Vengust, Damjan

Link to this page

Authority KeyName Variants
ccb07aed-ed3d-4ace-a018-2270e7332cd9
  • Vengust, Damjan (3)
Projects

Author's Bibliography

Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium

Marković, Smilja; Rau, Julietta V.; De Bonis, Angela; De Bellis, Giovanni; Stojanović, Zoran; Veselinović, Ljiljana; Mitrić, Miodrag; Ignjatović, Nenad; Škapin, Srečo Davor; Vengust, Damjan

(2022)

TY  - JOUR
AU  - Marković, Smilja
AU  - Rau, Julietta V.
AU  - De Bonis, Angela
AU  - De Bellis, Giovanni
AU  - Stojanović, Zoran
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Ignjatović, Nenad
AU  - Škapin, Srečo Davor
AU  - Vengust, Damjan
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/12953
AB  - Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.
T2  - Surface and Coatings Technology
T2  - Surface and Coatings TechnologySurface and Coatings Technology
T1  - Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium
SP  - 128275
VL  - 437
DO  - 10.1016/j.surfcoat.2022.128275
UR  - https://hdl.handle.net/21.15107/rcub_dais_12953
ER  - 
@article{
author = "Marković, Smilja and Rau, Julietta V. and De Bonis, Angela and De Bellis, Giovanni and Stojanović, Zoran and Veselinović, Ljiljana and Mitrić, Miodrag and Ignjatović, Nenad and Škapin, Srečo Davor and Vengust, Damjan",
year = "2022",
abstract = "Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.",
journal = "Surface and Coatings Technology, Surface and Coatings TechnologySurface and Coatings Technology",
title = "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium",
pages = "128275",
volume = "437",
doi = "10.1016/j.surfcoat.2022.128275",
url = "https://hdl.handle.net/21.15107/rcub_dais_12953"
}
Marković, S., Rau, J. V., De Bonis, A., De Bellis, G., Stojanović, Z., Veselinović, L., Mitrić, M., Ignjatović, N., Škapin, S. D.,& Vengust, D.. (2022). Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology, 437, 128275.
https://doi.org/10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_12953
Marković S, Rau JV, De Bonis A, De Bellis G, Stojanović Z, Veselinović L, Mitrić M, Ignjatović N, Škapin SD, Vengust D. Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology. 2022;437:128275.
doi:10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_12953 .
Marković, Smilja, Rau, Julietta V., De Bonis, Angela, De Bellis, Giovanni, Stojanović, Zoran, Veselinović, Ljiljana, Mitrić, Miodrag, Ignjatović, Nenad, Škapin, Srečo Davor, Vengust, Damjan, "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium" in Surface and Coatings Technology, 437 (2022):128275,
https://doi.org/10.1016/j.surfcoat.2022.128275 .,
https://hdl.handle.net/21.15107/rcub_dais_12953 .
1
1

Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium

Marković, Smilja; Rau, Julietta V.; De Bonis, Angela; De Bellis, Giovanni; Stojanović, Zoran; Veselinović, Ljiljana; Mitrić, Miodrag; Ignjatović, Nenad; Škapin, Srečo Davor; Vengust, Damjan

(2022)

