisher = "Elsevier BV",
journal = "International Journal of Refractory Metals and Hard Materials",
title = "Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen",
pages = "105480",
volume = "96",
doi = "10.1016/j.ijrmhm.2021.105480",
url = "https://hdl.handle.net/21.15107/rcub_dais_10534"
}
Jelić, D., Zeljković, S., Jugović, D.,& Mentus, S.. (2021). Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen. in International Journal of Refractory Metals and Hard Materials
Elsevier BV., 96, 105480.
https://doi.org/10.1016/j.ijrmhm.2021.105480
https://hdl.handle.net/21.15107/rcub_dais_10534
Jelić D, Zeljković S, Jugović D, Mentus S. Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen. in International Journal of Refractory Metals and Hard Materials. 2021;96:105480.
doi:10.1016/j.ijrmhm.2021.105480
https://hdl.handle.net/21.15107/rcub_dais_10534 .
Jelić, Dijana, Zeljković, Saša, Jugović, Dragana, Mentus, Slavko, "Thermogravimetric insight in the reduction of xCuO – (1-x)MoO3 oxide system (0.1 ≤ x ≤ 0.9) by hydrogen" in International Journal of Refractory Metals and Hard Materials, 96 (2021):105480,
https://doi.org/10.1016/j.ijrmhm.2021.105480 .,
https://hdl.handle.net/21.15107/rcub_dais_10534 .

The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries

Rakočević, Lazar; Štrbac, Svetlana; Potočnik, Jelena; Popović, Maja; Jugović, Dragana; Stojković Simatović, Ivana

(Elsevier, 2021)

TY  - JOUR
AU  - Rakočević, Lazar
AU  - Štrbac, Svetlana
AU  - Potočnik, Jelena
AU  - Popović, Maja
AU  - Jugović, Dragana
AU  - Stojković Simatović, Ivana
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11229
AB  - Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 ◦C, while 3-D tunnel structured Na0⋅4MnO2 and Na0⋅44MnO2, both with rod-like morphology, were obtained at 800 ◦C and 900 ◦C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0⋅44MnO2 obtained at 900 ◦C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.
PB  - Elsevier
T2  - Ceramics International
T1  - The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries
SP  - 4595
EP  - 4603
VL  - 47
IS  - 4
DO  - 10.1016/j.ceramint.2020.10.025
UR  - https://hdl.handle.net/21.15107/rcub_dais_11229
ER  - 
@article{
author = "Rakočević, Lazar and Štrbac, Svetlana and Potočnik, Jelena and Popović, Maja and Jugović, Dragana and Stojković Simatović, Ivana",
year = "2021",
abstract = "Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 ◦C, while 3-D tunnel structured Na0⋅4MnO2 and Na0⋅44MnO2, both with rod-like morphology, were obtained at 800 ◦C and 900 ◦C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0⋅44MnO2 obtained at 900 ◦C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries",
pages = "4595-4603",
volume = "47",
number = "4",
doi = "10.1016/j.ceramint.2020.10.025",
url = "https://hdl.handle.net/21.15107/rcub_dais_11229"
}
Rakočević, L., Štrbac, S., Potočnik, J., Popović, M., Jugović, D.,& Stojković Simatović, I.. (2021). The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. in Ceramics International
Elsevier., 47(4), 4595-4603.
https://doi.org/10.1016/j.ceramint.2020.10.025
https://hdl.handle.net/21.15107/rcub_dais_11229
Rakočević L, Štrbac S, Potočnik J, Popović M, Jugović D, Stojković Simatović I. The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. in Ceramics International. 2021;47(4):4595-4603.
doi:10.1016/j.ceramint.2020.10.025
https://hdl.handle.net/21.15107/rcub_dais_11229 .
Rakočević, Lazar, Štrbac, Svetlana, Potočnik, Jelena, Popović, Maja, Jugović, Dragana, Stojković Simatović, Ivana, "The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries" in Ceramics International, 47, no. 4 (2021):4595-4603,
https://doi.org/10.1016/j.ceramint.2020.10.025 .,
https://hdl.handle.net/21.15107/rcub_dais_11229 .
15
14

Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Elsevier BV, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11645
AB  - Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.
PB  - Elsevier BV
T2  - Ceramics International
T1  - Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode
SP  - 17077
EP  - 17083
VL  - 47
IS  - 12
DO  - 10.1016/j.ceramint.2021.03.016
UR  - https://hdl.handle.net/21.15107/rcub_dais_11645
ER  - 
@article{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
abstract = "Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode",
pages = "17077-17083",
volume = "47",
number = "12",
doi = "10.1016/j.ceramint.2021.03.016",
url = "https://hdl.handle.net/21.15107/rcub_dais_11645"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M.. (2021). Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode. in Ceramics International
Elsevier BV., 47(12), 17077-17083.
https://doi.org/10.1016/j.ceramint.2021.03.016
https://hdl.handle.net/21.15107/rcub_dais_11645
Milović M, Vujković M, Jugović D, Mitrić M. Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode. in Ceramics International. 2021;47(12):17077-17083.
doi:10.1016/j.ceramint.2021.03.016
https://hdl.handle.net/21.15107/rcub_dais_11645 .
Milović, Miloš, Vujković, Milica, Jugović, Dragana, Mitrić, Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" in Ceramics International, 47, no. 12 (2021):17077-17083,
https://doi.org/10.1016/j.ceramint.2021.03.016 .,
https://hdl.handle.net/21.15107/rcub_dais_11645 .
3
3

Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Elsevier BV, 2021)

TY  - DATA
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11646
AB  - Figure S1. Particle size distribution by number (blue) and by volume (red) of the as prepared powder of LiV2O5; 2. Ex-situ X-ray diffraction analysis; Figure S2. XRD patterns of the as prepared electrode before cycling (black line) and of electrodes in discharged state after cycling in aqueous (red) and in organic electrolyte (blue); a: whole pattern, b: 002 reflection
PB  - Elsevier BV
T2  - Ceramics International
T1  - Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016
VL  - 47
IS  - 12
UR  - https://hdl.handle.net/21.15107/rcub_dais_11646
ER  - 
@misc{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
abstract = "Figure S1. Particle size distribution by number (blue) and by volume (red) of the as prepared powder of LiV2O5; 2. Ex-situ X-ray diffraction analysis; Figure S2. XRD patterns of the as prepared electrode before cycling (black line) and of electrodes in discharged state after cycling in aqueous (red) and in organic electrolyte (blue); a: whole pattern, b: 002 reflection",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016",
volume = "47",
number = "12",
url = "https://hdl.handle.net/21.15107/rcub_dais_11646"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M.. (2021). Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016. in Ceramics International
Elsevier BV., 47(12).
https://hdl.handle.net/21.15107/rcub_dais_11646
Milović M, Vujković M, Jugović D, Mitrić M. Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016. in Ceramics International. 2021;47(12).
https://hdl.handle.net/21.15107/rcub_dais_11646 .
Milović, Miloš, Vujković, Milica, Jugović, Dragana, Mitrić, Miodrag, "Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016" in Ceramics International, 47, no. 12 (2021),
https://hdl.handle.net/21.15107/rcub_dais_11646 .

Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Elsevier BV, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11655
AB  - Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.
PB  - Elsevier BV
T2  - Ceramics International
T1  - Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode
SP  - 17077
EP  - 17083
VL  - 47
IS  - 12
DO  - 10.1016/j.ceramint.2021.03.016
UR  - https://hdl.handle.net/21.15107/rcub_dais_11655
ER  - 
@article{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
abstract = "Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode",
pages = "17077-17083",
volume = "47",
number = "12",
doi = "10.1016/j.ceramint.2021.03.016",
url = "https://hdl.handle.net/21.15107/rcub_dais_11655"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M.. (2021). Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode. in Ceramics International
Elsevier BV., 47(12), 17077-17083.
https://doi.org/10.1016/j.ceramint.2021.03.016
https://hdl.handle.net/21.15107/rcub_dais_11655
Milović M, Vujković M, Jugović D, Mitrić M. Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode. in Ceramics International. 2021;47(12):17077-17083.
doi:10.1016/j.ceramint.2021.03.016
https://hdl.handle.net/21.15107/rcub_dais_11655 .
Milović, Miloš, Vujković, Milica, Jugović, Dragana, Mitrić, Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" in Ceramics International, 47, no. 12 (2021):17077-17083,
https://doi.org/10.1016/j.ceramint.2021.03.016 .,
https://hdl.handle.net/21.15107/rcub_dais_11655 .
3
3

Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism

Jugović, Dragana; Milović, Miloš; Ivanovski, Valentin N.; Škapin, Srečo; Barudžija, Tanja; Mitrić, Miodrag

(Springer Science and Business Media LLC, 2021)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo
AU  - Barudžija, Tanja
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11880
AB  - Fayalite Fe2SiO4 is synthesized by the solid-state reaction without ball milling. The obtained powder is further structurally and electrochemically examined. Field emission scanning electron microscopy (FESEM) showed that microsized powder is obtained. X-ray powder diffraction (XRD) pattern is used for both phase identification and crystal structure Rietveld refinement. The structure is refined in the orthorhombic Pbnm space group. Mössbauer spectroscopy revealed traces of Fe3+ impurity. The bond valence mapping method is applied for the first time on Fe2SiO4 framework. It shows isolated, non-connected isosurfaces of constant E(Li), which further supports the assumptions of the conversion reactions. Electrochemical performances are investigated through galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). Ex-situ XRD and Fourier transform infrared spectroscopy (FTIR) analyses are combined to monitor phase change after galvanostatic cycling and to reveal the working mechanism during electrochemical lithiation.
PB  - Springer Science and Business Media LLC
T2  - Journal of Electroceramics
T1  - Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism
DO  - 10.1007/s10832-021-00260-9
UR  - https://hdl.handle.net/21.15107/rcub_dais_11880
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Ivanovski, Valentin N. and Škapin, Srečo and Barudžija, Tanja and Mitrić, Miodrag",
year = "2021",
abstract = "Fayalite Fe2SiO4 is synthesized by the solid-state reaction without ball milling. The obtained powder is further structurally and electrochemically examined. Field emission scanning electron microscopy (FESEM) showed that microsized powder is obtained. X-ray powder diffraction (XRD) pattern is used for both phase identification and crystal structure Rietveld refinement. The structure is refined in the orthorhombic Pbnm space group. Mössbauer spectroscopy revealed traces of Fe3+ impurity. The bond valence mapping method is applied for the first time on Fe2SiO4 framework. It shows isolated, non-connected isosurfaces of constant E(Li), which further supports the assumptions of the conversion reactions. Electrochemical performances are investigated through galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). Ex-situ XRD and Fourier transform infrared spectroscopy (FTIR) analyses are combined to monitor phase change after galvanostatic cycling and to reveal the working mechanism during electrochemical lithiation.",
publisher = "Springer Science and Business Media LLC",
journal = "Journal of Electroceramics",
title = "Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism",
doi = "10.1007/s10832-021-00260-9",
url = "https://hdl.handle.net/21.15107/rcub_dais_11880"
}
Jugović, D., Milović, M., Ivanovski, V. N., Škapin, S., Barudžija, T.,& Mitrić, M.. (2021). Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism. in Journal of Electroceramics
Springer Science and Business Media LLC..
https://doi.org/10.1007/s10832-021-00260-9
https://hdl.handle.net/21.15107/rcub_dais_11880
Jugović D, Milović M, Ivanovski VN, Škapin S, Barudžija T, Mitrić M. Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism. in Journal of Electroceramics. 2021;.
doi:10.1007/s10832-021-00260-9
https://hdl.handle.net/21.15107/rcub_dais_11880 .
Jugović, Dragana, Milović, Miloš, Ivanovski, Valentin N., Škapin, Srečo, Barudžija, Tanja, Mitrić, Miodrag, "Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism" in Journal of Electroceramics (2021),
https://doi.org/10.1007/s10832-021-00260-9 .,
https://hdl.handle.net/21.15107/rcub_dais_11880 .
5
4

