Dapčević, Aleksandra

Link to this page

Authority KeyName Variants
orcid::0000-0001-7650-7156
  • Dapčević, Aleksandra (8)
Projects

Author's Bibliography

The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics

Obradović, Nina; Fahrenholtz, William G.; Filipović, Suzana; Kosanović, Darko; Dapčević, Aleksandra; Đorđević, Antonije; Balać, Igor; Pavlović, Vladimir B.

(Elsevier, 2019)

TY  - JOUR
AU  - Obradović, Nina
AU  - Fahrenholtz, William G.
AU  - Filipović, Suzana
AU  - Kosanović, Darko
AU  - Dapčević, Aleksandra
AU  - Đorđević, Antonije
AU  - Balać, Igor
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0272884219306340
UR  - https://dais.sanu.ac.rs/123456789/5763
AB  - Magnesium aluminate, MgAl2O4 and other alumina-based spinels are ceramics with high hardness, high melting point and mechanical strenght. Spinels can also be used as dielectrics in microwave applications. The goal of this study was to examine the effects of mechanical activation and sintering temperatures on physico-chemical properties of spinel. MgAl2O4 was produced by solid state reaction between MgO and α-Al2O3. The starting powders were mixed by ball milling to homogenize without significant particle size reduction. Mechanical activation of mixed powders was performed in a high-energy planetary ball mill in air for 1 h. Powders were compacted at 300 MPa. Heat treatments were performed in air, at temperatures ranging from 1200 to 1600 °C with 2 h dwell time, to determine the amount of spinel formation as a function of temperature. Phase composition and microstructure of initial powders and heated samples were determined by means of X-ray diffraction, particle size analysis, and scanning electron microscopy. The influences of milling and consolidation parameters were studied by electrical measurements and mechanical characterization. The main conclusion of this study was that mechanical activation for 60 min initiated a mechano-chemical reaction, resulted in spinel formation at much lower temperatures than within non-activated powders, and indicated that final sintering stage started at much lower temperatures for activated powders. Changes in microstructure parameters, as a consequence of mechanical treatment and subsequent heating of investigated powder mixtures, strongly affect electrical and mechanical properties of the final ceramics.
PB  - Elsevier
T2  - Ceramics International
T1  - The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics
SP  - 12015
EP  - 12021
VL  - 45
IS  - 9
DO  - 10.1016/j.ceramint.2019.03.095
UR  - https://hdl.handle.net/21.15107/rcub_dais_5763
ER  - 
@article{
author = "Obradović, Nina and Fahrenholtz, William G. and Filipović, Suzana and Kosanović, Darko and Dapčević, Aleksandra and Đorđević, Antonije and Balać, Igor and Pavlović, Vladimir B.",
year = "2019",
abstract = "Magnesium aluminate, MgAl2O4 and other alumina-based spinels are ceramics with high hardness, high melting point and mechanical strenght. Spinels can also be used as dielectrics in microwave applications. The goal of this study was to examine the effects of mechanical activation and sintering temperatures on physico-chemical properties of spinel. MgAl2O4 was produced by solid state reaction between MgO and α-Al2O3. The starting powders were mixed by ball milling to homogenize without significant particle size reduction. Mechanical activation of mixed powders was performed in a high-energy planetary ball mill in air for 1 h. Powders were compacted at 300 MPa. Heat treatments were performed in air, at temperatures ranging from 1200 to 1600 °C with 2 h dwell time, to determine the amount of spinel formation as a function of temperature. Phase composition and microstructure of initial powders and heated samples were determined by means of X-ray diffraction, particle size analysis, and scanning electron microscopy. The influences of milling and consolidation parameters were studied by electrical measurements and mechanical characterization. The main conclusion of this study was that mechanical activation for 60 min initiated a mechano-chemical reaction, resulted in spinel formation at much lower temperatures than within non-activated powders, and indicated that final sintering stage started at much lower temperatures for activated powders. Changes in microstructure parameters, as a consequence of mechanical treatment and subsequent heating of investigated powder mixtures, strongly affect electrical and mechanical properties of the final ceramics.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics",
pages = "12015-12021",
volume = "45",
number = "9",
doi = "10.1016/j.ceramint.2019.03.095",
url = "https://hdl.handle.net/21.15107/rcub_dais_5763"
}
Obradović, N., Fahrenholtz, W. G., Filipović, S., Kosanović, D., Dapčević, A., Đorđević, A., Balać, I.,& Pavlović, V. B.. (2019). The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics. in Ceramics International
Elsevier., 45(9), 12015-12021.
https://doi.org/10.1016/j.ceramint.2019.03.095
https://hdl.handle.net/21.15107/rcub_dais_5763
Obradović N, Fahrenholtz WG, Filipović S, Kosanović D, Dapčević A, Đorđević A, Balać I, Pavlović VB. The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics. in Ceramics International. 2019;45(9):12015-12021.
doi:10.1016/j.ceramint.2019.03.095
https://hdl.handle.net/21.15107/rcub_dais_5763 .
Obradović, Nina, Fahrenholtz, William G., Filipović, Suzana, Kosanović, Darko, Dapčević, Aleksandra, Đorđević, Antonije, Balać, Igor, Pavlović, Vladimir B., "The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics" in Ceramics International, 45, no. 9 (2019):12015-12021,
https://doi.org/10.1016/j.ceramint.2019.03.095 .,
https://hdl.handle.net/21.15107/rcub_dais_5763 .
27
12
26

The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics

Obradović, Nina; Fahrenholtz, William G.; Filipović, Suzana; Kosanović, Darko; Dapčević, Aleksandra; Đorđević, Antonije; Balać, Igor; Pavlović, Vladimir B.