TY  - JOUR
AU  - Marković, Smilja
AU  - Rau, Julietta V.
AU  - De Bonis, Angela
AU  - De Bellis, Giovanni
AU  - Stojanović, Zoran
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Ignjatović, Nenad
AU  - Škapin, Srečo Davor
AU  - Vengust, Damjan
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13034
AB  - Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.
T2  - Surface and Coatings Technology
T1  - Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium
SP  - 128275
VL  - 437
DO  - 10.1016/j.surfcoat.2022.128275
UR  - https://hdl.handle.net/21.15107/rcub_dais_13034
ER  - 
@article{
author = "Marković, Smilja and Rau, Julietta V. and De Bonis, Angela and De Bellis, Giovanni and Stojanović, Zoran and Veselinović, Ljiljana and Mitrić, Miodrag and Ignjatović, Nenad and Škapin, Srečo Davor and Vengust, Damjan",
year = "2022",
abstract = "Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.",
journal = "Surface and Coatings Technology",
title = "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium",
pages = "128275",
volume = "437",
doi = "10.1016/j.surfcoat.2022.128275",
url = "https://hdl.handle.net/21.15107/rcub_dais_13034"
}
Marković, S., Rau, J. V., De Bonis, A., De Bellis, G., Stojanović, Z., Veselinović, L., Mitrić, M., Ignjatović, N., Škapin, S. D.,& Vengust, D.. (2022). Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology, 437, 128275.
https://doi.org/10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_13034
Marković S, Rau JV, De Bonis A, De Bellis G, Stojanović Z, Veselinović L, Mitrić M, Ignjatović N, Škapin SD, Vengust D. Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology. 2022;437:128275.
doi:10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_13034 .
Marković, Smilja, Rau, Julietta V., De Bonis, Angela, De Bellis, Giovanni, Stojanović, Zoran, Veselinović, Ljiljana, Mitrić, Miodrag, Ignjatović, Nenad, Škapin, Srečo Davor, Vengust, Damjan, "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium" in Surface and Coatings Technology, 437 (2022):128275,
https://doi.org/10.1016/j.surfcoat.2022.128275 .,
https://hdl.handle.net/21.15107/rcub_dais_13034 .
1
1

Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite

Jovanović, Zoran; Mravik, Željko; Bajuk Bogdanović, Danica; Jovanović, Sonja; Marković, Smilja; Vujković, Milica; Kovač, Janez; Vengust, Damjan; Uskoković-Marković, Snežana; Holclajtner Antunović, Ivanka

(2020)

TY  - JOUR
AU  - Jovanović, Zoran
AU  - Mravik, Željko
AU  - Bajuk Bogdanović, Danica
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Vujković, Milica
AU  - Kovač, Janez
AU  - Vengust, Damjan
AU  - Uskoković-Marković, Snežana
AU  - Holclajtner Antunović, Ivanka
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/6882
AB  - In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole.
T2  - Carbon
T1  - Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite
SP  - 166
EP  - 178
VL  - 156
DO  - 10.1016/j.carbon.2019.09.072
UR  - https://hdl.handle.net/21.15107/rcub_dais_6882
ER  - 
@article{
author = "Jovanović, Zoran and Mravik, Željko and Bajuk Bogdanović, Danica and Jovanović, Sonja and Marković, Smilja and Vujković, Milica and Kovač, Janez and Vengust, Damjan and Uskoković-Marković, Snežana and Holclajtner Antunović, Ivanka",
year = "2020",
abstract = "In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole.",
journal = "Carbon",
title = "Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite",
pages = "166-178",
volume = "156",
doi = "10.1016/j.carbon.2019.09.072",
url = "https://hdl.handle.net/21.15107/rcub_dais_6882"
}
Jovanović, Z., Mravik, Ž., Bajuk Bogdanović, D., Jovanović, S., Marković, S., Vujković, M., Kovač, J., Vengust, D., Uskoković-Marković, S.,& Holclajtner Antunović, I.. (2020). Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. in Carbon, 156, 166-178.
https://doi.org/10.1016/j.carbon.2019.09.072
https://hdl.handle.net/21.15107/rcub_dais_6882
Jovanović Z, Mravik Ž, Bajuk Bogdanović D, Jovanović S, Marković S, Vujković M, Kovač J, Vengust D, Uskoković-Marković S, Holclajtner Antunović I. Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. in Carbon. 2020;156:166-178.
doi:10.1016/j.carbon.2019.09.072
https://hdl.handle.net/21.15107/rcub_dais_6882 .
Jovanović, Zoran, Mravik, Željko, Bajuk Bogdanović, Danica, Jovanović, Sonja, Marković, Smilja, Vujković, Milica, Kovač, Janez, Vengust, Damjan, Uskoković-Marković, Snežana, Holclajtner Antunović, Ivanka, "Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite" in Carbon, 156 (2020):166-178,
https://doi.org/10.1016/j.carbon.2019.09.072 .,
https://hdl.handle.net/21.15107/rcub_dais_6882 .
8
4
7