Structural and electrochemical properties of gamma LiV2O5 cathode

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11896
AB  - For its capability to reversibly remove and insert lithium ions in the range of 0 ≤ x ≤ 1.4, gamma polymorph phase of LixV2O5 makes a solid candidate for cathode application in rechargeable batteries. Accommodation of lithium in concentrations higher than x ≈1.4 brings stability issues related to the transformation towards the metastable ζ phase, which significantly limits utilization of higher capacities the material could achieve. The presented investigation has been conducted on γ-LiV2O5 powder obtained via solid state reaction at high temperatures. Structural refinement of the prepared γ phase has been carried out. Based on bond valence analysis of γ as well as of metastable γ’ and ζ phase, which occur at low and high lithium concentrations, respectively, mechanism is proposed for the observed capacity decrease. Electrochemical characteristics of γ-LiV2O5 were investigated in both aqueous and organic electrolyte in the voltage range 4-2.3 V vs. Li+/Li in order to record performances of all three occurring phases, γ and both lithium poor γ’ (high voltage region) and lithium rich ζ (low voltage region). Ionic exchange of Li+ with Mg2+, Ca2+ and Al3+ in their respective aqueous electrolytes has been conducted to examine potential use of the material in the postlithium rechargeable batteries.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Structural and electrochemical properties of gamma LiV2O5 cathode
SP  - 84
EP  - 84
UR  - https://hdl.handle.net/21.15107/rcub_dais_11896
ER  - 
@conference{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
abstract = "For its capability to reversibly remove and insert lithium ions in the range of 0 ≤ x ≤ 1.4, gamma polymorph phase of LixV2O5 makes a solid candidate for cathode application in rechargeable batteries. Accommodation of lithium in concentrations higher than x ≈1.4 brings stability issues related to the transformation towards the metastable ζ phase, which significantly limits utilization of higher capacities the material could achieve. The presented investigation has been conducted on γ-LiV2O5 powder obtained via solid state reaction at high temperatures. Structural refinement of the prepared γ phase has been carried out. Based on bond valence analysis of γ as well as of metastable γ’ and ζ phase, which occur at low and high lithium concentrations, respectively, mechanism is proposed for the observed capacity decrease. Electrochemical characteristics of γ-LiV2O5 were investigated in both aqueous and organic electrolyte in the voltage range 4-2.3 V vs. Li+/Li in order to record performances of all three occurring phases, γ and both lithium poor γ’ (high voltage region) and lithium rich ζ (low voltage region). Ionic exchange of Li+ with Mg2+, Ca2+ and Al3+ in their respective aqueous electrolytes has been conducted to examine potential use of the material in the postlithium rechargeable batteries.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Structural and electrochemical properties of gamma LiV2O5 cathode",
pages = "84-84",
url = "https://hdl.handle.net/21.15107/rcub_dais_11896"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M.. (2021). Structural and electrochemical properties of gamma LiV2O5 cathode. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 84-84.
https://hdl.handle.net/21.15107/rcub_dais_11896
Milović M, Vujković M, Jugović D, Mitrić M. Structural and electrochemical properties of gamma LiV2O5 cathode. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:84-84.
https://hdl.handle.net/21.15107/rcub_dais_11896 .
Milović, Miloš, Vujković, Milica, Jugović, Dragana, Mitrić, Miodrag, "Structural and electrochemical properties of gamma LiV2O5 cathode" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):84-84,
https://hdl.handle.net/21.15107/rcub_dais_11896 .

Reversible intercalation/deintercalation of lithium ions within γ-LiV2O5 polymorph

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Belgrade : Materials Research Society of Serbia, 2021)