(Elsevier, 2019)

TY  - JOUR
AU  - Obradović, Nina
AU  - Fahrenholtz, William G.
AU  - Filipović, Suzana
AU  - Kosanović, Darko
AU  - Dapčević, Aleksandra
AU  - Đorđević, Antonije
AU  - Balać, Igor
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0272884219306340
UR  - https://dais.sanu.ac.rs/123456789/5272
AB  - Magnesium aluminate, MgAl2O4 and other alumina-based spinels are ceramics with high hardness, high melting point and mechanical strenght. Spinels can also be used as dielectrics in microwave applications. The goal of this study was to examine the effects of mechanical activation and sintering temperatures on physico-chemical properties of spinel. MgAl2O4 was produced by solid state reaction between MgO and α-Al2O3. The starting powders were mixed by ball milling to homogenize without significant particle size reduction. Mechanical activation of mixed powders was performed in a high-energy planetary ball mill in air for 1 h. Powders were compacted at 300 MPa. Heat treatments were performed in air, at temperatures ranging from 1200 to 1600 °C with 2 h dwell time, to determine the amount of spinel formation as a function of temperature. Phase composition and microstructure of initial powders and heated samples were determined by means of X-ray diffraction, particle size analysis, and scanning electron microscopy. The influences of milling and consolidation parameters were studied by electrical measurements and mechanical characterization. The main conclusion of this study was that mechanical activation for 60 min initiated a mechano-chemical reaction, resulted in spinel formation at much lower temperatures than within non-activated powders, and indicated that final sintering stage started at much lower temperatures for activated powders. Changes in microstructure parameters, as a consequence of mechanical treatment and subsequent heating of investigated powder mixtures, strongly affect electrical and mechanical properties of the final ceramics.
PB  - Elsevier
T2  - Ceramics International
T1  - The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics
SP  - 12015
EP  - 12021
VL  - 45
IS  - 9
DO  - 10.1016/j.ceramint.2019.03.095
UR  - https://hdl.handle.net/21.15107/rcub_dais_5272
ER  - 
@article{
author = "Obradović, Nina and Fahrenholtz, William G. and Filipović, Suzana and Kosanović, Darko and Dapčević, Aleksandra and Đorđević, Antonije and Balać, Igor and Pavlović, Vladimir B.",
year = "2019",
abstract = "Magnesium aluminate, MgAl2O4 and other alumina-based spinels are ceramics with high hardness, high melting point and mechanical strenght. Spinels can also be used as dielectrics in microwave applications. The goal of this study was to examine the effects of mechanical activation and sintering temperatures on physico-chemical properties of spinel. MgAl2O4 was produced by solid state reaction between MgO and α-Al2O3. The starting powders were mixed by ball milling to homogenize without significant particle size reduction. Mechanical activation of mixed powders was performed in a high-energy planetary ball mill in air for 1 h. Powders were compacted at 300 MPa. Heat treatments were performed in air, at temperatures ranging from 1200 to 1600 °C with 2 h dwell time, to determine the amount of spinel formation as a function of temperature. Phase composition and microstructure of initial powders and heated samples were determined by means of X-ray diffraction, particle size analysis, and scanning electron microscopy. The influences of milling and consolidation parameters were studied by electrical measurements and mechanical characterization. The main conclusion of this study was that mechanical activation for 60 min initiated a mechano-chemical reaction, resulted in spinel formation at much lower temperatures than within non-activated powders, and indicated that final sintering stage started at much lower temperatures for activated powders. Changes in microstructure parameters, as a consequence of mechanical treatment and subsequent heating of investigated powder mixtures, strongly affect electrical and mechanical properties of the final ceramics.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics",
pages = "12015-12021",
volume = "45",
number = "9",
doi = "10.1016/j.ceramint.2019.03.095",
url = "https://hdl.handle.net/21.15107/rcub_dais_5272"
}
Obradović, N., Fahrenholtz, W. G., Filipović, S., Kosanović, D., Dapčević, A., Đorđević, A., Balać, I.,& Pavlović, V. B.. (2019). The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics. in Ceramics International
Elsevier., 45(9), 12015-12021.
https://doi.org/10.1016/j.ceramint.2019.03.095
https://hdl.handle.net/21.15107/rcub_dais_5272
Obradović N, Fahrenholtz WG, Filipović S, Kosanović D, Dapčević A, Đorđević A, Balać I, Pavlović VB. The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics. in Ceramics International. 2019;45(9):12015-12021.
doi:10.1016/j.ceramint.2019.03.095
https://hdl.handle.net/21.15107/rcub_dais_5272 .
Obradović, Nina, Fahrenholtz, William G., Filipović, Suzana, Kosanović, Darko, Dapčević, Aleksandra, Đorđević, Antonije, Balać, Igor, Pavlović, Vladimir B., "The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics" in Ceramics International, 45, no. 9 (2019):12015-12021,
https://doi.org/10.1016/j.ceramint.2019.03.095 .,
https://hdl.handle.net/21.15107/rcub_dais_5272 .
27
12
26

