Pjanović, Rada

Link to this page

Authority KeyName Variants
45204ee9-017a-43bd-b78b-5ecaca7c3455
  • Pjanović, Rada (4)

Author's Bibliography

Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid

Batinić, Petar M.; Đorđević, Verica; Obradović, Nataša S.; Krstić, Aleksandar D.; Stevanović, Sanja; Balanč, Bojana; Marković, Smilja; Pjanović, Rada; Mijin, Dušan; Bugarski, Branko

(Wiley, 2023)

TY  - JOUR
AU  - Batinić, Petar M.
AU  - Đorđević, Verica
AU  - Obradović, Nataša S.
AU  - Krstić, Aleksandar D.
AU  - Stevanović, Sanja
AU  - Balanč, Bojana
AU  - Marković, Smilja
AU  - Pjanović, Rada
AU  - Mijin, Dušan
AU  - Bugarski, Branko
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16165
AB  - Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.
PB  - Wiley
T2  - European Journal of Lipid Science and Technology
T1  - Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid
SP  - 2200169
VL  - 125
IS  - 7
DO  - 10.1002/ejlt.202200169
UR  - https://hdl.handle.net/21.15107/rcub_dais_16165
ER  - 
@article{
author = "Batinić, Petar M. and Đorđević, Verica and Obradović, Nataša S. and Krstić, Aleksandar D. and Stevanović, Sanja and Balanč, Bojana and Marković, Smilja and Pjanović, Rada and Mijin, Dušan and Bugarski, Branko",
year = "2023",
abstract = "Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.",
publisher = "Wiley",
journal = "European Journal of Lipid Science and Technology",
title = "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid",
pages = "2200169",
volume = "125",
number = "7",
doi = "10.1002/ejlt.202200169",
url = "https://hdl.handle.net/21.15107/rcub_dais_16165"
}
Batinić, P. M., Đorđević, V., Obradović, N. S., Krstić, A. D., Stevanović, S., Balanč, B., Marković, S., Pjanović, R., Mijin, D.,& Bugarski, B.. (2023). Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology
Wiley., 125(7), 2200169.
https://doi.org/10.1002/ejlt.202200169
https://hdl.handle.net/21.15107/rcub_dais_16165
Batinić PM, Đorđević V, Obradović NS, Krstić AD, Stevanović S, Balanč B, Marković S, Pjanović R, Mijin D, Bugarski B. Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology. 2023;125(7):2200169.
doi:10.1002/ejlt.202200169
https://hdl.handle.net/21.15107/rcub_dais_16165 .
Batinić, Petar M., Đorđević, Verica, Obradović, Nataša S., Krstić, Aleksandar D., Stevanović, Sanja, Balanč, Bojana, Marković, Smilja, Pjanović, Rada, Mijin, Dušan, Bugarski, Branko, "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid" in European Journal of Lipid Science and Technology, 125, no. 7 (2023):2200169,
https://doi.org/10.1002/ejlt.202200169 .,
https://hdl.handle.net/21.15107/rcub_dais_16165 .
1
1

Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid

Batinić, Petar M.; Đorđević, Verica; Obradović, Nataša S.; Krstić, Aleksandar D.; Stevanović, Sanja; Balanč, Bojana; Marković, Smilja; Pjanović, Rada; Mijin, Dušan; Bugarski, Branko

(Wiley, 2023)

TY  - JOUR
AU  - Batinić, Petar M.
AU  - Đorđević, Verica
AU  - Obradović, Nataša S.
AU  - Krstić, Aleksandar D.
AU  - Stevanović, Sanja
AU  - Balanč, Bojana
AU  - Marković, Smilja
AU  - Pjanović, Rada
AU  - Mijin, Dušan
AU  - Bugarski, Branko
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14283
AB  - Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.
PB  - Wiley
T2  - European Journal of Lipid Science and Technology
T1  - Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid
SP  - 2200169
VL  - 125
IS  - 7
DO  - 10.1002/ejlt.202200169
UR  - https://hdl.handle.net/21.15107/rcub_dais_14283
ER  - 
@article{
author = "Batinić, Petar M. and Đorđević, Verica and Obradović, Nataša S. and Krstić, Aleksandar D. and Stevanović, Sanja and Balanč, Bojana and Marković, Smilja and Pjanović, Rada and Mijin, Dušan and Bugarski, Branko",
year = "2023",
abstract = "Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.",
publisher = "Wiley",
journal = "European Journal of Lipid Science and Technology",
title = "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid",
pages = "2200169",
volume = "125",
number = "7",
doi = "10.1002/ejlt.202200169",
url = "https://hdl.handle.net/21.15107/rcub_dais_14283"
}
Batinić, P. M., Đorđević, V., Obradović, N. S., Krstić, A. D., Stevanović, S., Balanč, B., Marković, S., Pjanović, R., Mijin, D.,& Bugarski, B.. (2023). Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology
Wiley., 125(7), 2200169.
https://doi.org/10.1002/ejlt.202200169
https://hdl.handle.net/21.15107/rcub_dais_14283
Batinić PM, Đorđević V, Obradović NS, Krstić AD, Stevanović S, Balanč B, Marković S, Pjanović R, Mijin D, Bugarski B. Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology. 2023;125(7):2200169.
doi:10.1002/ejlt.202200169
https://hdl.handle.net/21.15107/rcub_dais_14283 .
Batinić, Petar M., Đorđević, Verica, Obradović, Nataša S., Krstić, Aleksandar D., Stevanović, Sanja, Balanč, Bojana, Marković, Smilja, Pjanović, Rada, Mijin, Dušan, Bugarski, Branko, "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid" in European Journal of Lipid Science and Technology, 125, no. 7 (2023):2200169,
https://doi.org/10.1002/ejlt.202200169 .,
https://hdl.handle.net/21.15107/rcub_dais_14283 .
1

