Škapin, Srečo Davor

Link to this page

Authority KeyName Variants
orcid::0000-0001-8071-0421
  • Škapin, Srečo Davor (112)
  • Škapin, Srečo (4)
Projects
Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them Sinteza funkcionalnih materijala sa kontrolisanom strukturom na molekularnom i nano nivou
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) United States National Institutes of Health (NIH) / National Institute of Dental and Craniofacial Research (NIDCR), Grant K99-DE021416
Magnetic and radionuclide labeled nanostructured materials for medical applications Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry)
Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia “Nanostructured and mesoporous functional materials with enhanced solar light driven photocatalytic activity” for 2018–2019 Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia, Project 451-03-1251/2012-09/06
Investigation of intermetallics and semiconductors and possible application in renewable energy sources Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Lithium-ion batteries and fuel cells - research and development
Nanostructured multifunctional materials and nanocomposites BCD grant 2020-09059-
Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia Chinese-Serbian project [451-03-1205/2021-09]
Croatian Science Foundation [IP-2016-06-224] Croatian Science Foundation, IP-2016- 06-224
Croatian-Serbian bilateral project 2016/17 Reinforcing of Nanotechnology and Functional Materials Centre
Oxide-based environmentally-friendly porous materials for genotoxic substances removal Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200015 (University of Belgrade, Institute for Medical Research) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200162 (University of Belgrade, Faculty of Physics) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry)
Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes HiSuperBat - High-Capacity Electrodes for Aqueous Rechargeable Multivalent-Ion Batteries and Supercapacitors: Next Step Towards a Hybrid Model
Providence Health Care [40861UH, 451-03-01963/2017-09/18] São Paulo Research Foundation, FAPESP [research project funding 2017-18782-6 and 2019-25318-0]

Author's Bibliography

Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER

Aleksić, Katarina; Stanković, Ana; Veselinović, Ljiljana; Škapin, Srečo; Stojković Simatović, Ivana; Marković, Smilja

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Škapin, Srečo
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15853
AB  - The increasing demand for efficient catalysts has raised concerns about the limited availability and high cost of platinum group metal (PGM) catalysts. Ruthenium dioxide (RuO2) has shown remarkable catalytic activity; however, its extensive use is hindered by its high cost. To tackle this challenge, we investigated the utilization of zinc oxide (ZnO) as a promising alternative to reduce reliance on expensive RuO2 catalysts while maintaining catalytic performance by synthesizing ZnO/RuO2 composites in various mass ratios (1:1, 2:1, 10:1) through microwave processing of a precipitate, followed by calcination at temperatures of 300 and 600 °C. The crystallinity and phase purity of the particles were analyzed using Xray powder diffraction (XRD) and Raman spectroscopy. Surface chemistry was examined by Fourier-transform infrared (FTIR) spectroscopy. Field emission scanning electron microscopy was employed to investigate the morphology and particle size. Photoluminescence and UVVis diffuse reflectance spectroscopy were utilized for analyzing the optical properties. The electrocatalytic activity of the materials were evaluated via linear sweep voltammetry in both acidic (0.1 M H2SO4) and alkaline (0.1 M NaOH) electrolytes. The ZnO/RuO2 composites exhibited outstanding catalytic performance for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in both types of electrolytes.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER
SP  - 62
EP  - 62
UR  - https://hdl.handle.net/21.15107/rcub_dais_15853
ER  - 
@conference{
author = "Aleksić, Katarina and Stanković, Ana and Veselinović, Ljiljana and Škapin, Srečo and Stojković Simatović, Ivana and Marković, Smilja",
year = "2023",
abstract = "The increasing demand for efficient catalysts has raised concerns about the limited availability and high cost of platinum group metal (PGM) catalysts. Ruthenium dioxide (RuO2) has shown remarkable catalytic activity; however, its extensive use is hindered by its high cost. To tackle this challenge, we investigated the utilization of zinc oxide (ZnO) as a promising alternative to reduce reliance on expensive RuO2 catalysts while maintaining catalytic performance by synthesizing ZnO/RuO2 composites in various mass ratios (1:1, 2:1, 10:1) through microwave processing of a precipitate, followed by calcination at temperatures of 300 and 600 °C. The crystallinity and phase purity of the particles were analyzed using Xray powder diffraction (XRD) and Raman spectroscopy. Surface chemistry was examined by Fourier-transform infrared (FTIR) spectroscopy. Field emission scanning electron microscopy was employed to investigate the morphology and particle size. Photoluminescence and UVVis diffuse reflectance spectroscopy were utilized for analyzing the optical properties. The electrocatalytic activity of the materials were evaluated via linear sweep voltammetry in both acidic (0.1 M H2SO4) and alkaline (0.1 M NaOH) electrolytes. The ZnO/RuO2 composites exhibited outstanding catalytic performance for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in both types of electrolytes.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER",
pages = "62-62",
url = "https://hdl.handle.net/21.15107/rcub_dais_15853"
}
Aleksić, K., Stanković, A., Veselinović, L., Škapin, S., Stojković Simatović, I.,& Marković, S.. (2023). Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 62-62.
https://hdl.handle.net/21.15107/rcub_dais_15853
Aleksić K, Stanković A, Veselinović L, Škapin S, Stojković Simatović I, Marković S. Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:62-62.
https://hdl.handle.net/21.15107/rcub_dais_15853 .
Aleksić, Katarina, Stanković, Ana, Veselinović, Ljiljana, Škapin, Srečo, Stojković Simatović, Ivana, Marković, Smilja, "Tailoring the ZnO/RuO2 ratio in composite electrocatalysts for efficient HER and OER" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):62-62,
https://hdl.handle.net/21.15107/rcub_dais_15853 .

Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles

Dorm, Bruna Carolina; Iemma, Mônica Rosas Costa; Neto, Benedito Domingos; Francisco, Rauany Cristina Lopes; Dinić, Ivana; Ignjatović, Nenad; Marković, Smilja; Vuković, Marina; Škapin, Srečo; Trovatti, Eliane; Mančić, Lidija

(2023)

TY  - JOUR
AU  - Dorm, Bruna Carolina
AU  - Iemma, Mônica Rosas Costa
AU  - Neto, Benedito Domingos
AU  - Francisco, Rauany Cristina Lopes
AU  - Dinić, Ivana
AU  - Ignjatović, Nenad
AU  - Marković, Smilja
AU  - Vuković, Marina
AU  - Škapin, Srečo
AU  - Trovatti, Eliane
AU  - Mančić, Lidija
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/13685
AB  - Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.
T2  - Life
T1  - Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles
SP  - 116
VL  - 13
IS  - 1
DO  - 10.3390/life13010116
UR  - https://hdl.handle.net/21.15107/rcub_dais_13685
ER  - 
@article{
author = "Dorm, Bruna Carolina and Iemma, Mônica Rosas Costa and Neto, Benedito Domingos and Francisco, Rauany Cristina Lopes and Dinić, Ivana and Ignjatović, Nenad and Marković, Smilja and Vuković, Marina and Škapin, Srečo and Trovatti, Eliane and Mančić, Lidija",
year = "2023",
abstract = "Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.",
journal = "Life",
title = "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles",
pages = "116",
volume = "13",
number = "1",
doi = "10.3390/life13010116",
url = "https://hdl.handle.net/21.15107/rcub_dais_13685"
}
Dorm, B. C., Iemma, M. R. C., Neto, B. D., Francisco, R. C. L., Dinić, I., Ignjatović, N., Marković, S., Vuković, M., Škapin, S., Trovatti, E.,& Mančić, L.. (2023). Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. in Life, 13(1), 116.
https://doi.org/10.3390/life13010116
https://hdl.handle.net/21.15107/rcub_dais_13685
Dorm BC, Iemma MRC, Neto BD, Francisco RCL, Dinić I, Ignjatović N, Marković S, Vuković M, Škapin S, Trovatti E, Mančić L. Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. in Life. 2023;13(1):116.
doi:10.3390/life13010116
https://hdl.handle.net/21.15107/rcub_dais_13685 .
Dorm, Bruna Carolina, Iemma, Mônica Rosas Costa, Neto, Benedito Domingos, Francisco, Rauany Cristina Lopes, Dinić, Ivana, Ignjatović, Nenad, Marković, Smilja, Vuković, Marina, Škapin, Srečo, Trovatti, Eliane, Mančić, Lidija, "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles" in Life, 13, no. 1 (2023):116,
https://doi.org/10.3390/life13010116 .,
https://hdl.handle.net/21.15107/rcub_dais_13685 .
3

Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)

Rajić, Vladimir; Marković, Smilja; Popović, M.; Novaković, M.; Veselinović, Ljiljana; Stojković Simatović, Ivana; Škapin, Srečo Davor; Stojadinović, S.; Rac, Vladislav

(Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, 2023)

TY  - CONF
AU  - Rajić, Vladimir
AU  - Marković, Smilja
AU  - Popović, M.
AU  - Novaković, M.
AU  - Veselinović, Ljiljana
AU  - Stojković Simatović, Ivana
AU  - Škapin, Srečo Davor
AU  - Stojadinović, S.
AU  - Rac, Vladislav
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14868
AB  - Zink oxide-based materials have a great potential to be applied in photo and electro catalysts, opto-electronic (indoor illumination, LED), etc. Attractiveness of ZnO is attributed to wide bandgap energy at room temperature (3.37 eV), high electron mobility and transfer efficiency (115-155 cm2·V-1·s-1), large exciton binding energy (60 meV), intrinsic stability, nontoxicity, environmental compatibility and also, simple and not expensive synthesis procedure. A lot of different approaches can be used to modify the bandgap (i.e. optical absorption) of ZnO materials: metal and nonmetal ion doping, hydrogenation, the incorporation of crystalline defects in the form of V and I, modification of particles morphology and surface topology, etc.
In this study, eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped ZnO nanoparticles with 5, 10, 15 and 20 at.% of Fe (Zn1-xFeyO(1-x+1.5y)). The influence of different amount of Fe substituted Zn in ZnO on the crystal structure, morphological, textural, and optical properties as well as on functionality of ZnO particles was investigated. The crystal structure and phase purity of the Zn1-xFeyO(1-x+1.5y) particles were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Effects of the Fe3+ amount on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and nitrogen adsorption–desorption isotherm, respectively. Optical properties were studied using UV-Vis diffuse reflectance and photoluminescence spectroscopy. Functionality of ZnO particles was studied due to their photocatalytic and electrochemical activities. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. Electrochemical behavior of the ZnO samples as anode material was evaluated by linear sweep voltammetry in 0.5 M Na2SO4 electrolyte.
PB  - Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade
C3  - Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia
T1  - Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)
SP  - 34
EP  - 34
UR  - https://hdl.handle.net/21.15107/rcub_dais_14868
ER  - 
@conference{
author = "Rajić, Vladimir and Marković, Smilja and Popović, M. and Novaković, M. and Veselinović, Ljiljana and Stojković Simatović, Ivana and Škapin, Srečo Davor and Stojadinović, S. and Rac, Vladislav",
year = "2023",
abstract = "Zink oxide-based materials have a great potential to be applied in photo and electro catalysts, opto-electronic (indoor illumination, LED), etc. Attractiveness of ZnO is attributed to wide bandgap energy at room temperature (3.37 eV), high electron mobility and transfer efficiency (115-155 cm2·V-1·s-1), large exciton binding energy (60 meV), intrinsic stability, nontoxicity, environmental compatibility and also, simple and not expensive synthesis procedure. A lot of different approaches can be used to modify the bandgap (i.e. optical absorption) of ZnO materials: metal and nonmetal ion doping, hydrogenation, the incorporation of crystalline defects in the form of V and I, modification of particles morphology and surface topology, etc.
In this study, eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped ZnO nanoparticles with 5, 10, 15 and 20 at.% of Fe (Zn1-xFeyO(1-x+1.5y)). The influence of different amount of Fe substituted Zn in ZnO on the crystal structure, morphological, textural, and optical properties as well as on functionality of ZnO particles was investigated. The crystal structure and phase purity of the Zn1-xFeyO(1-x+1.5y) particles were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Effects of the Fe3+ amount on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and nitrogen adsorption–desorption isotherm, respectively. Optical properties were studied using UV-Vis diffuse reflectance and photoluminescence spectroscopy. Functionality of ZnO particles was studied due to their photocatalytic and electrochemical activities. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. Electrochemical behavior of the ZnO samples as anode material was evaluated by linear sweep voltammetry in 0.5 M Na2SO4 electrolyte.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade",
journal = "Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia",
title = "Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)",
pages = "34-34",
url = "https://hdl.handle.net/21.15107/rcub_dais_14868"
}
Rajić, V., Marković, S., Popović, M., Novaković, M., Veselinović, L., Stojković Simatović, I., Škapin, S. D., Stojadinović, S.,& Rac, V.. (2023). Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y). in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia
Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade., 34-34.
https://hdl.handle.net/21.15107/rcub_dais_14868
Rajić V, Marković S, Popović M, Novaković M, Veselinović L, Stojković Simatović I, Škapin SD, Stojadinović S, Rac V. Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y). in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia. 2023;:34-34.
https://hdl.handle.net/21.15107/rcub_dais_14868 .
Rajić, Vladimir, Marković, Smilja, Popović, M., Novaković, M., Veselinović, Ljiljana, Stojković Simatović, Ivana, Škapin, Srečo Davor, Stojadinović, S., Rac, Vladislav, "Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)" in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia (2023):34-34,
https://hdl.handle.net/21.15107/rcub_dais_14868 .

Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting

Aleksić, Katarina; Stojković Simatović, Ivana; Stanković, Ana; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Radmilović, Nadežda; Rajić, Vladimir; Škapin, Srečo Davor; Mančić, Lidija; Marković, Smilja

(Frontiers Media SA, 2023)

TY  - JOUR
AU  - Aleksić, Katarina
AU  - Stojković Simatović, Ivana
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Radmilović, Nadežda
AU  - Rajić, Vladimir
AU  - Škapin, Srečo Davor
AU  - Mančić, Lidija
AU  - Marković, Smilja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14554
AB  - Catalytic materials are the greatest challenge for the commercial application of water electrolysis (WEs) and fuel cells (FCs) as clean energy technologies. There is a need to find an alternative to expensive and unavailable platinum group metal (PGM) catalysts. This study aimed to reduce the cost of PGM materials by replacing Ru with RuO2 and lowering the amount of RuO2 by adding abundant and multifunctional ZnO. A ZnO@RuO2 composite in a 10:1 molar ratio was synthesized by microwave processing of a precipitate as a green, low-cost, and fast method, and then annealed at 300°C and 600°C to improve the catalytic properties. The physicochemical properties of the ZnO@RuO2 composites were investigated by X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The electrochemical activity of the samples was investigated by linear sweep voltammetry in acidic and alkaline electrolytes. We observed good bifunctional catalytic activity of the ZnO@RuO2 composites toward HER and OER in both electrolytes. The improved bifunctional catalytic activity of the ZnO@RuO2 composite by annealing was discussed and attributed to the reduced number of bulk oxygen vacancies and the increased number of established heterojunctions.
PB  - Frontiers Media SA
T2  - Frontiers in Chemistry
T1  - Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting
VL  - 11
DO  - 10.3389/fchem.2023.1173910
UR  - https://hdl.handle.net/21.15107/rcub_dais_14554
ER  - 
@article{
author = "Aleksić, Katarina and Stojković Simatović, Ivana and Stanković, Ana and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Radmilović, Nadežda and Rajić, Vladimir and Škapin, Srečo Davor and Mančić, Lidija and Marković, Smilja",
year = "2023",
abstract = "Catalytic materials are the greatest challenge for the commercial application of water electrolysis (WEs) and fuel cells (FCs) as clean energy technologies. There is a need to find an alternative to expensive and unavailable platinum group metal (PGM) catalysts. This study aimed to reduce the cost of PGM materials by replacing Ru with RuO2 and lowering the amount of RuO2 by adding abundant and multifunctional ZnO. A ZnO@RuO2 composite in a 10:1 molar ratio was synthesized by microwave processing of a precipitate as a green, low-cost, and fast method, and then annealed at 300°C and 600°C to improve the catalytic properties. The physicochemical properties of the ZnO@RuO2 composites were investigated by X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The electrochemical activity of the samples was investigated by linear sweep voltammetry in acidic and alkaline electrolytes. We observed good bifunctional catalytic activity of the ZnO@RuO2 composites toward HER and OER in both electrolytes. The improved bifunctional catalytic activity of the ZnO@RuO2 composite by annealing was discussed and attributed to the reduced number of bulk oxygen vacancies and the increased number of established heterojunctions.",
publisher = "Frontiers Media SA",
journal = "Frontiers in Chemistry",
title = "Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting",
volume = "11",
doi = "10.3389/fchem.2023.1173910",
url = "https://hdl.handle.net/21.15107/rcub_dais_14554"
}
Aleksić, K., Stojković Simatović, I., Stanković, A., Veselinović, L., Stojadinović, S., Rac, V., Radmilović, N., Rajić, V., Škapin, S. D., Mančić, L.,& Marković, S.. (2023). Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting. in Frontiers in Chemistry
Frontiers Media SA., 11.
https://doi.org/10.3389/fchem.2023.1173910
https://hdl.handle.net/21.15107/rcub_dais_14554
Aleksić K, Stojković Simatović I, Stanković A, Veselinović L, Stojadinović S, Rac V, Radmilović N, Rajić V, Škapin SD, Mančić L, Marković S. Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting. in Frontiers in Chemistry. 2023;11.
doi:10.3389/fchem.2023.1173910
https://hdl.handle.net/21.15107/rcub_dais_14554 .
Aleksić, Katarina, Stojković Simatović, Ivana, Stanković, Ana, Veselinović, Ljiljana, Stojadinović, Stevan, Rac, Vladislav, Radmilović, Nadežda, Rajić, Vladimir, Škapin, Srečo Davor, Mančić, Lidija, Marković, Smilja, "Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting" in Frontiers in Chemistry, 11 (2023),
https://doi.org/10.3389/fchem.2023.1173910 .,
https://hdl.handle.net/21.15107/rcub_dais_14554 .
1
2
2

Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study

Bosnar, Sanja; Rac, Vladislav; Stošić, Dušan; Travert, Arnaud; Postole, Georgeta; Auroux, Aline; Škapin, Srečo Davor; Damjanović-Vasilić, Ljiljana S.; Bronić, Josip; Du, Xuesen; Marković, Smilja; Pavlović, Vladimir B.; Rakić, Vesna M.

(2022)

TY  - JOUR
AU  - Bosnar, Sanja
AU  - Rac, Vladislav
AU  - Stošić, Dušan
AU  - Travert, Arnaud
AU  - Postole, Georgeta
AU  - Auroux, Aline
AU  - Škapin, Srečo Davor
AU  - Damjanović-Vasilić, Ljiljana S.
AU  - Bronić, Josip
AU  - Du, Xuesen
AU  - Marković, Smilja
AU  - Pavlović, Vladimir B.
AU  - Rakić, Vesna M.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13631
AB  - Dual templating approach, using hexadecyltrimethylammonium bromide (CTAB), was employed in an attempt to synthesize hierarchical ZSM-5 zeolite. Amount of mesoporogen and the duration of aging of the precursor were varied. Majority of the synthesis routes resulted in phase separation, yielding separate ZSM-5 and amorphous mesoporous material. The relative amounts of the two phases were dependent on the CTAB amount ratio and also significantly on the duration of precursor aging before CTAB addition. One particular combination of the two factors led to the formation of a homogeneous hierarchical form of ZSM-5 with leafy morphology, consisting of intergrown thin crystalline sheets which formed flower-like structures. The hierarchical ZSM-5 possessed significant microporous (≈95 m2/g) and highly developed mesoporous surface (≈470 m2/g), with a relatively broad distribution of mesopore sizes (<20 nm). The acidity of all samples was studied in detail. Isothermal microcalorimetry/volumetry of ammonia adsorption provided quantitative data on the number and distribution of strength of acidic sites. In situ FTIR of pyridine and collidine adsorption was used to quantify Brønsted and Lewis acid sites, and to provide information on their location - in the micropores or mesopores/external surface. The hierarchical ZSM-5 possessed both Lewis and Brønsted acidity, with Brønsted sites located mainly in the micropores. All samples were fully characterized using XRD, low temperature nitrogen adsorption, FESEM and EDS. The synthetic route used for obtaining the ZSM-5 zeolite with flower-like morphology is a simple strategy for preparing hierarchical ZSM-5 forms targeting enhanced diffusivity and accessibility of catalytically active sites.
T2  - Microporous and Mesoporous Materials
T1  - Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study
SP  - 111534
VL  - 329
DO  - 10.1016/j.micromeso.2021.111534
UR  - https://hdl.handle.net/21.15107/rcub_dais_13631
ER  - 
@article{
author = "Bosnar, Sanja and Rac, Vladislav and Stošić, Dušan and Travert, Arnaud and Postole, Georgeta and Auroux, Aline and Škapin, Srečo Davor and Damjanović-Vasilić, Ljiljana S. and Bronić, Josip and Du, Xuesen and Marković, Smilja and Pavlović, Vladimir B. and Rakić, Vesna M.",
year = "2022",
abstract = "Dual templating approach, using hexadecyltrimethylammonium bromide (CTAB), was employed in an attempt to synthesize hierarchical ZSM-5 zeolite. Amount of mesoporogen and the duration of aging of the precursor were varied. Majority of the synthesis routes resulted in phase separation, yielding separate ZSM-5 and amorphous mesoporous material. The relative amounts of the two phases were dependent on the CTAB amount ratio and also significantly on the duration of precursor aging before CTAB addition. One particular combination of the two factors led to the formation of a homogeneous hierarchical form of ZSM-5 with leafy morphology, consisting of intergrown thin crystalline sheets which formed flower-like structures. The hierarchical ZSM-5 possessed significant microporous (≈95 m2/g) and highly developed mesoporous surface (≈470 m2/g), with a relatively broad distribution of mesopore sizes (<20 nm). The acidity of all samples was studied in detail. Isothermal microcalorimetry/volumetry of ammonia adsorption provided quantitative data on the number and distribution of strength of acidic sites. In situ FTIR of pyridine and collidine adsorption was used to quantify Brønsted and Lewis acid sites, and to provide information on their location - in the micropores or mesopores/external surface. The hierarchical ZSM-5 possessed both Lewis and Brønsted acidity, with Brønsted sites located mainly in the micropores. All samples were fully characterized using XRD, low temperature nitrogen adsorption, FESEM and EDS. The synthetic route used for obtaining the ZSM-5 zeolite with flower-like morphology is a simple strategy for preparing hierarchical ZSM-5 forms targeting enhanced diffusivity and accessibility of catalytically active sites.",
journal = "Microporous and Mesoporous Materials",
title = "Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study",
pages = "111534",
volume = "329",
doi = "10.1016/j.micromeso.2021.111534",
url = "https://hdl.handle.net/21.15107/rcub_dais_13631"
}
Bosnar, S., Rac, V., Stošić, D., Travert, A., Postole, G., Auroux, A., Škapin, S. D., Damjanović-Vasilić, L. S., Bronić, J., Du, X., Marković, S., Pavlović, V. B.,& Rakić, V. M.. (2022). Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study. in Microporous and Mesoporous Materials, 329, 111534.
https://doi.org/10.1016/j.micromeso.2021.111534
https://hdl.handle.net/21.15107/rcub_dais_13631
Bosnar S, Rac V, Stošić D, Travert A, Postole G, Auroux A, Škapin SD, Damjanović-Vasilić LS, Bronić J, Du X, Marković S, Pavlović VB, Rakić VM. Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study. in Microporous and Mesoporous Materials. 2022;329:111534.
doi:10.1016/j.micromeso.2021.111534
https://hdl.handle.net/21.15107/rcub_dais_13631 .
Bosnar, Sanja, Rac, Vladislav, Stošić, Dušan, Travert, Arnaud, Postole, Georgeta, Auroux, Aline, Škapin, Srečo Davor, Damjanović-Vasilić, Ljiljana S., Bronić, Josip, Du, Xuesen, Marković, Smilja, Pavlović, Vladimir B., Rakić, Vesna M., "Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study" in Microporous and Mesoporous Materials, 329 (2022):111534,
https://doi.org/10.1016/j.micromeso.2021.111534 .,
https://hdl.handle.net/21.15107/rcub_dais_13631 .
3
13
1
12

Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium

Marković, Smilja; Rau, Julietta V.; De Bonis, Angela; De Bellis, Giovanni; Stojanović, Zoran; Veselinović, Ljiljana; Mitrić, Miodrag; Ignjatović, Nenad; Škapin, Srečo Davor; Vengust, Damjan

(2022)

TY  - JOUR
AU  - Marković, Smilja
AU  - Rau, Julietta V.
AU  - De Bonis, Angela
AU  - De Bellis, Giovanni
AU  - Stojanović, Zoran
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Ignjatović, Nenad
AU  - Škapin, Srečo Davor
AU  - Vengust, Damjan
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/12953
AB  - Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.
T2  - Surface and Coatings Technology
T2  - Surface and Coatings TechnologySurface and Coatings Technology
T1  - Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium
SP  - 128275
VL  - 437
DO  - 10.1016/j.surfcoat.2022.128275
UR  - https://hdl.handle.net/21.15107/rcub_dais_12953
ER  - 
@article{
author = "Marković, Smilja and Rau, Julietta V. and De Bonis, Angela and De Bellis, Giovanni and Stojanović, Zoran and Veselinović, Ljiljana and Mitrić, Miodrag and Ignjatović, Nenad and Škapin, Srečo Davor and Vengust, Damjan",
year = "2022",
abstract = "Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.",
journal = "Surface and Coatings Technology, Surface and Coatings TechnologySurface and Coatings Technology",
title = "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium",
pages = "128275",
volume = "437",
doi = "10.1016/j.surfcoat.2022.128275",
url = "https://hdl.handle.net/21.15107/rcub_dais_12953"
}
Marković, S., Rau, J. V., De Bonis, A., De Bellis, G., Stojanović, Z., Veselinović, L., Mitrić, M., Ignjatović, N., Škapin, S. D.,& Vengust, D.. (2022). Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology, 437, 128275.
https://doi.org/10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_12953
Marković S, Rau JV, De Bonis A, De Bellis G, Stojanović Z, Veselinović L, Mitrić M, Ignjatović N, Škapin SD, Vengust D. Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology. 2022;437:128275.
doi:10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_12953 .
Marković, Smilja, Rau, Julietta V., De Bonis, Angela, De Bellis, Giovanni, Stojanović, Zoran, Veselinović, Ljiljana, Mitrić, Miodrag, Ignjatović, Nenad, Škapin, Srečo Davor, Vengust, Damjan, "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium" in Surface and Coatings Technology, 437 (2022):128275,
https://doi.org/10.1016/j.surfcoat.2022.128275 .,
https://hdl.handle.net/21.15107/rcub_dais_12953 .
1
1

Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium

Marković, Smilja; Rau, Julietta V.; De Bonis, Angela; De Bellis, Giovanni; Stojanović, Zoran; Veselinović, Ljiljana; Mitrić, Miodrag; Ignjatović, Nenad; Škapin, Srečo Davor; Vengust, Damjan

(2022)

TY  - JOUR
AU  - Marković, Smilja
AU  - Rau, Julietta V.
AU  - De Bonis, Angela
AU  - De Bellis, Giovanni
AU  - Stojanović, Zoran
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Ignjatović, Nenad
AU  - Škapin, Srečo Davor
AU  - Vengust, Damjan
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13034
AB  - Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.
T2  - Surface and Coatings Technology
T1  - Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium
SP  - 128275
VL  - 437
DO  - 10.1016/j.surfcoat.2022.128275
UR  - https://hdl.handle.net/21.15107/rcub_dais_13034
ER  - 
@article{
author = "Marković, Smilja and Rau, Julietta V. and De Bonis, Angela and De Bellis, Giovanni and Stojanović, Zoran and Veselinović, Ljiljana and Mitrić, Miodrag and Ignjatović, Nenad and Škapin, Srečo Davor and Vengust, Damjan",
year = "2022",
abstract = "Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.",
journal = "Surface and Coatings Technology",
title = "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium",
pages = "128275",
volume = "437",
doi = "10.1016/j.surfcoat.2022.128275",
url = "https://hdl.handle.net/21.15107/rcub_dais_13034"
}
Marković, S., Rau, J. V., De Bonis, A., De Bellis, G., Stojanović, Z., Veselinović, L., Mitrić, M., Ignjatović, N., Škapin, S. D.,& Vengust, D.. (2022). Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology, 437, 128275.
https://doi.org/10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_13034
Marković S, Rau JV, De Bonis A, De Bellis G, Stojanović Z, Veselinović L, Mitrić M, Ignjatović N, Škapin SD, Vengust D. Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology. 2022;437:128275.
doi:10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_13034 .
Marković, Smilja, Rau, Julietta V., De Bonis, Angela, De Bellis, Giovanni, Stojanović, Zoran, Veselinović, Ljiljana, Mitrić, Miodrag, Ignjatović, Nenad, Škapin, Srečo Davor, Vengust, Damjan, "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium" in Surface and Coatings Technology, 437 (2022):128275,
https://doi.org/10.1016/j.surfcoat.2022.128275 .,
https://hdl.handle.net/21.15107/rcub_dais_13034 .
1
1

Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate

Veselinović, Ljiljana; Mitrić, Miodrag; Mančić, Lidija; Jardim, Paula M.; Škapin, Srečo Davor; Cvjetićanin, Nikola; Milović, Miloš D.; Marković, Smilja

(2022)

TY  - JOUR
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Mančić, Lidija
AU  - Jardim, Paula M.
AU  - Škapin, Srečo Davor
AU  - Cvjetićanin, Nikola
AU  - Milović, Miloš D.
AU  - Marković, Smilja
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13562
AB  - This paper reports a detailed study of crystal structure and dielectric properties of ruthenium-substituted calcium-copper titanates (CaCu3Ti4−xRuxO12, CCTRO). A series of three samples with different stoichiometry was prepared: CaCu3Ti4−xRuxO12, x = 0, 1 and 4, abbreviated as CCTO, CCT3RO and CCRO, respectively. A detailed structural analysis of CCTRO samples was done by the Rietveld refinement of XRPD data. The results show that, regardless of whether Ti4+ or Ru4+ ions are placed in B crystallographic position in AA’3B4O12 (CaCu3Ti4−xRuxO12) unit cell, the crystal structure remains cubic with Im3¯ symmetry. Slight increases in the unit cell parameters, cell volume and interatomic distances indicate that Ru4+ ions with larger ionic radii (0.62 Å) than Ti4+ (0.605 Å) are incorporated in the CaCu3Ti4−xRuxO12 crystal lattice. The structural investigations were confirmed using TEM, HRTEM and ADF/STEM analyses, including EDXS elemental mapping. The effect of Ru atoms share in CaCu3Ti4−xRuxO12 samples on their electrical properties was determined by impedance and dielectric measurements. Results of dielectric measurements indicate that one atom of ruthenium per CaCu3Ti4−xRuxO12 unit cell transforms dielectric CCTO into conductive CCT3RO while preserving cubic crystal structure. Our findings about CCTO and CCT3RO ceramics promote them as ideal tandem to overcome the problem of stress on dielectric-electrode interfaces in capacitors.
T2  - Materials
T1  - Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate
SP  - 8500
SP  - 8500
VL  - 15
IS  - 23
DO  - 10.3390/ma15238500
UR  - https://hdl.handle.net/21.15107/rcub_dais_13562
ER  - 
@article{
author = "Veselinović, Ljiljana and Mitrić, Miodrag and Mančić, Lidija and Jardim, Paula M. and Škapin, Srečo Davor and Cvjetićanin, Nikola and Milović, Miloš D. and Marković, Smilja",
year = "2022",
abstract = "This paper reports a detailed study of crystal structure and dielectric properties of ruthenium-substituted calcium-copper titanates (CaCu3Ti4−xRuxO12, CCTRO). A series of three samples with different stoichiometry was prepared: CaCu3Ti4−xRuxO12, x = 0, 1 and 4, abbreviated as CCTO, CCT3RO and CCRO, respectively. A detailed structural analysis of CCTRO samples was done by the Rietveld refinement of XRPD data. The results show that, regardless of whether Ti4+ or Ru4+ ions are placed in B crystallographic position in AA’3B4O12 (CaCu3Ti4−xRuxO12) unit cell, the crystal structure remains cubic with Im3¯ symmetry. Slight increases in the unit cell parameters, cell volume and interatomic distances indicate that Ru4+ ions with larger ionic radii (0.62 Å) than Ti4+ (0.605 Å) are incorporated in the CaCu3Ti4−xRuxO12 crystal lattice. The structural investigations were confirmed using TEM, HRTEM and ADF/STEM analyses, including EDXS elemental mapping. The effect of Ru atoms share in CaCu3Ti4−xRuxO12 samples on their electrical properties was determined by impedance and dielectric measurements. Results of dielectric measurements indicate that one atom of ruthenium per CaCu3Ti4−xRuxO12 unit cell transforms dielectric CCTO into conductive CCT3RO while preserving cubic crystal structure. Our findings about CCTO and CCT3RO ceramics promote them as ideal tandem to overcome the problem of stress on dielectric-electrode interfaces in capacitors.",
journal = "Materials",
title = "Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate",
pages = "8500-8500",
volume = "15",
number = "23",
doi = "10.3390/ma15238500",
url = "https://hdl.handle.net/21.15107/rcub_dais_13562"
}
Veselinović, L., Mitrić, M., Mančić, L., Jardim, P. M., Škapin, S. D., Cvjetićanin, N., Milović, M. D.,& Marković, S.. (2022). Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. in Materials, 15(23), 8500.
https://doi.org/10.3390/ma15238500
https://hdl.handle.net/21.15107/rcub_dais_13562
Veselinović L, Mitrić M, Mančić L, Jardim PM, Škapin SD, Cvjetićanin N, Milović MD, Marković S. Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. in Materials. 2022;15(23):8500.
doi:10.3390/ma15238500
https://hdl.handle.net/21.15107/rcub_dais_13562 .
Veselinović, Ljiljana, Mitrić, Miodrag, Mančić, Lidija, Jardim, Paula M., Škapin, Srečo Davor, Cvjetićanin, Nikola, Milović, Miloš D., Marković, Smilja, "Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate" in Materials, 15, no. 23 (2022):8500,
https://doi.org/10.3390/ma15238500 .,
https://hdl.handle.net/21.15107/rcub_dais_13562 .