The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics

Obradović, Nina; Fahrenholtz, William G.; Filipović, Suzana; Kosanović, Darko; Dapčević, Aleksandra; Rogan, Jelena; Pavlović, Vladimir B.

(Societa ceramica italiana, 2019)

TY  - CONF
AU  - Obradović, Nina
AU  - Fahrenholtz, William G.
AU  - Filipović, Suzana
AU  - Kosanović, Darko
AU  - Dapčević, Aleksandra
AU  - Rogan, Jelena
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7022
AB  - Magnesium aluminate, MgAl2O4, and other alumina-based spinels are refractory ceramics with high hardness and resistance to chemical attack while also being possible microwave dielectrics. Pure MgAl2O4 can be optically transparent when fully dense. Spinels exhibit inversion, which results in disorder among occupancy of A and B site cations. The goal of this study was to examine the effects of mechanical activation and composition on the temperature required for spinel formation and the site occupancy in the resulting spinel. 
MgAl2O4 was produced by solid state reaction between MgO and alpha-Al2O3. The starting powders were mixed by ball milling to homogenize the powders without significant particle size reduction. Mechanical activation of mixed powders was performed in a high-energy planetary ball mill in air for 1 h. Powders were compacted at 300 MPa. Heat treatments were performed in air, at temperatures ranging from 1200 to 1500 °C with 2 h dwell time, to determine the amount of spinel formation as a function of temperature. Phase composition and microstructure of initial powders and heated samples were determined by means of X-ray diffraction, particle size analysis, and scanning electron microscopy. The influence of milling and consolidation parameters were studied by electrical measurements and mechanical characterization. 
The main results of this study were that mechanical activation for 60 minutes initiated a mechano-chemical reaction, and resulted in spinel formation at much lower temperatures than within non-activated powders. Microstructures of ceramics sintered below 1400 oC indicated that final stage sintering started at much lower temperatures for activated samples than for non-activated samples. 
Changes in microstructure parameters, as a consequence of mechanical treatment and subsequent heating of investigated powder mixtures, strongly affect electrical and mechanical properties of the final ceramics.
PB  - Societa ceramica italiana
PB  - Politecnico di Torino
C3  - Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019
T1  - The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics
SP  - 262
EP  - 262
UR  - https://hdl.handle.net/21.15107/rcub_dais_7022
ER  - 
@conference{
author = "Obradović, Nina and Fahrenholtz, William G. and Filipović, Suzana and Kosanović, Darko and Dapčević, Aleksandra and Rogan, Jelena and Pavlović, Vladimir B.",
year = "2019",
abstract = "Magnesium aluminate, MgAl2O4, and other alumina-based spinels are refractory ceramics with high hardness and resistance to chemical attack while also being possible microwave dielectrics. Pure MgAl2O4 can be optically transparent when fully dense. Spinels exhibit inversion, which results in disorder among occupancy of A and B site cations. The goal of this study was to examine the effects of mechanical activation and composition on the temperature required for spinel formation and the site occupancy in the resulting spinel. 
MgAl2O4 was produced by solid state reaction between MgO and alpha-Al2O3. The starting powders were mixed by ball milling to homogenize the powders without significant particle size reduction. Mechanical activation of mixed powders was performed in a high-energy planetary ball mill in air for 1 h. Powders were compacted at 300 MPa. Heat treatments were performed in air, at temperatures ranging from 1200 to 1500 °C with 2 h dwell time, to determine the amount of spinel formation as a function of temperature. Phase composition and microstructure of initial powders and heated samples were determined by means of X-ray diffraction, particle size analysis, and scanning electron microscopy. The influence of milling and consolidation parameters were studied by electrical measurements and mechanical characterization. 
The main results of this study were that mechanical activation for 60 minutes initiated a mechano-chemical reaction, and resulted in spinel formation at much lower temperatures than within non-activated powders. Microstructures of ceramics sintered below 1400 oC indicated that final stage sintering started at much lower temperatures for activated samples than for non-activated samples. 
Changes in microstructure parameters, as a consequence of mechanical treatment and subsequent heating of investigated powder mixtures, strongly affect electrical and mechanical properties of the final ceramics.",
publisher = "Societa ceramica italiana, Politecnico di Torino",
journal = "Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019",
title = "The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics",
pages = "262-262",
url = "https://hdl.handle.net/21.15107/rcub_dais_7022"
}
Obradović, N., Fahrenholtz, W. G., Filipović, S., Kosanović, D., Dapčević, A., Rogan, J.,& Pavlović, V. B.. (2019). The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics. in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019
Societa ceramica italiana., 262-262.
https://hdl.handle.net/21.15107/rcub_dais_7022
Obradović N, Fahrenholtz WG, Filipović S, Kosanović D, Dapčević A, Rogan J, Pavlović VB. The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics. in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019. 2019;:262-262.
https://hdl.handle.net/21.15107/rcub_dais_7022 .
Obradović, Nina, Fahrenholtz, William G., Filipović, Suzana, Kosanović, Darko, Dapčević, Aleksandra, Rogan, Jelena, Pavlović, Vladimir B., "The effect of mechanical activation on synthesis and properties of MgAl2O4 ceramics" in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019 (2019):262-262,
https://hdl.handle.net/21.15107/rcub_dais_7022 .