TY  - CONF
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12095
AB  - The electrochemical insertion of lithium ions in V2O5 produces various crystal structures depending on lithium concentration. Compositions with lithium content in the range of 1 ≤ x ≤ 1.8 take orthorhombic γ-LixV2O5 form. γ-LixV2O5 is capable to accommodate more than one lithium ion per formula unit and therefore interesting to be used as a cathode of lithium-ion battery. Here are
presented electrochemical performances of γ-LiV2O5 obtained through solid-state reaction. Before galvanostatic cycling the as-synthesized powder is characterized by X-ray powder diffraction, field emission scanning electron microscopy, and FTIR spectroscopy. The crystal structure of the powder is refined in the orthorhombic Pbnm space group. During galvanostatic cycling in a large potential window capacity decrease is observed. In order to reveal the origin of capacity decay the bond valence analysis was performed. It provided a model of lithium diffusion network for the γ-LixV2O5 phase, as well as for the end members obtained at low and high voltages.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021
T1  - Reversible intercalation/deintercalation of lithium ions within γ-LiV2O5 polymorph
SP  - 44
EP  - 44
UR  - https://hdl.handle.net/21.15107/rcub_dais_12095
ER  - 
@conference{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
abstract = "The electrochemical insertion of lithium ions in V2O5 produces various crystal structures depending on lithium concentration. Compositions with lithium content in the range of 1 ≤ x ≤ 1.8 take orthorhombic γ-LixV2O5 form. γ-LixV2O5 is capable to accommodate more than one lithium ion per formula unit and therefore interesting to be used as a cathode of lithium-ion battery. Here are
presented electrochemical performances of γ-LiV2O5 obtained through solid-state reaction. Before galvanostatic cycling the as-synthesized powder is characterized by X-ray powder diffraction, field emission scanning electron microscopy, and FTIR spectroscopy. The crystal structure of the powder is refined in the orthorhombic Pbnm space group. During galvanostatic cycling in a large potential window capacity decrease is observed. In order to reveal the origin of capacity decay the bond valence analysis was performed. It provided a model of lithium diffusion network for the γ-LixV2O5 phase, as well as for the end members obtained at low and high voltages.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021",
title = "Reversible intercalation/deintercalation of lithium ions within γ-LiV2O5 polymorph",
pages = "44-44",
url = "https://hdl.handle.net/21.15107/rcub_dais_12095"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M.. (2021). Reversible intercalation/deintercalation of lithium ions within γ-LiV2O5 polymorph. in Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021
Belgrade : Materials Research Society of Serbia., 44-44.
https://hdl.handle.net/21.15107/rcub_dais_12095
Milović M, Vujković M, Jugović D, Mitrić M. Reversible intercalation/deintercalation of lithium ions within γ-LiV2O5 polymorph. in Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021. 2021;:44-44.
https://hdl.handle.net/21.15107/rcub_dais_12095 .
Milović, Miloš, Vujković, Milica, Jugović, Dragana, Mitrić, Miodrag, "Reversible intercalation/deintercalation of lithium ions within γ-LiV2O5 polymorph" in Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021 (2021):44-44,
https://hdl.handle.net/21.15107/rcub_dais_12095 .

Synthesis and structural characterization of some cathode materials for lithium-ion batteries

Gadow, Rainer; Mitic, Vojislav V.; Jugović, Dragana

(Walter de Gruyter GmbH, 2021)