Hydroxyapatite grafting with alanine amino acid - efficiency of different methods

Vuković, Marina; Dorm, Bruna Carolina; Trovatti, Eliane; Ignjatović, Nenad; Marković, Smilja; Škapin, Srečo Davor; Dinić, Ivana; Mančić, Lidija

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Vuković, Marina
AU  - Dorm, Bruna Carolina
AU  - Trovatti, Eliane
AU  - Ignjatović, Nenad
AU  - Marković, Smilja
AU  - Škapin, Srečo Davor
AU  - Dinić, Ivana
AU  - Mančić, Lidija
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13630
AB  - Hydroxyapatite (HAp) attracts great attention due to application in reconstructive medicine for hard tissues, mostly bones and teeth, where it is declared to be highly biocompatible material. Its grafting with amino acids further increases biocompatibility and has crucial importance for acceptance of body implants. In this work different methods of grafting were investigated: simple mixing, thermal treatment induction and in situ synthesis/grafting reactions. Two amino acid precursors were separately tested in grafting procedures: pure alanine and alanine methyl ester hydrochloride. The efficiency of grafting was determined based on X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermal analyses (DSC, TG/DTA) of obtained powders, while complementary UV-VIS spectroscopy of supernatants was additionally performed for quantitative determination of non-grafted nitrogen using ninhydrin standardized procedure.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - Hydroxyapatite grafting with alanine amino acid - efficiency of different methods
SP  - 58
EP  - 59
UR  - https://hdl.handle.net/21.15107/rcub_dais_13630
ER  - 
@conference{
author = "Vuković, Marina and Dorm, Bruna Carolina and Trovatti, Eliane and Ignjatović, Nenad and Marković, Smilja and Škapin, Srečo Davor and Dinić, Ivana and Mančić, Lidija",
year = "2022",
abstract = "Hydroxyapatite (HAp) attracts great attention due to application in reconstructive medicine for hard tissues, mostly bones and teeth, where it is declared to be highly biocompatible material. Its grafting with amino acids further increases biocompatibility and has crucial importance for acceptance of body implants. In this work different methods of grafting were investigated: simple mixing, thermal treatment induction and in situ synthesis/grafting reactions. Two amino acid precursors were separately tested in grafting procedures: pure alanine and alanine methyl ester hydrochloride. The efficiency of grafting was determined based on X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermal analyses (DSC, TG/DTA) of obtained powders, while complementary UV-VIS spectroscopy of supernatants was additionally performed for quantitative determination of non-grafted nitrogen using ninhydrin standardized procedure.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "Hydroxyapatite grafting with alanine amino acid - efficiency of different methods",
pages = "58-59",
url = "https://hdl.handle.net/21.15107/rcub_dais_13630"
}
Vuković, M., Dorm, B. C., Trovatti, E., Ignjatović, N., Marković, S., Škapin, S. D., Dinić, I.,& Mančić, L.. (2022). Hydroxyapatite grafting with alanine amino acid - efficiency of different methods. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 58-59.
https://hdl.handle.net/21.15107/rcub_dais_13630
Vuković M, Dorm BC, Trovatti E, Ignjatović N, Marković S, Škapin SD, Dinić I, Mančić L. Hydroxyapatite grafting with alanine amino acid - efficiency of different methods. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:58-59.
https://hdl.handle.net/21.15107/rcub_dais_13630 .
Vuković, Marina, Dorm, Bruna Carolina, Trovatti, Eliane, Ignjatović, Nenad, Marković, Smilja, Škapin, Srečo Davor, Dinić, Ivana, Mančić, Lidija, "Hydroxyapatite grafting with alanine amino acid - efficiency of different methods" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):58-59,
https://hdl.handle.net/21.15107/rcub_dais_13630 .

ZnO-based composite materials with improved photo(electro) catalytic properties

Stanković, Ana; Filipović, Suzana; Veselinović, Ljiljana; Aleksić, Katarina; Stojković Simatović, Ivana; Škapin, Srečo Davor; Marković, Smilja

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Stanković, Ana
AU  - Filipović, Suzana
AU  - Veselinović, Ljiljana
AU  - Aleksić, Katarina
AU  - Stojković Simatović, Ivana
AU  - Škapin, Srečo Davor
AU  - Marković, Smilja
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13628
AB  - Conversion of solar energy into hydrogen energy via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can be generated in a clean and sustainable manner. Zinc oxide (ZnO) represents one of the most investigated photocatalyst. Its ability to overcome the limitations of pristine ZnO through enhanced visible light absorption and reduced recombination of photogenerated charge carriers have gathered the attention of the many research groups. Numerous studies enabled understanding its greater activities and most studies reveal that reactive oxygen species (ROS), oxygen vacancies (Ov) and zinc interstitials (Zni) are responsible for the enhanced photoactivity. In fact, different factors like defect concentration, defect location, valence and conduction band levels play a key role in the working mechanisms of ZnO material. Materials with the perovskite crystal structure such as BaTiO3 (BT) and BaTi1–XSnXO3 (BTS) found application in the construction of the active layer of the solar cell, in which the photogenerative electrons are generated. The environmental instability of perovskite solar cells caused by the ultraviolet photocatalytic effect of metal oxide layers is a critical issue that must be solved. Possible solution with improved environmental stability can be synthesis of ZnO composite heterojunction perovskite solar cells. In this study photo(electro) catalytic properties of: BT and BTS were compared with those of ZnO@BT and ZnO@BTS, respectively. In both cases the ZnO@BT and ZnO@BTS composite materials revealed enhanced photo(electro) catalytic activity as compared to the pristine BT and BTS materials. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE SEM), UV-Vis diffuse reflectance spectroscopy and linear voltammetry process.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - ZnO-based composite materials with improved photo(electro) catalytic properties
SP  - 85
EP  - 86
UR  - https://hdl.handle.net/21.15107/rcub_dais_13628
ER  - 
@conference{
author = "Stanković, Ana and Filipović, Suzana and Veselinović, Ljiljana and Aleksić, Katarina and Stojković Simatović, Ivana and Škapin, Srečo Davor and Marković, Smilja",
year = "2022",
abstract = "Conversion of solar energy into hydrogen energy via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can be generated in a clean and sustainable manner. Zinc oxide (ZnO) represents one of the most investigated photocatalyst. Its ability to overcome the limitations of pristine ZnO through enhanced visible light absorption and reduced recombination of photogenerated charge carriers have gathered the attention of the many research groups. Numerous studies enabled understanding its greater activities and most studies reveal that reactive oxygen species (ROS), oxygen vacancies (Ov) and zinc interstitials (Zni) are responsible for the enhanced photoactivity. In fact, different factors like defect concentration, defect location, valence and conduction band levels play a key role in the working mechanisms of ZnO material. Materials with the perovskite crystal structure such as BaTiO3 (BT) and BaTi1–XSnXO3 (BTS) found application in the construction of the active layer of the solar cell, in which the photogenerative electrons are generated. The environmental instability of perovskite solar cells caused by the ultraviolet photocatalytic effect of metal oxide layers is a critical issue that must be solved. Possible solution with improved environmental stability can be synthesis of ZnO composite heterojunction perovskite solar cells. In this study photo(electro) catalytic properties of: BT and BTS were compared with those of ZnO@BT and ZnO@BTS, respectively. In both cases the ZnO@BT and ZnO@BTS composite materials revealed enhanced photo(electro) catalytic activity as compared to the pristine BT and BTS materials. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE SEM), UV-Vis diffuse reflectance spectroscopy and linear voltammetry process.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "ZnO-based composite materials with improved photo(electro) catalytic properties",
pages = "85-86",
url = "https://hdl.handle.net/21.15107/rcub_dais_13628"
}
Stanković, A., Filipović, S., Veselinović, L., Aleksić, K., Stojković Simatović, I., Škapin, S. D.,& Marković, S.. (2022). ZnO-based composite materials with improved photo(electro) catalytic properties. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 85-86.
https://hdl.handle.net/21.15107/rcub_dais_13628
Stanković A, Filipović S, Veselinović L, Aleksić K, Stojković Simatović I, Škapin SD, Marković S. ZnO-based composite materials with improved photo(electro) catalytic properties. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:85-86.
https://hdl.handle.net/21.15107/rcub_dais_13628 .
Stanković, Ana, Filipović, Suzana, Veselinović, Ljiljana, Aleksić, Katarina, Stojković Simatović, Ivana, Škapin, Srečo Davor, Marković, Smilja, "ZnO-based composite materials with improved photo(electro) catalytic properties" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):85-86,
https://hdl.handle.net/21.15107/rcub_dais_13628 .

Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4

Jokić, Nikolina; Jugović, Dragana; Škapin, Srečo Davor; Stojković Simatović, Ivana

(Belgrade : Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Jokić, Nikolina
AU  - Jugović, Dragana
AU  - Škapin, Srečo Davor
AU  - Stojković Simatović, Ivana
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13635
AB  - Electrochemical energy storage systems, primarily lithium-ion batteries, have experienced a huge expansion in the last couple of decades, but as they are very expensive to manufacture a lot of effort is being put into finding a more affordable replacement. For this purpose, multivalent cation compounds whose crystal structure is similar to the crystal structures of lithium compounds used in lithium-ion batteries are often studied. Magnesium cation is particularly interesting due to its high availability, significantly lower cost and high theoretical capacity. [1] In this work, the glycine-nitrate method (GNM) was applied for the synthesis of cathode material MgMn2O4 after which its electrochemical properties were studied. As it is known that the addition of chromium ions to the lithium form of this compound increases the stability of capacity during cycling [2,3], the glycine-nitrate method was also used to synthesize MgCr0.15Mn1.85O4. One part of the synthesized MgCr0.15Mn1.85O4 was annealed at 700 oC, and the other part at 800 oC, and all three of the obtained materials were tested in parallel. Structural analysis of the materials was performed by X-ray diffraction and morphology was determined by scanning electron microscopy (FESEM). To study the electrochemical behavior of the materials the following methods were used: cyclic voltammetry and galvanostatic cycling.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
T1  - Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4
SP  - 175
EP  - 174
UR  - https://hdl.handle.net/21.15107/rcub_dais_13635
ER  - 
@conference{
author = "Jokić, Nikolina and Jugović, Dragana and Škapin, Srečo Davor and Stojković Simatović, Ivana",
year = "2022",
abstract = "Electrochemical energy storage systems, primarily lithium-ion batteries, have experienced a huge expansion in the last couple of decades, but as they are very expensive to manufacture a lot of effort is being put into finding a more affordable replacement. For this purpose, multivalent cation compounds whose crystal structure is similar to the crystal structures of lithium compounds used in lithium-ion batteries are often studied. Magnesium cation is particularly interesting due to its high availability, significantly lower cost and high theoretical capacity. [1] In this work, the glycine-nitrate method (GNM) was applied for the synthesis of cathode material MgMn2O4 after which its electrochemical properties were studied. As it is known that the addition of chromium ions to the lithium form of this compound increases the stability of capacity during cycling [2,3], the glycine-nitrate method was also used to synthesize MgCr0.15Mn1.85O4. One part of the synthesized MgCr0.15Mn1.85O4 was annealed at 700 oC, and the other part at 800 oC, and all three of the obtained materials were tested in parallel. Structural analysis of the materials was performed by X-ray diffraction and morphology was determined by scanning electron microscopy (FESEM). To study the electrochemical behavior of the materials the following methods were used: cyclic voltammetry and galvanostatic cycling.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022",
title = "Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4",
pages = "175-174",
url = "https://hdl.handle.net/21.15107/rcub_dais_13635"
}
Jokić, N., Jugović, D., Škapin, S. D.,& Stojković Simatović, I.. (2022). Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
Belgrade : Serbian Academy of Sciences and Arts., 175-174.
https://hdl.handle.net/21.15107/rcub_dais_13635
Jokić N, Jugović D, Škapin SD, Stojković Simatović I. Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022. 2022;:175-174.
https://hdl.handle.net/21.15107/rcub_dais_13635 .
Jokić, Nikolina, Jugović, Dragana, Škapin, Srečo Davor, Stojković Simatović, Ivana, "Sol-gel Synthesis of MgMn2O4 and MgCr0.15Mn1.85O4" in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022 (2022):175-174,
https://hdl.handle.net/21.15107/rcub_dais_13635 .