Physical Properties of Sintered Alumina Doped with Different Oxides

Filipović, Suzana; Obradović, Nina; Marković, Smilja; Đorđević, Antonije; Balać, Igor; Dapčević, Aleksandra; Rogan, Jelena; Pavlović, Vladimir B.

(Belgrade : ETRAN, 2018)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Marković, Smilja
AU  - Đorđević, Antonije
AU  - Balać, Igor
AU  - Dapčević, Aleksandra
AU  - Rogan, Jelena
AU  - Pavlović, Vladimir B.
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4537
AB  - Corundum (α-alumina) is a suitable material for usage in various industry fields owing to its chemical stability, electrical and mechanical features. It is known that properties of ceramics could be modified by addition of different oxides, as well as by changing the consolidation parameters. In this respect, alumina was doped with 1 wt.% of Cr2O3, Mn2O3 and NiO, followed by 1 hour of mechanical activation in a high-energy planetary ball mill. A sensitive dilatometer was used for sintering of powder mixtures up to 1400 oC and recording the obtained dilatation. The final density varied between cca. 1.9 and 3.3 g/cm3. Microstructural changes were detected by SEM measurements. Changes in electrical permittivity and loss tangent were associated with the preparation conditions (types of additives, duration of mechanical activation). For a given mixture, the sintering increases the relative permittivity and decreases losses, exhibiting the optimal values of 8.32 and 0.027, respectively, for the sample activated 60 minutes and sintered, with the addition of MnO2. Mechanical measurements indicate significant differences in strength with the addition of different transition metal oxides. Samples with Mn and Ni, activated and sintered, with strength of 121 and 86 MPa, respectively, have a significantly higher tensile strength than the other tested samples, due to their more compact microstructures.
PB  - Belgrade : ETRAN
T2  - Science of Sintering
T1  - Physical Properties of Sintered Alumina Doped with Different Oxides
SP  - 409
EP  - 419
VL  - 50
IS  - 4
DO  - 10.2298/SOS1804409F
UR  - https://hdl.handle.net/21.15107/rcub_dais_4537
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Marković, Smilja and Đorđević, Antonije and Balać, Igor and Dapčević, Aleksandra and Rogan, Jelena and Pavlović, Vladimir B.",
year = "2018",
abstract = "Corundum (α-alumina) is a suitable material for usage in various industry fields owing to its chemical stability, electrical and mechanical features. It is known that properties of ceramics could be modified by addition of different oxides, as well as by changing the consolidation parameters. In this respect, alumina was doped with 1 wt.% of Cr2O3, Mn2O3 and NiO, followed by 1 hour of mechanical activation in a high-energy planetary ball mill. A sensitive dilatometer was used for sintering of powder mixtures up to 1400 oC and recording the obtained dilatation. The final density varied between cca. 1.9 and 3.3 g/cm3. Microstructural changes were detected by SEM measurements. Changes in electrical permittivity and loss tangent were associated with the preparation conditions (types of additives, duration of mechanical activation). For a given mixture, the sintering increases the relative permittivity and decreases losses, exhibiting the optimal values of 8.32 and 0.027, respectively, for the sample activated 60 minutes and sintered, with the addition of MnO2. Mechanical measurements indicate significant differences in strength with the addition of different transition metal oxides. Samples with Mn and Ni, activated and sintered, with strength of 121 and 86 MPa, respectively, have a significantly higher tensile strength than the other tested samples, due to their more compact microstructures.",
publisher = "Belgrade : ETRAN",
journal = "Science of Sintering",
title = "Physical Properties of Sintered Alumina Doped with Different Oxides",
pages = "409-419",
volume = "50",
number = "4",
doi = "10.2298/SOS1804409F",
url = "https://hdl.handle.net/21.15107/rcub_dais_4537"
}
Filipović, S., Obradović, N., Marković, S., Đorđević, A., Balać, I., Dapčević, A., Rogan, J.,& Pavlović, V. B.. (2018). Physical Properties of Sintered Alumina Doped with Different Oxides. in Science of Sintering
Belgrade : ETRAN., 50(4), 409-419.
https://doi.org/10.2298/SOS1804409F
https://hdl.handle.net/21.15107/rcub_dais_4537
Filipović S, Obradović N, Marković S, Đorđević A, Balać I, Dapčević A, Rogan J, Pavlović VB. Physical Properties of Sintered Alumina Doped with Different Oxides. in Science of Sintering. 2018;50(4):409-419.
doi:10.2298/SOS1804409F
https://hdl.handle.net/21.15107/rcub_dais_4537 .
Filipović, Suzana, Obradović, Nina, Marković, Smilja, Đorđević, Antonije, Balać, Igor, Dapčević, Aleksandra, Rogan, Jelena, Pavlović, Vladimir B., "Physical Properties of Sintered Alumina Doped with Different Oxides" in Science of Sintering, 50, no. 4 (2018):409-419,
https://doi.org/10.2298/SOS1804409F .,
https://hdl.handle.net/21.15107/rcub_dais_4537 .
10
11
16