TY  - CHAP
AU  - Jugović, Dragana
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12400
AB  - Lithium-ion batteries are under intense scrutiny as alternative energy/power sources. Their electrochemistry is based on intercalation/deintercalation reactions of lithium ions within a crystal structure of an electrode material. Therefore, the structure itself determines both the electrode operating voltage and the transport pathways for lithium ions. Some oxide- and polyanion-based materials are synthesized by using ultrasonic spray pyrolysis method. The crystal structure refinement was based on the Rietveld full profile method. All relevant structural and microstructural crystal parameters that could be significant for electrochemical intercalation/deintercalation processes were determined. It was also shown that the structural and microstructural properties are significantly dependent on the synthesis condition. Electrochemical performances as cathode materials for lithium-ion batteries were examined through galvanostatic charge/discharge cycling. Galvanostatic cycling revealed variation in discharge curve profiles. It comes from different mechanism of lithium intercalation and also from the degree of structural order. Structural analyses revealed difference in the dimensionality of lithium-ion motion.
PB  - Walter de Gruyter GmbH
T2  - Advanced Ceramics and Applications
T1  - Synthesis and structural characterization of some cathode materials for lithium-ion batteries
SP  - 123
EP  - 154
DO  - 10.1515/9783110627992-011
UR  - https://hdl.handle.net/21.15107/rcub_dais_12400
ER  - 
@inbook{
editor = "Gadow, Rainer, Mitic, Vojislav V.",
author = "Jugović, Dragana",
year = "2021",
abstract = "Lithium-ion batteries are under intense scrutiny as alternative energy/power sources. Their electrochemistry is based on intercalation/deintercalation reactions of lithium ions within a crystal structure of an electrode material. Therefore, the structure itself determines both the electrode operating voltage and the transport pathways for lithium ions. Some oxide- and polyanion-based materials are synthesized by using ultrasonic spray pyrolysis method. The crystal structure refinement was based on the Rietveld full profile method. All relevant structural and microstructural crystal parameters that could be significant for electrochemical intercalation/deintercalation processes were determined. It was also shown that the structural and microstructural properties are significantly dependent on the synthesis condition. Electrochemical performances as cathode materials for lithium-ion batteries were examined through galvanostatic charge/discharge cycling. Galvanostatic cycling revealed variation in discharge curve profiles. It comes from different mechanism of lithium intercalation and also from the degree of structural order. Structural analyses revealed difference in the dimensionality of lithium-ion motion.",
publisher = "Walter de Gruyter GmbH",
journal = "Advanced Ceramics and Applications",
booktitle = "Synthesis and structural characterization of some cathode materials for lithium-ion batteries",
pages = "123-154",
doi = "10.1515/9783110627992-011",
url = "https://hdl.handle.net/21.15107/rcub_dais_12400"
}
Gadow, R., Mitic, V. V.,& Jugović, D.. (2021). Synthesis and structural characterization of some cathode materials for lithium-ion batteries. in Advanced Ceramics and Applications
Walter de Gruyter GmbH., 123-154.
https://doi.org/10.1515/9783110627992-011
https://hdl.handle.net/21.15107/rcub_dais_12400
Gadow R, Mitic VV, Jugović D. Synthesis and structural characterization of some cathode materials for lithium-ion batteries. in Advanced Ceramics and Applications. 2021;:123-154.
doi:10.1515/9783110627992-011
https://hdl.handle.net/21.15107/rcub_dais_12400 .
Gadow, Rainer, Mitic, Vojislav V., Jugović, Dragana, "Synthesis and structural characterization of some cathode materials for lithium-ion batteries" in Advanced Ceramics and Applications (2021):123-154,
https://doi.org/10.1515/9783110627992-011 .,
https://hdl.handle.net/21.15107/rcub_dais_12400 .

From molecules to nanoparticles to functional materials

Ignjatović, Nenad; Marković, Smilja; Jugović, Dragana; Uskoković, Vuk; Uskoković, Dragan

(Belgrade : Serbian Chemical Society, 2020)

TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Marković, Smilja
AU  - Jugović, Dragana
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10037
AB  - Functional nanomaterials have held a steady position at the frontier of materials science and engineering in the 21st century. “Molecular Designing of Nanoparticles with Controlled Morphological and Physicochemical Characteristics and Functional Materials Based on Them” was the title of the research project funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and performed between 2011 and 2019 in the interdisciplinary area of nanoscience and nanotechnologies. Research activities within this program were divided into five interrelated topics: 1) from molecules to nanoparticles; 2) advanced ceramics with improved functional properties; 3) electrode materials for lithium–ion batteries; 4) nano-calcium phosphate in preventive and regenerative medicine; 5) biodegradable microand nano-particles for the controlled delivery of medicaments. This report gives an insight into this bibliographically most impactful Serbian national project on nanotechnologies executed within the aforementioned nine-year cycle, 2011–2019, focusing here only on the results achieved in the past three years. The project provided an outstanding and internationally recognized contribution to synthesis, characterization and functional design of a number of materials systems, including pure and lanthanide–doped hydroxyapatite, zinc oxides, sodium cobaltates, lithium iron pyrophosphates, lithium iron silicates and a number of polymeric systems.
PB  - Belgrade : Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - From molecules to nanoparticles to functional materials
SP  - 1383
EP  - 1403
VL  - 85
IS  - 11
DO  - 10.2298/JSC200426035I
UR  - https://hdl.handle.net/21.15107/rcub_dais_10037
ER  - 
@article{
author = "Ignjatović, Nenad and Marković, Smilja and Jugović, Dragana and Uskoković, Vuk and Uskoković, Dragan",
year = "2020",
abstract = "Functional nanomaterials have held a steady position at the frontier of materials science and engineering in the 21st century. “Molecular Designing of Nanoparticles with Controlled Morphological and Physicochemical Characteristics and Functional Materials Based on Them” was the title of the research project funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia and performed between 2011 and 2019 in the interdisciplinary area of nanoscience and nanotechnologies. Research activities within this program were divided into five interrelated topics: 1) from molecules to nanoparticles; 2) advanced ceramics with improved functional properties; 3) electrode materials for lithium–ion batteries; 4) nano-calcium phosphate in preventive and regenerative medicine; 5) biodegradable microand nano-particles for the controlled delivery of medicaments. This report gives an insight into this bibliographically most impactful Serbian national project on nanotechnologies executed within the aforementioned nine-year cycle, 2011–2019, focusing here only on the results achieved in the past three years. The project provided an outstanding and internationally recognized contribution to synthesis, characterization and functional design of a number of materials systems, including pure and lanthanide–doped hydroxyapatite, zinc oxides, sodium cobaltates, lithium iron pyrophosphates, lithium iron silicates and a number of polymeric systems.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "From molecules to nanoparticles to functional materials",
pages = "1383-1403",
volume = "85",
number = "11",
doi = "10.2298/JSC200426035I",
url = "https://hdl.handle.net/21.15107/rcub_dais_10037"
}
Ignjatović, N., Marković, S., Jugović, D., Uskoković, V.,& Uskoković, D.. (2020). From molecules to nanoparticles to functional materials. in Journal of the Serbian Chemical Society
Belgrade : Serbian Chemical Society., 85(11), 1383-1403.
https://doi.org/10.2298/JSC200426035I
https://hdl.handle.net/21.15107/rcub_dais_10037
Ignjatović N, Marković S, Jugović D, Uskoković V, Uskoković D. From molecules to nanoparticles to functional materials. in Journal of the Serbian Chemical Society. 2020;85(11):1383-1403.
doi:10.2298/JSC200426035I
https://hdl.handle.net/21.15107/rcub_dais_10037 .
Ignjatović, Nenad, Marković, Smilja, Jugović, Dragana, Uskoković, Vuk, Uskoković, Dragan, "From molecules to nanoparticles to functional materials" in Journal of the Serbian Chemical Society, 85, no. 11 (2020):1383-1403,
https://doi.org/10.2298/JSC200426035I .,
https://hdl.handle.net/21.15107/rcub_dais_10037 .
2

Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions

Aleksić, Jelena; Barudžija, Tanja; Jugović, Dragana; Mitrić, Miodrag; Bošković, Marko; Jagličić, Zvonko; Lisjak, Darja; Kostić, Ljiljana

(Elsevier, 2020)