Germanium-doped hydroxyapatite: Synthesis and characterization of a new substituted apatite

Uskoković, Vuk; Ignjatović, Nenad; Škapin, Srečo; Uskoković, Dragan

(2022)

TY  - JOUR
AU  - Uskoković, Vuk
AU  - Ignjatović, Nenad
AU  - Škapin, Srečo
AU  - Uskoković, Dragan
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13563
AB  - Hydroxyapatite (HAp) is the major component of all boney tissues in mammals. Because of this omnipresence in the living world, HAp possesses an exceptional biocompatibility. The downside of this omnipresence, however, comes in the form of its mild to moderate biological activities. One means of augmenting these activities involves the doping of HAp with foreign ions. Here, the first synthesis and characterization of HAp doped with germanium ions is being reported. Germanium was deliberately integrated into the crystal lattice of HAp in the form of germanate anions. Approximately two thirds of the germanate ions introduced into the hydrothermal solution got incorporated into the HAp lattice, yielding the approximate stoichiometry of Ca10-x(PO4)5.62+y(GeO3)0.38(OH)2-z. Germanates replaced the phosphates of stoichiometric HAp and induced the expansion of the HAp lattice both along the screw axis of the calcium ion hexagons and in the direction parallel to the basal plane. Simultaneously, the larger size and the triple valency of the germanate ion as compared to the smaller and trivalent phosphates prompted the bond distortion and charge compensation through defect formation, which reduced the crystallinity and increased the microstrain of the HAp lattice. Vibrational spectroscopic analyses corroborated these crystallographic effects by demonstrating the enhanced heterogeneity of the environments surrounding the active modes after germanate ions were incorporated into HAp. Conforming to La Châtelier's principle, this reduction of the crystallographic order increased the capacity of the material for integration of adventitious carbonates. However, the inclusion of germanate ions induced a partial shift of these carbonates to the hydroxyl channel sites, thus decreasing the ratio of the B-type carbonation to the A-type carbonation. Introduced into HAp, germanium acted as a superb regulator of the particle size and morphology, enhancing their fineness and uniformity. Inclusion of germanate ions also increased the electrophoretic mobility and hydrodynamic surface charge density of the particles by reducing their size and by inducing a more stochastic distribution of terminal ionic groups due to the bending of the crystal facets. Overall, the doping of HAp with germanate ions facilitated the production of narrowly dispersed nanorods with a moderately enhanced structural disorder and with a pronounced potential for the biomedical niche. © 2022 The Author(s)
T2  - Ceramics International
T1  - Germanium-doped hydroxyapatite: Synthesis and characterization of a new substituted apatite
SP  - 27693
EP  - 27702
VL  - 48
IS  - 19
DO  - 10.1016/j.ceramint.2022.06.068
UR  - https://hdl.handle.net/21.15107/rcub_dais_13563
ER  - 
@article{
author = "Uskoković, Vuk and Ignjatović, Nenad and Škapin, Srečo and Uskoković, Dragan",
year = "2022",
abstract = "Hydroxyapatite (HAp) is the major component of all boney tissues in mammals. Because of this omnipresence in the living world, HAp possesses an exceptional biocompatibility. The downside of this omnipresence, however, comes in the form of its mild to moderate biological activities. One means of augmenting these activities involves the doping of HAp with foreign ions. Here, the first synthesis and characterization of HAp doped with germanium ions is being reported. Germanium was deliberately integrated into the crystal lattice of HAp in the form of germanate anions. Approximately two thirds of the germanate ions introduced into the hydrothermal solution got incorporated into the HAp lattice, yielding the approximate stoichiometry of Ca10-x(PO4)5.62+y(GeO3)0.38(OH)2-z. Germanates replaced the phosphates of stoichiometric HAp and induced the expansion of the HAp lattice both along the screw axis of the calcium ion hexagons and in the direction parallel to the basal plane. Simultaneously, the larger size and the triple valency of the germanate ion as compared to the smaller and trivalent phosphates prompted the bond distortion and charge compensation through defect formation, which reduced the crystallinity and increased the microstrain of the HAp lattice. Vibrational spectroscopic analyses corroborated these crystallographic effects by demonstrating the enhanced heterogeneity of the environments surrounding the active modes after germanate ions were incorporated into HAp. Conforming to La Châtelier's principle, this reduction of the crystallographic order increased the capacity of the material for integration of adventitious carbonates. However, the inclusion of germanate ions induced a partial shift of these carbonates to the hydroxyl channel sites, thus decreasing the ratio of the B-type carbonation to the A-type carbonation. Introduced into HAp, germanium acted as a superb regulator of the particle size and morphology, enhancing their fineness and uniformity. Inclusion of germanate ions also increased the electrophoretic mobility and hydrodynamic surface charge density of the particles by reducing their size and by inducing a more stochastic distribution of terminal ionic groups due to the bending of the crystal facets. Overall, the doping of HAp with germanate ions facilitated the production of narrowly dispersed nanorods with a moderately enhanced structural disorder and with a pronounced potential for the biomedical niche. © 2022 The Author(s)",
journal = "Ceramics International",
title = "Germanium-doped hydroxyapatite: Synthesis and characterization of a new substituted apatite",
pages = "27693-27702",
volume = "48",
number = "19",
doi = "10.1016/j.ceramint.2022.06.068",
url = "https://hdl.handle.net/21.15107/rcub_dais_13563"
}
Uskoković, V., Ignjatović, N., Škapin, S.,& Uskoković, D.. (2022). Germanium-doped hydroxyapatite: Synthesis and characterization of a new substituted apatite. in Ceramics International, 48(19), 27693-27702.
https://doi.org/10.1016/j.ceramint.2022.06.068
https://hdl.handle.net/21.15107/rcub_dais_13563
Uskoković V, Ignjatović N, Škapin S, Uskoković D. Germanium-doped hydroxyapatite: Synthesis and characterization of a new substituted apatite. in Ceramics International. 2022;48(19):27693-27702.
doi:10.1016/j.ceramint.2022.06.068
https://hdl.handle.net/21.15107/rcub_dais_13563 .
Uskoković, Vuk, Ignjatović, Nenad, Škapin, Srečo, Uskoković, Dragan, "Germanium-doped hydroxyapatite: Synthesis and characterization of a new substituted apatite" in Ceramics International, 48, no. 19 (2022):27693-27702,
https://doi.org/10.1016/j.ceramint.2022.06.068 .,
https://hdl.handle.net/21.15107/rcub_dais_13563 .
7
7

Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity

Stanković, Ana; Veselinović, Ljiljana; Škapin, Srečo Davor; Marković, Smilja

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Škapin, Srečo Davor
AU  - Marković, Smilja
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11911
AB  - It is known that the functional properties of zinc oxide (ZnO) materials depend on their physico-chemical properties, such as optical properties and specific surface area. They are defined with structural characteristics, for example: the particle size and morphology, phase composition, crystallite size, crystallinity degree, as well as the crystal structure ordering, i.e., the presence of structural defects. The primary purpose of this study was to synthesize ZnO powders with various physico-chemical properties by optimizing the reaction conditions in different processing methods. For example, reaction temperature or addition of various surfactants such as polyvinyl alcohol, polyvinyl pyrrolidone, or polyethylene oxide. In this study, to vary physico-chemical properties of ZnO particles, four different synthesis methods were employed: mechanochemical, hydrothermal, ultrasonic and microwave processing. Structural and morphological properties of prepared ZnO powders were characterized using a number of techniques such as: X-ray powder diffraction (XRPD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance and photoluminescence (PL) spectroscopy. One of the functional properties of the synthesized ZnO powders that was particularly examined is photocatalytic activity. In order to examine ZnO as a photocatalyst, photodegradation of methylene blue (MB) dye was carried out under simulated and direct sunlight irradiation. The UV–Vis spectra showed that the modification of the particle size and morphology from nanospheres to micro-rods resulted in increased absorption, and a slight red-shift of the absorption edge. Besides, the band gap energy of the synthesized ZnO micro and nanocrystals showed the red shift compared to bulk ZnO. According to the results of a Raman spectroscopy, the enhanced visible light absorption of the ZnO micro and nanocrystals is related to two phenomena: the existence of lattice defects (oxygen vacancies and zinc interstitials), and the particle surface sensitization by different surfactants.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity
SP  - 36
EP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_dais_11911
ER  - 
@conference{
author = "Stanković, Ana and Veselinović, Ljiljana and Škapin, Srečo Davor and Marković, Smilja",
year = "2021",
abstract = "It is known that the functional properties of zinc oxide (ZnO) materials depend on their physico-chemical properties, such as optical properties and specific surface area. They are defined with structural characteristics, for example: the particle size and morphology, phase composition, crystallite size, crystallinity degree, as well as the crystal structure ordering, i.e., the presence of structural defects. The primary purpose of this study was to synthesize ZnO powders with various physico-chemical properties by optimizing the reaction conditions in different processing methods. For example, reaction temperature or addition of various surfactants such as polyvinyl alcohol, polyvinyl pyrrolidone, or polyethylene oxide. In this study, to vary physico-chemical properties of ZnO particles, four different synthesis methods were employed: mechanochemical, hydrothermal, ultrasonic and microwave processing. Structural and morphological properties of prepared ZnO powders were characterized using a number of techniques such as: X-ray powder diffraction (XRPD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance and photoluminescence (PL) spectroscopy. One of the functional properties of the synthesized ZnO powders that was particularly examined is photocatalytic activity. In order to examine ZnO as a photocatalyst, photodegradation of methylene blue (MB) dye was carried out under simulated and direct sunlight irradiation. The UV–Vis spectra showed that the modification of the particle size and morphology from nanospheres to micro-rods resulted in increased absorption, and a slight red-shift of the absorption edge. Besides, the band gap energy of the synthesized ZnO micro and nanocrystals showed the red shift compared to bulk ZnO. According to the results of a Raman spectroscopy, the enhanced visible light absorption of the ZnO micro and nanocrystals is related to two phenomena: the existence of lattice defects (oxygen vacancies and zinc interstitials), and the particle surface sensitization by different surfactants.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity",
pages = "36-36",
url = "https://hdl.handle.net/21.15107/rcub_dais_11911"
}
Stanković, A., Veselinović, L., Škapin, S. D.,& Marković, S.. (2021). Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 36-36.
https://hdl.handle.net/21.15107/rcub_dais_11911
Stanković A, Veselinović L, Škapin SD, Marković S. Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:36-36.
https://hdl.handle.net/21.15107/rcub_dais_11911 .
Stanković, Ana, Veselinović, Ljiljana, Škapin, Srečo Davor, Marković, Smilja, "Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):36-36,
https://hdl.handle.net/21.15107/rcub_dais_11911 .