Synthesis and characterization of bioactive glass doped with lithium and strontium ions

Veljović, Đorđe; Radovanović, Željko; Rogan, Jelena; Dapčević, Aleksandra; Dimitrijević, Suzana; Dimitrijević Branković, Suzana; Kojić, Vesna; Janaćković, Đorđe

(Belgrade : Institute of Technical Sciences of SASA, 2018)

TY  - CONF
AU  - Veljović, Đorđe
AU  - Radovanović, Željko
AU  - Rogan, Jelena
AU  - Dapčević, Aleksandra
AU  - Dimitrijević, Suzana
AU  - Dimitrijević Branković, Suzana
AU  - Kojić, Vesna
AU  - Janaćković, Đorđe
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4718
AB  - Bioactive glasses have been used for over three decades in biomedical applications owing to high bioactivity, biocompatibility, as well as the possibility to stimulate regeneration of the bone. The aim of this work was to synthesized bioactive glasses, which contain lithium and strontium, by commercial method melting-quenching, as well as determining the properties, affected by mentioned ions. Differential thermal/thermogravimetric analysis, particle size distribution, energy-dispersive X-ray spectroscopy, inductively coupled plasma optical emission spectrometry, evaluation of the antimicrobial activity, in vitro bioactivity and biocompatibility test and scanning electron microscopy were used for characterization. The results showed that glass transition and crystallization temperatures are decreasing with addition of lithium and strontium ions. Furthermore, the samples showed high inhibition rate of Escherichia coli growth, as well as high bioactivity and biocompatibility. The crystal apatite layer, formed on the surface of synthesized glasses after seven days in simulated body fluid, differs in shape, size and interconnection of the glass particles, which depends on concentration of lithium and strontium ions.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
T1  - Synthesis and characterization of bioactive glass doped with lithium and strontium ions
SP  - 20
EP  - 20
UR  - https://hdl.handle.net/21.15107/rcub_dais_4718
ER  - 
@conference{
author = "Veljović, Đorđe and Radovanović, Željko and Rogan, Jelena and Dapčević, Aleksandra and Dimitrijević, Suzana and Dimitrijević Branković, Suzana and Kojić, Vesna and Janaćković, Đorđe",
year = "2018",
abstract = "Bioactive glasses have been used for over three decades in biomedical applications owing to high bioactivity, biocompatibility, as well as the possibility to stimulate regeneration of the bone. The aim of this work was to synthesized bioactive glasses, which contain lithium and strontium, by commercial method melting-quenching, as well as determining the properties, affected by mentioned ions. Differential thermal/thermogravimetric analysis, particle size distribution, energy-dispersive X-ray spectroscopy, inductively coupled plasma optical emission spectrometry, evaluation of the antimicrobial activity, in vitro bioactivity and biocompatibility test and scanning electron microscopy were used for characterization. The results showed that glass transition and crystallization temperatures are decreasing with addition of lithium and strontium ions. Furthermore, the samples showed high inhibition rate of Escherichia coli growth, as well as high bioactivity and biocompatibility. The crystal apatite layer, formed on the surface of synthesized glasses after seven days in simulated body fluid, differs in shape, size and interconnection of the glass particles, which depends on concentration of lithium and strontium ions.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia",
title = "Synthesis and characterization of bioactive glass doped with lithium and strontium ions",
pages = "20-20",
url = "https://hdl.handle.net/21.15107/rcub_dais_4718"
}
Veljović, Đ., Radovanović, Ž., Rogan, J., Dapčević, A., Dimitrijević, S., Dimitrijević Branković, S., Kojić, V.,& Janaćković, Đ.. (2018). Synthesis and characterization of bioactive glass doped with lithium and strontium ions. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 20-20.
https://hdl.handle.net/21.15107/rcub_dais_4718
Veljović Đ, Radovanović Ž, Rogan J, Dapčević A, Dimitrijević S, Dimitrijević Branković S, Kojić V, Janaćković Đ. Synthesis and characterization of bioactive glass doped with lithium and strontium ions. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia. 2018;:20-20.
https://hdl.handle.net/21.15107/rcub_dais_4718 .
Veljović, Đorđe, Radovanović, Željko, Rogan, Jelena, Dapčević, Aleksandra, Dimitrijević, Suzana, Dimitrijević Branković, Suzana, Kojić, Vesna, Janaćković, Đorđe, "Synthesis and characterization of bioactive glass doped with lithium and strontium ions" in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia (2018):20-20,
https://hdl.handle.net/21.15107/rcub_dais_4718 .