TY  - JOUR
AU  - Aleksić, Jelena
AU  - Barudžija, Tanja
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Bošković, Marko
AU  - Jagličić, Zvonko
AU  - Lisjak, Darja
AU  - Kostić, Ljiljana
PY  - 2020
UR  - http://www.sciencedirect.com/science/article/pii/S0022369719325983
UR  - https://dais.sanu.ac.rs/123456789/8948
AB  - In this investigation, we have synthesized YbxY1-xF3 solid solutions by fluorination of yttrium and ytterbium sesquioxides with ammonium hydrogen difluoride. According to the XRD analysis, all synthesized YbxY1-xF3 samples have an orthorhombic crystal structure belonging to the β-YF3 structural type. The refinement of crystal structure was done by the Rietveld method within the Pnma space group using the TCH pseudo-Voigt function. The anisotropic peak broadening was analyzed, and the average apparent crystallite size is about 50 nm with a small anisotropy of shape, while the significant microstrain that is highly anisotropic is present in all samples. The temperature-dependent magnetic susceptibility was analyzed by applying the model of a free ion perturbed by the crystal field. We have obtained the effective magnetic quantum numbers Mieff of four Kramer's doublets of Yb3+ ion along with the entire crystal field splitting of the 2F7/2 manifold of Yb3+ in YF3. The acquired maximum energy splitting of the ground level is about 150 K in our most diluted samples. The field-dependent isothermal magnetization measurements were carried out at various temperatures and analyzed by classical Langevin function. Results obtained from magnetic measurements show that all YbxY1-xF3 (x ≠ 0) solid solutions exhibit pure paramagnetic behavior in the whole temperature range from 2 to 300 K, with a predominant antiferromagnetic exchange interactions.
PB  - Elsevier
T2  - Journal of Physics and Chemistry of Solids
T1  - Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions
SP  - 109449
VL  - 142
DO  - 10.1016/j.jpcs.2020.109449
UR  - https://hdl.handle.net/21.15107/rcub_dais_8948
ER  - 
@article{
author = "Aleksić, Jelena and Barudžija, Tanja and Jugović, Dragana and Mitrić, Miodrag and Bošković, Marko and Jagličić, Zvonko and Lisjak, Darja and Kostić, Ljiljana",
year = "2020",
abstract = "In this investigation, we have synthesized YbxY1-xF3 solid solutions by fluorination of yttrium and ytterbium sesquioxides with ammonium hydrogen difluoride. According to the XRD analysis, all synthesized YbxY1-xF3 samples have an orthorhombic crystal structure belonging to the β-YF3 structural type. The refinement of crystal structure was done by the Rietveld method within the Pnma space group using the TCH pseudo-Voigt function. The anisotropic peak broadening was analyzed, and the average apparent crystallite size is about 50 nm with a small anisotropy of shape, while the significant microstrain that is highly anisotropic is present in all samples. The temperature-dependent magnetic susceptibility was analyzed by applying the model of a free ion perturbed by the crystal field. We have obtained the effective magnetic quantum numbers Mieff of four Kramer's doublets of Yb3+ ion along with the entire crystal field splitting of the 2F7/2 manifold of Yb3+ in YF3. The acquired maximum energy splitting of the ground level is about 150 K in our most diluted samples. The field-dependent isothermal magnetization measurements were carried out at various temperatures and analyzed by classical Langevin function. Results obtained from magnetic measurements show that all YbxY1-xF3 (x ≠ 0) solid solutions exhibit pure paramagnetic behavior in the whole temperature range from 2 to 300 K, with a predominant antiferromagnetic exchange interactions.",
publisher = "Elsevier",
journal = "Journal of Physics and Chemistry of Solids",
title = "Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions",
pages = "109449",
volume = "142",
doi = "10.1016/j.jpcs.2020.109449",
url = "https://hdl.handle.net/21.15107/rcub_dais_8948"
}
Aleksić, J., Barudžija, T., Jugović, D., Mitrić, M., Bošković, M., Jagličić, Z., Lisjak, D.,& Kostić, L.. (2020). Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions. in Journal of Physics and Chemistry of Solids
Elsevier., 142, 109449.
https://doi.org/10.1016/j.jpcs.2020.109449
https://hdl.handle.net/21.15107/rcub_dais_8948
Aleksić J, Barudžija T, Jugović D, Mitrić M, Bošković M, Jagličić Z, Lisjak D, Kostić L. Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions. in Journal of Physics and Chemistry of Solids. 2020;142:109449.
doi:10.1016/j.jpcs.2020.109449
https://hdl.handle.net/21.15107/rcub_dais_8948 .
Aleksić, Jelena, Barudžija, Tanja, Jugović, Dragana, Mitrić, Miodrag, Bošković, Marko, Jagličić, Zvonko, Lisjak, Darja, Kostić, Ljiljana, "Investigation of structural, microstructural and magnetic properties of YbxY1-xF3 solid solutions" in Journal of Physics and Chemistry of Solids, 142 (2020):109449,
https://doi.org/10.1016/j.jpcs.2020.109449 .,
https://hdl.handle.net/21.15107/rcub_dais_8948 .
1