ZnO nanoparticles with optimized surface-to-bulk defect ratio for potential biomedical application

Marković, Smilja; Stanković, Ana; Drvenica, Ivana; Ristić, B.; Škapin, Srečo Davor

(Belgrade : Materials Research Society of Serbia, 2021)

TY  - CONF
AU  - Marković, Smilja
AU  - Stanković, Ana
AU  - Drvenica, Ivana
AU  - Ristić, B.
AU  - Škapin, Srečo Davor
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12094
AB  - Due to tunable opto-electronic properties ZnO-based nanoparticles (ZnONPs) have been used for application in electronics, optoelectronics, photo(electro)catalysis, etc. Besides, as bio-inert, ZnONPs have a great potential in medicine for biosensing, bioimaging, drug and gene delivery, implants or as antimicrobial and anticancer agents. One of suggested governing mechanism of the biological activities of ZnONPs is based on the formation of reactive oxygen species (ROS). Actually, when ZnONP absorb photon with energy equal or greater than its band gap, electrons (e−) are excited from the valence band (VB) to the conduction band (CB) leaving the holes (h+) in VB. In following, the photogenerated h+ and e− migrate from bulk to surface. The photogenerated h+ at the VB react with water molecules adsorbed at the particle surface to produce hydroxyl radicals (OH•), while e− in CB react with oxygen molecules generating anionic superoxide radicals (O2−•). Radicals can be transformed in highly reactive hydroxyl radicals and so on. Derivatives of this active oxygen can damage the bacterial/tumor cells. However, in sufficiency ROS can damage normal cells as well. Thus, an understanding of ZnONPs crystal structure-activity relationship is crucial for the design of materials safe for application in treating diseases like cancer. In this study we established correlation between the surface-to-bulk defects ratio in ZnONPs and ROS formation. To vary surface-to-bulk defects ratio, series of ZnONP samples were synthesized by microwave processing of precipitate in the presence of a different amount (5, 10 and 20 wt.%) of surfactants, precisely, CTAB and citric acid. The particles crystallinity and phase purity were investigated by X-ray diffraction, Raman and FTIR spectroscopy. The particles morphology and texture properties were observed with FE–SEM and BET, respectively. The optical properties were studied using UV–Vis DRS and PL spectroscopy. ZnONP samples with different surface-to-bulk defect ratio were examined on ROS formation. Surface-to-bulk defect ratio in ZnONP was correlated with ROS formation, besides; their influence on cytotoxicity to normal and cancerous cells was comprehended.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021
T1  - ZnO nanoparticles with optimized surface-to-bulk defect ratio for potential biomedical application
SP  - 51
EP  - 51
UR  - https://hdl.handle.net/21.15107/rcub_dais_12094
ER  - 
@conference{
author = "Marković, Smilja and Stanković, Ana and Drvenica, Ivana and Ristić, B. and Škapin, Srečo Davor",
year = "2021",
abstract = "Due to tunable opto-electronic properties ZnO-based nanoparticles (ZnONPs) have been used for application in electronics, optoelectronics, photo(electro)catalysis, etc. Besides, as bio-inert, ZnONPs have a great potential in medicine for biosensing, bioimaging, drug and gene delivery, implants or as antimicrobial and anticancer agents. One of suggested governing mechanism of the biological activities of ZnONPs is based on the formation of reactive oxygen species (ROS). Actually, when ZnONP absorb photon with energy equal or greater than its band gap, electrons (e−) are excited from the valence band (VB) to the conduction band (CB) leaving the holes (h+) in VB. In following, the photogenerated h+ and e− migrate from bulk to surface. The photogenerated h+ at the VB react with water molecules adsorbed at the particle surface to produce hydroxyl radicals (OH•), while e− in CB react with oxygen molecules generating anionic superoxide radicals (O2−•). Radicals can be transformed in highly reactive hydroxyl radicals and so on. Derivatives of this active oxygen can damage the bacterial/tumor cells. However, in sufficiency ROS can damage normal cells as well. Thus, an understanding of ZnONPs crystal structure-activity relationship is crucial for the design of materials safe for application in treating diseases like cancer. In this study we established correlation between the surface-to-bulk defects ratio in ZnONPs and ROS formation. To vary surface-to-bulk defects ratio, series of ZnONP samples were synthesized by microwave processing of precipitate in the presence of a different amount (5, 10 and 20 wt.%) of surfactants, precisely, CTAB and citric acid. The particles crystallinity and phase purity were investigated by X-ray diffraction, Raman and FTIR spectroscopy. The particles morphology and texture properties were observed with FE–SEM and BET, respectively. The optical properties were studied using UV–Vis DRS and PL spectroscopy. ZnONP samples with different surface-to-bulk defect ratio were examined on ROS formation. Surface-to-bulk defect ratio in ZnONP was correlated with ROS formation, besides; their influence on cytotoxicity to normal and cancerous cells was comprehended.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021",
title = "ZnO nanoparticles with optimized surface-to-bulk defect ratio for potential biomedical application",
pages = "51-51",
url = "https://hdl.handle.net/21.15107/rcub_dais_12094"
}
Marković, S., Stanković, A., Drvenica, I., Ristić, B.,& Škapin, S. D.. (2021). ZnO nanoparticles with optimized surface-to-bulk defect ratio for potential biomedical application. in Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021
Belgrade : Materials Research Society of Serbia., 51-51.
https://hdl.handle.net/21.15107/rcub_dais_12094
Marković S, Stanković A, Drvenica I, Ristić B, Škapin SD. ZnO nanoparticles with optimized surface-to-bulk defect ratio for potential biomedical application. in Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021. 2021;:51-51.
https://hdl.handle.net/21.15107/rcub_dais_12094 .
Marković, Smilja, Stanković, Ana, Drvenica, Ivana, Ristić, B., Škapin, Srečo Davor, "ZnO nanoparticles with optimized surface-to-bulk defect ratio for potential biomedical application" in Programme and the Book of abstracts / Twenty-second Annual Conference YUCOMAT 2021 Herceg Novi, Montenegro, August 30 - September 3, 2021 (2021):51-51,
https://hdl.handle.net/21.15107/rcub_dais_12094 .

BT/ZnO composite materials with improved functional properties

Stanković, Ana; Filipović, Suzana; Stojković Simatović, Ivana; Škapin, Srečo Davor; Mančić, Lidija; Marković, Smilja

(Belgrade : Innovation Center of Faculty of Mechanical Engineering, 2021)

TY  - CONF
AU  - Stanković, Ana
AU  - Filipović, Suzana
AU  - Stojković Simatović, Ivana
AU  - Škapin, Srečo Davor
AU  - Mančić, Lidija
AU  - Marković, Smilja
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12350
AB  - Due to a high-power conversion efficiency (PCE), perovskite solar cells (PSCs) are the most developing area of research in the past decade. Although lead−based inorganic−organic PSCs has achieved the highest PCE of 25.2%, the toxic nature of lead and poor stability of organic components strongly limits its commercialization. This problem can be overcome by developing of inorganic perovskites with a high PCE. Barium titanate (BaTiO3, BT) belongs to the perovskite crystal structure materials with remarkable dielectric, ferroelectric and ferromagnetic properties. In this research, to enhance functional properties of BT we employed functionalization with MEMO silane followed by in-situ alloying with ZnO in different BT to ZnO wt.%. Synthesized ZnO@MEMO@BT composites were tested as photo- and photo-electro catalysts under simulated sunlight irradiation. An enhanced catalytic activity of ZnO@MEMO@BT composites, compared to pure BT is probably due to the modified binding energy and an optimized band structure. In order to investigate the origin of improved catalytic efficiency, pristine BT and composites were characterized using a variety of techniques, including X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance and photoluminescence spectroscopy. The enhanced photo(electro)catalytic activity of the composite materials can be attributed to the synergetic effect of the surface defects and the ZnO/BT heterojunction particles, which enabled charge separation, thereby hindering the recombination of photogenerated carriers.
PB  - Belgrade : Innovation Center of Faculty of Mechanical Engineering
C3  - Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia
T1  - BT/ZnO composite materials with improved functional properties
SP  - 81
EP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_dais_12350
ER  - 
@conference{
author = "Stanković, Ana and Filipović, Suzana and Stojković Simatović, Ivana and Škapin, Srečo Davor and Mančić, Lidija and Marković, Smilja",
year = "2021",
abstract = "Due to a high-power conversion efficiency (PCE), perovskite solar cells (PSCs) are the most developing area of research in the past decade. Although lead−based inorganic−organic PSCs has achieved the highest PCE of 25.2%, the toxic nature of lead and poor stability of organic components strongly limits its commercialization. This problem can be overcome by developing of inorganic perovskites with a high PCE. Barium titanate (BaTiO3, BT) belongs to the perovskite crystal structure materials with remarkable dielectric, ferroelectric and ferromagnetic properties. In this research, to enhance functional properties of BT we employed functionalization with MEMO silane followed by in-situ alloying with ZnO in different BT to ZnO wt.%. Synthesized ZnO@MEMO@BT composites were tested as photo- and photo-electro catalysts under simulated sunlight irradiation. An enhanced catalytic activity of ZnO@MEMO@BT composites, compared to pure BT is probably due to the modified binding energy and an optimized band structure. In order to investigate the origin of improved catalytic efficiency, pristine BT and composites were characterized using a variety of techniques, including X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance and photoluminescence spectroscopy. The enhanced photo(electro)catalytic activity of the composite materials can be attributed to the synergetic effect of the surface defects and the ZnO/BT heterojunction particles, which enabled charge separation, thereby hindering the recombination of photogenerated carriers.",
publisher = "Belgrade : Innovation Center of Faculty of Mechanical Engineering",
journal = "Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia",
title = "BT/ZnO composite materials with improved functional properties",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_dais_12350"
}
Stanković, A., Filipović, S., Stojković Simatović, I., Škapin, S. D., Mančić, L.,& Marković, S.. (2021). BT/ZnO composite materials with improved functional properties. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia
Belgrade : Innovation Center of Faculty of Mechanical Engineering., 81-81.
https://hdl.handle.net/21.15107/rcub_dais_12350
Stanković A, Filipović S, Stojković Simatović I, Škapin SD, Mančić L, Marković S. BT/ZnO composite materials with improved functional properties. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia. 2021;:81-81.
https://hdl.handle.net/21.15107/rcub_dais_12350 .
Stanković, Ana, Filipović, Suzana, Stojković Simatović, Ivana, Škapin, Srečo Davor, Mančić, Lidija, Marković, Smilja, "BT/ZnO composite materials with improved functional properties" in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia (2021):81-81,
https://hdl.handle.net/21.15107/rcub_dais_12350 .

Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism

Jugović, Dragana; Milović, Miloš; Ivanovski, Valentin N.; Škapin, Srečo; Barudžija, Tanja; Mitrić, Miodrag

(Springer Science and Business Media LLC, 2021)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo
AU  - Barudžija, Tanja
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11880
AB  - Fayalite Fe2SiO4 is synthesized by the solid-state reaction without ball milling. The obtained powder is further structurally and electrochemically examined. Field emission scanning electron microscopy (FESEM) showed that microsized powder is obtained. X-ray powder diffraction (XRD) pattern is used for both phase identification and crystal structure Rietveld refinement. The structure is refined in the orthorhombic Pbnm space group. Mössbauer spectroscopy revealed traces of Fe3+ impurity. The bond valence mapping method is applied for the first time on Fe2SiO4 framework. It shows isolated, non-connected isosurfaces of constant E(Li), which further supports the assumptions of the conversion reactions. Electrochemical performances are investigated through galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). Ex-situ XRD and Fourier transform infrared spectroscopy (FTIR) analyses are combined to monitor phase change after galvanostatic cycling and to reveal the working mechanism during electrochemical lithiation.
PB  - Springer Science and Business Media LLC
T2  - Journal of Electroceramics
T1  - Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism
DO  - 10.1007/s10832-021-00260-9
UR  - https://hdl.handle.net/21.15107/rcub_dais_11880
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Ivanovski, Valentin N. and Škapin, Srečo and Barudžija, Tanja and Mitrić, Miodrag",
year = "2021",
abstract = "Fayalite Fe2SiO4 is synthesized by the solid-state reaction without ball milling. The obtained powder is further structurally and electrochemically examined. Field emission scanning electron microscopy (FESEM) showed that microsized powder is obtained. X-ray powder diffraction (XRD) pattern is used for both phase identification and crystal structure Rietveld refinement. The structure is refined in the orthorhombic Pbnm space group. Mössbauer spectroscopy revealed traces of Fe3+ impurity. The bond valence mapping method is applied for the first time on Fe2SiO4 framework. It shows isolated, non-connected isosurfaces of constant E(Li), which further supports the assumptions of the conversion reactions. Electrochemical performances are investigated through galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). Ex-situ XRD and Fourier transform infrared spectroscopy (FTIR) analyses are combined to monitor phase change after galvanostatic cycling and to reveal the working mechanism during electrochemical lithiation.",
publisher = "Springer Science and Business Media LLC",
journal = "Journal of Electroceramics",
title = "Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism",
doi = "10.1007/s10832-021-00260-9",
url = "https://hdl.handle.net/21.15107/rcub_dais_11880"
}
Jugović, D., Milović, M., Ivanovski, V. N., Škapin, S., Barudžija, T.,& Mitrić, M.. (2021). Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism. in Journal of Electroceramics
Springer Science and Business Media LLC..
https://doi.org/10.1007/s10832-021-00260-9
https://hdl.handle.net/21.15107/rcub_dais_11880
Jugović D, Milović M, Ivanovski VN, Škapin S, Barudžija T, Mitrić M. Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism. in Journal of Electroceramics. 2021;.
doi:10.1007/s10832-021-00260-9
https://hdl.handle.net/21.15107/rcub_dais_11880 .
Jugović, Dragana, Milović, Miloš, Ivanovski, Valentin N., Škapin, Srečo, Barudžija, Tanja, Mitrić, Miodrag, "Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism" in Journal of Electroceramics (2021),
https://doi.org/10.1007/s10832-021-00260-9 .,
https://hdl.handle.net/21.15107/rcub_dais_11880 .
5
4

Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Marković, Smilja

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d
UR  - https://dais.sanu.ac.rs/123456789/9543
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry
SP  - 22078
EP  - 22095
VL  - 22
IS  - 38
DO  - 10.1039/D0CP03377D
UR  - https://hdl.handle.net/21.15107/rcub_dais_9543
ER  - 
@article{
author = "Rajić, Vladimir and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Marković, Smilja",
year = "2020",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22078-22095",
volume = "22",
number = "38",
doi = "10.1039/D0CP03377D",
url = "https://hdl.handle.net/21.15107/rcub_dais_9543"
}
Rajić, V., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković Častvan, I.,& Marković, S.. (2020). Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(38), 22078-22095.
https://doi.org/10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9543
Rajić V, Stojković Simatović I, Veselinović L, Belošević Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković Častvan I, Marković S. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics. 2020;22(38):22078-22095.
doi:10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9543 .
Rajić, Vladimir, Stojković Simatović, Ivana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Novaković, Mirjana, Popović, Maja, Škapin, Srečo Davor, Mojović, Miloš, Stojadinović, Stevan, Rac, Vladislav, Janković Častvan, Ivona, Marković, Smilja, "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry" in Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/D0CP03377D .,
https://hdl.handle.net/21.15107/rcub_dais_9543 .
11
3
10

Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Marković, Smilja

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d
UR  - https://dais.sanu.ac.rs/123456789/9544
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry
SP  - 22078
EP  - 22095
VL  - 22
IS  - 38
DO  - 10.1039/D0CP03377D
UR  - https://hdl.handle.net/21.15107/rcub_dais_9544
ER  - 
@article{
author = "Rajić, Vladimir and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Marković, Smilja",
year = "2020",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22078-22095",
volume = "22",
number = "38",
doi = "10.1039/D0CP03377D",
url = "https://hdl.handle.net/21.15107/rcub_dais_9544"
}
Rajić, V., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković Častvan, I.,& Marković, S.. (2020). Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(38), 22078-22095.
https://doi.org/10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9544
Rajić V, Stojković Simatović I, Veselinović L, Belošević Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković Častvan I, Marković S. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics. 2020;22(38):22078-22095.
doi:10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9544 .
Rajić, Vladimir, Stojković Simatović, Ivana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Novaković, Mirjana, Popović, Maja, Škapin, Srečo Davor, Mojović, Miloš, Stojadinović, Stevan, Rac, Vladislav, Janković Častvan, Ivona, Marković, Smilja, "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry" in Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/D0CP03377D .,
https://hdl.handle.net/21.15107/rcub_dais_9544 .
11
3
10

Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Ivanovski, Valentin N.; Škapin, Srečo Davor; Dojčinović, Biljana; Uskoković, Dragan

(Elsevier, 2019)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo Davor
AU  - Dojčinović, Biljana
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/4937
AB  - A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose
SP  - 912
EP  - 919
VL  - 786
DO  - 10.1016/j.jallcom.2019.01.392
UR  - https://hdl.handle.net/21.15107/rcub_dais_4937
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Ivanovski, Valentin N. and Škapin, Srečo Davor and Dojčinović, Biljana and Uskoković, Dragan",
year = "2019",
abstract = "A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose",
pages = "912-919",
volume = "786",
doi = "10.1016/j.jallcom.2019.01.392",
url = "https://hdl.handle.net/21.15107/rcub_dais_4937"
}
Jugović, D., Mitrić, M., Milović, M., Ivanovski, V. N., Škapin, S. D., Dojčinović, B.,& Uskoković, D.. (2019). Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose. in Journal of Alloys and Compounds
Elsevier., 786, 912-919.
https://doi.org/10.1016/j.jallcom.2019.01.392
https://hdl.handle.net/21.15107/rcub_dais_4937
Jugović D, Mitrić M, Milović M, Ivanovski VN, Škapin SD, Dojčinović B, Uskoković D. Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose. in Journal of Alloys and Compounds. 2019;786:912-919.
doi:10.1016/j.jallcom.2019.01.392
https://hdl.handle.net/21.15107/rcub_dais_4937 .
Jugović, Dragana, Mitrić, Miodrag, Milović, Miloš, Ivanovski, Valentin N., Škapin, Srečo Davor, Dojčinović, Biljana, Uskoković, Dragan, "Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose" in Journal of Alloys and Compounds, 786 (2019):912-919,
https://doi.org/10.1016/j.jallcom.2019.01.392 .,
https://hdl.handle.net/21.15107/rcub_dais_4937 .
4
3
6

Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Ivanovski, Valentin N.; Škapin, Srečo Davor; Dojčinović, Biljana; Uskoković, Dragan

(Elsevier, 2019)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo Davor
AU  - Dojčinović, Biljana
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/4938
AB  - A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose
SP  - 912
EP  - 919
VL  - 786
DO  - 10.1016/j.jallcom.2019.01.392
UR  - https://hdl.handle.net/21.15107/rcub_dais_4938
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Ivanovski, Valentin N. and Škapin, Srečo Davor and Dojčinović, Biljana and Uskoković, Dragan",
year = "2019",
abstract = "A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose",
pages = "912-919",
volume = "786",
doi = "10.1016/j.jallcom.2019.01.392",
url = "https://hdl.handle.net/21.15107/rcub_dais_4938"
}
Jugović, D., Mitrić, M., Milović, M., Ivanovski, V. N., Škapin, S. D., Dojčinović, B.,& Uskoković, D.. (2019). Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose. in Journal of Alloys and Compounds
Elsevier., 786, 912-919.
https://doi.org/10.1016/j.jallcom.2019.01.392
https://hdl.handle.net/21.15107/rcub_dais_4938
Jugović D, Mitrić M, Milović M, Ivanovski VN, Škapin SD, Dojčinović B, Uskoković D. Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose. in Journal of Alloys and Compounds. 2019;786:912-919.
doi:10.1016/j.jallcom.2019.01.392
https://hdl.handle.net/21.15107/rcub_dais_4938 .
Jugović, Dragana, Mitrić, Miodrag, Milović, Miloš, Ivanovski, Valentin N., Škapin, Srečo Davor, Dojčinović, Biljana, Uskoković, Dragan, "Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose" in Journal of Alloys and Compounds, 786 (2019):912-919,
https://doi.org/10.1016/j.jallcom.2019.01.392 .,
https://hdl.handle.net/21.15107/rcub_dais_4938 .
4
3
6

Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372

Jugović, Dragana; Milović, Miloš; Popović, Maja; Kusigerski, Vladan; Škapin, Srečo Davor; Rakočević, Zlatko; Mitrić, Miodrag

(2019)

TY  - DATA
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Popović, Maja
AU  - Kusigerski, Vladan
AU  - Škapin, Srečo Davor
AU  - Rakočević, Zlatko
AU  - Mitrić, Miodrag
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/5970
AB  - Figure S1. The evolution of FTIR spectra during the synthesis of pristine NaxCoO2; Figure S2. X-ray diffractograms taken at different stages of a solid-state reaction between Na2CO3, Co3O4, and NaF. The patterns at the bottom are taken from ICDD PDF database as reference patterns for phase identification
T2  - Journal of Alloys and Compounds
T1  - Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372
UR  - https://hdl.handle.net/21.15107/rcub_dais_5970
ER  - 
@misc{
author = "Jugović, Dragana and Milović, Miloš and Popović, Maja and Kusigerski, Vladan and Škapin, Srečo Davor and Rakočević, Zlatko and Mitrić, Miodrag",
year = "2019",
abstract = "Figure S1. The evolution of FTIR spectra during the synthesis of pristine NaxCoO2; Figure S2. X-ray diffractograms taken at different stages of a solid-state reaction between Na2CO3, Co3O4, and NaF. The patterns at the bottom are taken from ICDD PDF database as reference patterns for phase identification",
journal = "Journal of Alloys and Compounds",
title = "Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372",
url = "https://hdl.handle.net/21.15107/rcub_dais_5970"
}
Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S. D., Rakočević, Z.,& Mitrić, M.. (2019). Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372. in Journal of Alloys and Compounds.
https://hdl.handle.net/21.15107/rcub_dais_5970
Jugović D, Milović M, Popović M, Kusigerski V, Škapin SD, Rakočević Z, Mitrić M. Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372. in Journal of Alloys and Compounds. 2019;.
https://hdl.handle.net/21.15107/rcub_dais_5970 .
Jugović, Dragana, Milović, Miloš, Popović, Maja, Kusigerski, Vladan, Škapin, Srečo Davor, Rakočević, Zlatko, Mitrić, Miodrag, "Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372" in Journal of Alloys and Compounds (2019),
https://hdl.handle.net/21.15107/rcub_dais_5970 .

The structure and electrochemical properties of fayalite Fe2SiO4

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Ivanovski, Valentin N.; Škapin, Srečo Davor; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo Davor
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6674
AB  - Fayalite has been found various applications in many fields. Here is presented its use as anode material for lithium ion batteries. The syntheses of Fe2SiO4 and its composite with carbon are conducted through solid-state reaction at 850 °C under inert atmosphere of argon, using cheap and abundant precursors (Fe(NO3)3×9H2O and amorphous silica). Citric acid served as carbon source. The phase-purity of synthesized powders is checked by X-ray powder diffraction. The crystal structure of the powders is refined in orthorhombic Pbnm space group. Half-cell configuration, with lithium metal as counter electrode and fayalite as working electrode, is used for electrochemical measurements: galvanostatic cycling and electrochemical impedance spectroscopy.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - The structure and electrochemical properties of fayalite Fe2SiO4
SP  - 47
EP  - 47
UR  - https://hdl.handle.net/21.15107/rcub_dais_6674
ER  - 
@conference{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Ivanovski, Valentin N. and Škapin, Srečo Davor and Uskoković, Dragan",
year = "2019",
abstract = "Fayalite has been found various applications in many fields. Here is presented its use as anode material for lithium ion batteries. The syntheses of Fe2SiO4 and its composite with carbon are conducted through solid-state reaction at 850 °C under inert atmosphere of argon, using cheap and abundant precursors (Fe(NO3)3×9H2O and amorphous silica). Citric acid served as carbon source. The phase-purity of synthesized powders is checked by X-ray powder diffraction. The crystal structure of the powders is refined in orthorhombic Pbnm space group. Half-cell configuration, with lithium metal as counter electrode and fayalite as working electrode, is used for electrochemical measurements: galvanostatic cycling and electrochemical impedance spectroscopy.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "The structure and electrochemical properties of fayalite Fe2SiO4",
pages = "47-47",
url = "https://hdl.handle.net/21.15107/rcub_dais_6674"
}
Jugović, D., Mitrić, M., Milović, M., Ivanovski, V. N., Škapin, S. D.,& Uskoković, D.. (2019). The structure and electrochemical properties of fayalite Fe2SiO4. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 47-47.
https://hdl.handle.net/21.15107/rcub_dais_6674
Jugović D, Mitrić M, Milović M, Ivanovski VN, Škapin SD, Uskoković D. The structure and electrochemical properties of fayalite Fe2SiO4. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:47-47.
https://hdl.handle.net/21.15107/rcub_dais_6674 .
Jugović, Dragana, Mitrić, Miodrag, Milović, Miloš, Ivanovski, Valentin N., Škapin, Srečo Davor, Uskoković, Dragan, "The structure and electrochemical properties of fayalite Fe2SiO4" in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):47-47,
https://hdl.handle.net/21.15107/rcub_dais_6674 .

Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging

Ignjatović, Nenad; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana; Uskoković, Vuk; Lazić, Snežana; Marković, Smilja; Lazarević, Miloš M.; Uskoković, Dragan

(Springer Nature, 2019)

TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana
AU  - Uskoković, Vuk
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Lazarević, Miloš M.
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://www.nature.com/articles/s41598-019-52885-0
UR  - https://dais.sanu.ac.rs/123456789/6950
AB  - Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.
PB  - Springer Nature
T2  - Scientific Reports
T1  - Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging
SP  - 1
EP  - 15
VL  - 9
IS  - 1
DO  - 10.1038/s41598-019-52885-0
UR  - https://hdl.handle.net/21.15107/rcub_dais_6950
ER  - 
@article{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana and Uskoković, Vuk and Lazić, Snežana and Marković, Smilja and Lazarević, Miloš M. and Uskoković, Dragan",
year = "2019",
abstract = "Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.",
publisher = "Springer Nature",
journal = "Scientific Reports",
title = "Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging",
pages = "1-15",
volume = "9",
number = "1",
doi = "10.1038/s41598-019-52885-0",
url = "https://hdl.handle.net/21.15107/rcub_dais_6950"
}
Ignjatović, N., Mančić, L., Vuković, M., Stojanović, Z. S., Nikolić, M. G., Škapin, S. D., Jovanović, S., Veselinović, L., Uskoković, V., Lazić, S., Marković, S., Lazarević, M. M.,& Uskoković, D.. (2019). Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. in Scientific Reports
Springer Nature., 9(1), 1-15.
https://doi.org/10.1038/s41598-019-52885-0
https://hdl.handle.net/21.15107/rcub_dais_6950
Ignjatović N, Mančić L, Vuković M, Stojanović ZS, Nikolić MG, Škapin SD, Jovanović S, Veselinović L, Uskoković V, Lazić S, Marković S, Lazarević MM, Uskoković D. Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. in Scientific Reports. 2019;9(1):1-15.
doi:10.1038/s41598-019-52885-0
https://hdl.handle.net/21.15107/rcub_dais_6950 .
Ignjatović, Nenad, Mančić, Lidija, Vuković, Marina, Stojanović, Zoran S., Nikolić, Marko G., Škapin, Srečo Davor, Jovanović, Sonja, Veselinović, Ljiljana, Uskoković, Vuk, Lazić, Snežana, Marković, Smilja, Lazarević, Miloš M., Uskoković, Dragan, "Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging" in Scientific Reports, 9, no. 1 (2019):1-15,
https://doi.org/10.1038/s41598-019-52885-0 .,
https://hdl.handle.net/21.15107/rcub_dais_6950 .
1
79
26
73

Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents

Ignjatović, Nenad; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana; Lazić, Snežana; Marković, Smilja; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6676
AB  - Hydroxyapatite (HAp) has been widely used as bone reconstruction materials due to their similarity to bone tissue. The improvement of HAp properties was achieved by doping its crystal lattice with different ions. Lanthanides, i.e. Rare Earth Elements (RE) are also suitable for doping HAp. The aim of the presented research was to investigate the possibility of creating lumino-magnetic particles of HAp doped with gadolinium (Gd3+) ions and co-doped with ytterbium/thulium (Yb3+/Tm3+) or europium (Eu3+) ions for potential use in multimodal imaging (MI). Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), and lumino-magnetic HAp:Gd/Yb/Tm (Ca4.85Gd0.03Yb0.1Tm0.02(PO4)3(OH)) and HAp:Gd/Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) particles were synthesized using emulsification process and hydrothermal processing. All synthesized particles had an elongated shape and exhibited a paramagnetic behavior. Reduction of the unit cell volume as a result of replacement of Ca2+ ions by ions with a smaller ionic radius (Gd3+, Yb3+, Tm3+, Eu3+) confirmed by using XRD and Rietveld refined plots. The energy band gap values of the synthesized samples range from 4.93 to 3.18 eV and decrease in the following order: HAp:Gd >HAp>HAp:Gd/Eu>HAp:Gd/Yb/Tm. The results of photoluminescence emission spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu particles showed characteristic transitions of Tm3+ and Eu3+, respectively.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents
SP  - 76
EP  - 76
UR  - https://hdl.handle.net/21.15107/rcub_dais_6676
ER  - 
@conference{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana and Lazić, Snežana and Marković, Smilja and Uskoković, Dragan",
year = "2019",
abstract = "Hydroxyapatite (HAp) has been widely used as bone reconstruction materials due to their similarity to bone tissue. The improvement of HAp properties was achieved by doping its crystal lattice with different ions. Lanthanides, i.e. Rare Earth Elements (RE) are also suitable for doping HAp. The aim of the presented research was to investigate the possibility of creating lumino-magnetic particles of HAp doped with gadolinium (Gd3+) ions and co-doped with ytterbium/thulium (Yb3+/Tm3+) or europium (Eu3+) ions for potential use in multimodal imaging (MI). Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), and lumino-magnetic HAp:Gd/Yb/Tm (Ca4.85Gd0.03Yb0.1Tm0.02(PO4)3(OH)) and HAp:Gd/Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) particles were synthesized using emulsification process and hydrothermal processing. All synthesized particles had an elongated shape and exhibited a paramagnetic behavior. Reduction of the unit cell volume as a result of replacement of Ca2+ ions by ions with a smaller ionic radius (Gd3+, Yb3+, Tm3+, Eu3+) confirmed by using XRD and Rietveld refined plots. The energy band gap values of the synthesized samples range from 4.93 to 3.18 eV and decrease in the following order: HAp:Gd >HAp>HAp:Gd/Eu>HAp:Gd/Yb/Tm. The results of photoluminescence emission spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu particles showed characteristic transitions of Tm3+ and Eu3+, respectively.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents",
pages = "76-76",
url = "https://hdl.handle.net/21.15107/rcub_dais_6676"
}
Ignjatović, N., Mančić, L., Vuković, M., Stojanović, Z. S., Nikolić, M. G., Škapin, S. D., Jovanović, S., Veselinović, L., Lazić, S., Marković, S.,& Uskoković, D.. (2019). Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 76-76.
https://hdl.handle.net/21.15107/rcub_dais_6676
Ignjatović N, Mančić L, Vuković M, Stojanović ZS, Nikolić MG, Škapin SD, Jovanović S, Veselinović L, Lazić S, Marković S, Uskoković D. Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:76-76.
https://hdl.handle.net/21.15107/rcub_dais_6676 .
Ignjatović, Nenad, Mančić, Lidija, Vuković, Marina, Stojanović, Zoran S., Nikolić, Marko G., Škapin, Srečo Davor, Jovanović, Sonja, Veselinović, Ljiljana, Lazić, Snežana, Marković, Smilja, Uskoković, Dragan, "Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents" in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):76-76,
https://hdl.handle.net/21.15107/rcub_dais_6676 .

Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder

Jugović, Dragana; Milović, Miloš; Popović, Maja; Kusigerski, Vladan; Škapin, Srečo Davor; Rakočević, Zlatko; Mitrić, Miodrag

(2019)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Popović, Maja
AU  - Kusigerski, Vladan
AU  - Škapin, Srečo Davor
AU  - Rakočević, Zlatko
AU  - Mitrić, Miodrag
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0925838818336375
UR  - https://dais.sanu.ac.rs/123456789/3980
AB  - The main goal of this research has been to investigate for the first time the effects of fluorination on the crystal structure, magnetic, and electrochemical properties of the P2-type NaxCoO2 powder. Sodium cobalt oxide with a P2-type structure is synthesized by a modified solid-state reaction consisting of alternating processes of rapid heating up to 750 °C and rapid cooling to the room temperature. The obtained powder is fluorinated using a gas-solid reaction with NH4HF2 as fluorinating agent. Fluorination causes a decrease of sodium content in the parent phase with the concurrent formation of the minor phases of Na2CO3 and NaF. The structure of NaxCoO2 in both powders is refined in P63/mmc space group. The results of the Rietveld refinement combined with the findings from the XPS measurements confirm the Na0.76CoO2 and Na0.44CoO1.96F0.04 stoichiometries for the pristine and fluorinated powders, respectively, which indicates that 4 at.% of fluorine ions per formula unit are incorporated in the structure. Preliminary electrochemical investigations have revealed an improved charge/discharge performance. The influence of fluorination on morphology and magnetic properties has also been examined.
T2  - Journal of Alloys and Compounds
T1  - Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder
SP  - 30
EP  - 37
VL  - 774
DO  - 10.1016/j.jallcom.2018.09.372
UR  - https://hdl.handle.net/21.15107/rcub_dais_3980
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Popović, Maja and Kusigerski, Vladan and Škapin, Srečo Davor and Rakočević, Zlatko and Mitrić, Miodrag",
year = "2019",
abstract = "The main goal of this research has been to investigate for the first time the effects of fluorination on the crystal structure, magnetic, and electrochemical properties of the P2-type NaxCoO2 powder. Sodium cobalt oxide with a P2-type structure is synthesized by a modified solid-state reaction consisting of alternating processes of rapid heating up to 750 °C and rapid cooling to the room temperature. The obtained powder is fluorinated using a gas-solid reaction with NH4HF2 as fluorinating agent. Fluorination causes a decrease of sodium content in the parent phase with the concurrent formation of the minor phases of Na2CO3 and NaF. The structure of NaxCoO2 in both powders is refined in P63/mmc space group. The results of the Rietveld refinement combined with the findings from the XPS measurements confirm the Na0.76CoO2 and Na0.44CoO1.96F0.04 stoichiometries for the pristine and fluorinated powders, respectively, which indicates that 4 at.% of fluorine ions per formula unit are incorporated in the structure. Preliminary electrochemical investigations have revealed an improved charge/discharge performance. The influence of fluorination on morphology and magnetic properties has also been examined.",
journal = "Journal of Alloys and Compounds",
title = "Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder",
pages = "30-37",
volume = "774",
doi = "10.1016/j.jallcom.2018.09.372",
url = "https://hdl.handle.net/21.15107/rcub_dais_3980"
}
Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S. D., Rakočević, Z.,& Mitrić, M.. (2019). Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. in Journal of Alloys and Compounds, 774, 30-37.
https://doi.org/10.1016/j.jallcom.2018.09.372
https://hdl.handle.net/21.15107/rcub_dais_3980
Jugović D, Milović M, Popović M, Kusigerski V, Škapin SD, Rakočević Z, Mitrić M. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. in Journal of Alloys and Compounds. 2019;774:30-37.
doi:10.1016/j.jallcom.2018.09.372
https://hdl.handle.net/21.15107/rcub_dais_3980 .
Jugović, Dragana, Milović, Miloš, Popović, Maja, Kusigerski, Vladan, Škapin, Srečo Davor, Rakočević, Zlatko, Mitrić, Miodrag, "Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder" in Journal of Alloys and Compounds, 774 (2019):30-37,
https://doi.org/10.1016/j.jallcom.2018.09.372 .,
https://hdl.handle.net/21.15107/rcub_dais_3980 .
15
10
13