Effects of ball-milling on properties of sintered alumina doped with Mn2O3

Filipović, Suzana; Obradović, Nina; Marković, Smilja; Mitrić, Miodrag; Đorđević, Antonije; Dapčević, Aleksandra; Rogan, Jelena; Pavlović, Vladimir B.

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Marković, Smilja
AU  - Mitrić, Miodrag
AU  - Đorđević, Antonije
AU  - Dapčević, Aleksandra
AU  - Rogan, Jelena
AU  - Pavlović, Vladimir B.
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4114
AB  - Recently, with the huge use of smart gadgets, developing of smart jewelry represents a very interesting segment in material science, as well as in electronic science. Alumina is widely used ceramic in many industrial fields as pigments, catalysis, microelectronics, etc., mostly because of its low cost and appropriate mechanical and electrical properties, high surface area and thermal stability. Also, modified alumina could be applied in production of smart jewelry. Thus, the main objectives of this investigation is to improve features of sintered alumina doped with Mn2O3 along with mechanical treatment, in order to obtain strong ceramic with low values of dielectric loss and low relative dielectric permittivity, as well as esthetic. Commercial alumina powder was doped with 1 wt % of manganese oxide and treated in planetary ball mill for an hour. Characteristic temperatures of both powders (non-activated and activated one) were investigated in detail by DTA and TG analyses. After sintering at 1200, 1300, and 1400 oC for 2 h, XRD patterns and SEM images were recorded. Furthermore, mechanical and electrical properties were examined for all sintered samples.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Effects of ball-milling on properties of sintered alumina doped with Mn2O3
SP  - 75
EP  - 75
UR  - https://hdl.handle.net/21.15107/rcub_dais_4114
ER  - 
@conference{
author = "Filipović, Suzana and Obradović, Nina and Marković, Smilja and Mitrić, Miodrag and Đorđević, Antonije and Dapčević, Aleksandra and Rogan, Jelena and Pavlović, Vladimir B.",
year = "2018",
abstract = "Recently, with the huge use of smart gadgets, developing of smart jewelry represents a very interesting segment in material science, as well as in electronic science. Alumina is widely used ceramic in many industrial fields as pigments, catalysis, microelectronics, etc., mostly because of its low cost and appropriate mechanical and electrical properties, high surface area and thermal stability. Also, modified alumina could be applied in production of smart jewelry. Thus, the main objectives of this investigation is to improve features of sintered alumina doped with Mn2O3 along with mechanical treatment, in order to obtain strong ceramic with low values of dielectric loss and low relative dielectric permittivity, as well as esthetic. Commercial alumina powder was doped with 1 wt % of manganese oxide and treated in planetary ball mill for an hour. Characteristic temperatures of both powders (non-activated and activated one) were investigated in detail by DTA and TG analyses. After sintering at 1200, 1300, and 1400 oC for 2 h, XRD patterns and SEM images were recorded. Furthermore, mechanical and electrical properties were examined for all sintered samples.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Effects of ball-milling on properties of sintered alumina doped with Mn2O3",
pages = "75-75",
url = "https://hdl.handle.net/21.15107/rcub_dais_4114"
}
Filipović, S., Obradović, N., Marković, S., Mitrić, M., Đorđević, A., Dapčević, A., Rogan, J.,& Pavlović, V. B.. (2018). Effects of ball-milling on properties of sintered alumina doped with Mn2O3. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 75-75.
https://hdl.handle.net/21.15107/rcub_dais_4114
Filipović S, Obradović N, Marković S, Mitrić M, Đorđević A, Dapčević A, Rogan J, Pavlović VB. Effects of ball-milling on properties of sintered alumina doped with Mn2O3. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:75-75.
https://hdl.handle.net/21.15107/rcub_dais_4114 .
Filipović, Suzana, Obradović, Nina, Marković, Smilja, Mitrić, Miodrag, Đorđević, Antonije, Dapčević, Aleksandra, Rogan, Jelena, Pavlović, Vladimir B., "Effects of ball-milling on properties of sintered alumina doped with Mn2O3" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):75-75,
https://hdl.handle.net/21.15107/rcub_dais_4114 .

Sintering of alumina doped with different oxides, followed by sensitive dilatometer

Filipović, Suzana; Obradović, Nina; Marković, Smilja; Đorđević, Antonije; Dapčević, Aleksandra; Rogan, Jelena; Pavlović, Vladimir B.

(Belgrade : Materials Research Society of Serbia, 2018)

TY  - CONF
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Marković, Smilja
AU  - Đorđević, Antonije
AU  - Dapčević, Aleksandra
AU  - Rogan, Jelena
AU  - Pavlović, Vladimir B.
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/3634
AB  - Sintered alumina powder represents suitable material for usage in various industry fields (e.g., as chip carriers in electronics, microwaves, jewelry production), due to convenient physical properties, such as sinterability, electrical and mechanical features. Those properties can be modified by addition of different oxides and/or mechanical treatment. Therefore, in this investigation the alumina was doped with 1 wt. % of Cr2O3, Mn2O3 and NiO, respectively, followed by 1 hour of mechanical activation at 400 rpm in planetary ball mill. Sintering of powder mixtures was tracked by sensitive dilatometer up to 1400 °C. The final density values varied from cca. 2 ̶ 3.2 g/cm3. Changes in microstructure were observed by means of SEM. The influence of additives along with mechanical activation is monitored trough changes in electrical permittivity and loss tangent. Compared to pure alumina, the additives lower the relative permittivity and increase dielectric losses. For a given mixture, the sintering increases the relative permittivity and decreases losses.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
T1  - Sintering of alumina doped with different oxides, followed by sensitive dilatometer
SP  - 95
EP  - 95
UR  - https://hdl.handle.net/21.15107/rcub_dais_3634
ER  - 
@conference{
author = "Filipović, Suzana and Obradović, Nina and Marković, Smilja and Đorđević, Antonije and Dapčević, Aleksandra and Rogan, Jelena and Pavlović, Vladimir B.",
year = "2018",
abstract = "Sintered alumina powder represents suitable material for usage in various industry fields (e.g., as chip carriers in electronics, microwaves, jewelry production), due to convenient physical properties, such as sinterability, electrical and mechanical features. Those properties can be modified by addition of different oxides and/or mechanical treatment. Therefore, in this investigation the alumina was doped with 1 wt. % of Cr2O3, Mn2O3 and NiO, respectively, followed by 1 hour of mechanical activation at 400 rpm in planetary ball mill. Sintering of powder mixtures was tracked by sensitive dilatometer up to 1400 °C. The final density values varied from cca. 2 ̶ 3.2 g/cm3. Changes in microstructure were observed by means of SEM. The influence of additives along with mechanical activation is monitored trough changes in electrical permittivity and loss tangent. Compared to pure alumina, the additives lower the relative permittivity and increase dielectric losses. For a given mixture, the sintering increases the relative permittivity and decreases losses.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018",
title = "Sintering of alumina doped with different oxides, followed by sensitive dilatometer",
pages = "95-95",
url = "https://hdl.handle.net/21.15107/rcub_dais_3634"
}
Filipović, S., Obradović, N., Marković, S., Đorđević, A., Dapčević, A., Rogan, J.,& Pavlović, V. B.. (2018). Sintering of alumina doped with different oxides, followed by sensitive dilatometer. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
Belgrade : Materials Research Society of Serbia., 95-95.
https://hdl.handle.net/21.15107/rcub_dais_3634
Filipović S, Obradović N, Marković S, Đorđević A, Dapčević A, Rogan J, Pavlović VB. Sintering of alumina doped with different oxides, followed by sensitive dilatometer. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018. 2018;:95-95.
https://hdl.handle.net/21.15107/rcub_dais_3634 .
Filipović, Suzana, Obradović, Nina, Marković, Smilja, Đorđević, Antonije, Dapčević, Aleksandra, Rogan, Jelena, Pavlović, Vladimir B., "Sintering of alumina doped with different oxides, followed by sensitive dilatometer" in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018 (2018):95-95,
https://hdl.handle.net/21.15107/rcub_dais_3634 .

Structural, ferroelectric and magnetic properties of BiFeO3 synthesized by sonochemically assisted hydrothermal and hydro-evaporation chemical methods

Luković Golić, Danijela; Radojković, Aleksandar; Ćirković, Jovana; Dapčević, Aleksandra; Pajić, Damir; Tasić, Nikola B.; Savić, Slavica M.; Počuča Nešić, Milica; Marković, Smilja; Branković, Goran; Marinković Stanojević, Zorica; Branković, Zorica

(Elsevier, 2016)

TY  - JOUR
AU  - Luković Golić, Danijela
AU  - Radojković, Aleksandar
AU  - Ćirković, Jovana
AU  - Dapčević, Aleksandra
AU  - Pajić, Damir
AU  - Tasić, Nikola B.
AU  - Savić, Slavica M.
AU  - Počuča Nešić, Milica
AU  - Marković, Smilja
AU  - Branković, Goran
AU  - Marinković Stanojević, Zorica
AU  - Branković, Zorica
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/2320
AB  - BiFeO3 powders were synthesized by sonochemically assisted hydrothermal and hydro-evaporation methods. The X-ray diffraction confirmed the presence of secondary phases, Bi25FeO39 and Bi2Fe4O9, in as prepared BiFeO3 powders. Optimization of sintering conditions indicated that temperature of 800 °C and time of 2 h after pressing at 9 t/cm2 provided ceramics samples with the highest density (up to 96% of theoretical density) and the lowest content of secondary phases. Ferroelectric and magnetic characterization was performed on two selected ceramics samples with the highest densities. Ceramics obtained from the powder synthesized by the hydrothermal method showed greater lattice distortion along [1 1 1] axis and smaller grains, which resulted in larger values of electric polarization at room temperature. It also exhibited less Fe(3d)–O(2p) orbital overlapping due to a larger FeOFe bond angle, causing lower antiferromagnetic ordering and weak ferromagnetic behavior at low temperatures.
PB  - Elsevier
T2  - Journal of the European Ceramic Society
T1  - Structural, ferroelectric and magnetic properties of BiFeO3 synthesized by sonochemically assisted hydrothermal and hydro-evaporation chemical methods
SP  - 1623
EP  - 1631
VL  - 36
IS  - 7
DO  - 10.1016/j.jeurceramsoc.2016.01.031
UR  - https://hdl.handle.net/21.15107/rcub_dais_2320
ER  - 
@article{
author = "Luković Golić, Danijela and Radojković, Aleksandar and Ćirković, Jovana and Dapčević, Aleksandra and Pajić, Damir and Tasić, Nikola B. and Savić, Slavica M. and Počuča Nešić, Milica and Marković, Smilja and Branković, Goran and Marinković Stanojević, Zorica and Branković, Zorica",
year = "2016",
abstract = "BiFeO3 powders were synthesized by sonochemically assisted hydrothermal and hydro-evaporation methods. The X-ray diffraction confirmed the presence of secondary phases, Bi25FeO39 and Bi2Fe4O9, in as prepared BiFeO3 powders. Optimization of sintering conditions indicated that temperature of 800 °C and time of 2 h after pressing at 9 t/cm2 provided ceramics samples with the highest density (up to 96% of theoretical density) and the lowest content of secondary phases. Ferroelectric and magnetic characterization was performed on two selected ceramics samples with the highest densities. Ceramics obtained from the powder synthesized by the hydrothermal method showed greater lattice distortion along [1 1 1] axis and smaller grains, which resulted in larger values of electric polarization at room temperature. It also exhibited less Fe(3d)–O(2p) orbital overlapping due to a larger FeOFe bond angle, causing lower antiferromagnetic ordering and weak ferromagnetic behavior at low temperatures.",
publisher = "Elsevier",
journal = "Journal of the European Ceramic Society",
title = "Structural, ferroelectric and magnetic properties of BiFeO3 synthesized by sonochemically assisted hydrothermal and hydro-evaporation chemical methods",
pages = "1623-1631",
volume = "36",
number = "7",
doi = "10.1016/j.jeurceramsoc.2016.01.031",
url = "https://hdl.handle.net/21.15107/rcub_dais_2320"
}
Luković Golić, D., Radojković, A., Ćirković, J., Dapčević, A., Pajić, D., Tasić, N. B., Savić, S. M., Počuča Nešić, M., Marković, S., Branković, G., Marinković Stanojević, Z.,& Branković, Z.. (2016). Structural, ferroelectric and magnetic properties of BiFeO3 synthesized by sonochemically assisted hydrothermal and hydro-evaporation chemical methods. in Journal of the European Ceramic Society
Elsevier., 36(7), 1623-1631.
https://doi.org/10.1016/j.jeurceramsoc.2016.01.031
https://hdl.handle.net/21.15107/rcub_dais_2320
Luković Golić D, Radojković A, Ćirković J, Dapčević A, Pajić D, Tasić NB, Savić SM, Počuča Nešić M, Marković S, Branković G, Marinković Stanojević Z, Branković Z. Structural, ferroelectric and magnetic properties of BiFeO3 synthesized by sonochemically assisted hydrothermal and hydro-evaporation chemical methods. in Journal of the European Ceramic Society. 2016;36(7):1623-1631.
doi:10.1016/j.jeurceramsoc.2016.01.031
https://hdl.handle.net/21.15107/rcub_dais_2320 .
Luković Golić, Danijela, Radojković, Aleksandar, Ćirković, Jovana, Dapčević, Aleksandra, Pajić, Damir, Tasić, Nikola B., Savić, Slavica M., Počuča Nešić, Milica, Marković, Smilja, Branković, Goran, Marinković Stanojević, Zorica, Branković, Zorica, "Structural, ferroelectric and magnetic properties of BiFeO3 synthesized by sonochemically assisted hydrothermal and hydro-evaporation chemical methods" in Journal of the European Ceramic Society, 36, no. 7 (2016):1623-1631,
https://doi.org/10.1016/j.jeurceramsoc.2016.01.031 .,
https://hdl.handle.net/21.15107/rcub_dais_2320 .
24
21
25