Freeze versus Spray Drying for Dry Wild Thyme (Thymus serpyllum L.) Extract Formulations: The Impact of Gelatin as a Coating Material

Jovanović, Aleksandra A.; Lević, Steva; Pavlović, Vladimir B.; Marković, Smilja; Pjanović, Rada; Đorđević, Verica B.; Nedović, Viktor; Bugarski, Branko

(2021)

TY  - GEN
AU  - Jovanović, Aleksandra A.
AU  - Lević, Steva
AU  - Pavlović, Vladimir B.
AU  - Marković, Smilja
AU  - Pjanović, Rada
AU  - Đorđević, Verica B.
AU  - Nedović, Viktor
AU  - Bugarski, Branko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11637
AB  - Freeze drying was compared with spray drying regarding feasibility to process wild thyme drug in order to obtain dry formulations at laboratory scale starting from liquid extracts produced by different extraction methods: maceration, heat-, ultrasound-, and microwave-assisted extractions. Higher powder yield (based on the dry weight prior to extraction) was achieved by freeze than spray drying and lower loss of total polyphenol content (TPC) and total flavonoid content (TFC) due to the drying process. Gelatin as a coating agent (5% w/w) provided better TPC recovery by 70% in case of lyophilization and higher powder yield in case of spray drying by diminishing material deposition on the wall of the drying chamber. The resulting gelatin-free and gelatin-containing powders carried polyphenols in amount ~190 and 53-75 mg gallic acid equivalents GAE/g of powder, respectively. Microwave-assisted extract formulation distinguished from others by higher content of polyphenols, proteins and sugars, higher bulk density and lower solubility. The type of the drying process affected mainly position of the gelatin-derived -OH and amide bands in FTIR spectra. Spray dried formulations compared to freeze dried expressed higher thermal stability as confirmed by differential scanning calorimetry analysis and higher diffusion coefficient; the last feature can be associated with the lower specific surface area of irregularly shaped freeze-dried particles (151-223 µm) compared to small microspheres (~8 µm) in spray-dried powder.
T2  - Preprints
T1  - Freeze versus Spray Drying for Dry Wild Thyme (Thymus serpyllum L.) Extract Formulations: The Impact of Gelatin as a Coating Material
DO  - 10.20944/preprints202105.0358.v1
UR  - https://hdl.handle.net/21.15107/rcub_dais_11637
ER  - 
@misc{
author = "Jovanović, Aleksandra A. and Lević, Steva and Pavlović, Vladimir B. and Marković, Smilja and Pjanović, Rada and Đorđević, Verica B. and Nedović, Viktor and Bugarski, Branko",
year = "2021",
abstract = "Freeze drying was compared with spray drying regarding feasibility to process wild thyme drug in order to obtain dry formulations at laboratory scale starting from liquid extracts produced by different extraction methods: maceration, heat-, ultrasound-, and microwave-assisted extractions. Higher powder yield (based on the dry weight prior to extraction) was achieved by freeze than spray drying and lower loss of total polyphenol content (TPC) and total flavonoid content (TFC) due to the drying process. Gelatin as a coating agent (5% w/w) provided better TPC recovery by 70% in case of lyophilization and higher powder yield in case of spray drying by diminishing material deposition on the wall of the drying chamber. The resulting gelatin-free and gelatin-containing powders carried polyphenols in amount ~190 and 53-75 mg gallic acid equivalents GAE/g of powder, respectively. Microwave-assisted extract formulation distinguished from others by higher content of polyphenols, proteins and sugars, higher bulk density and lower solubility. The type of the drying process affected mainly position of the gelatin-derived -OH and amide bands in FTIR spectra. Spray dried formulations compared to freeze dried expressed higher thermal stability as confirmed by differential scanning calorimetry analysis and higher diffusion coefficient; the last feature can be associated with the lower specific surface area of irregularly shaped freeze-dried particles (151-223 µm) compared to small microspheres (~8 µm) in spray-dried powder.",
journal = "Preprints",
title = "Freeze versus Spray Drying for Dry Wild Thyme (Thymus serpyllum L.) Extract Formulations: The Impact of Gelatin as a Coating Material",
doi = "10.20944/preprints202105.0358.v1",
url = "https://hdl.handle.net/21.15107/rcub_dais_11637"
}
Jovanović, A. A., Lević, S., Pavlović, V. B., Marković, S., Pjanović, R., Đorđević, V. B., Nedović, V.,& Bugarski, B.. (2021). Freeze versus Spray Drying for Dry Wild Thyme (Thymus serpyllum L.) Extract Formulations: The Impact of Gelatin as a Coating Material. in Preprints.
https://doi.org/10.20944/preprints202105.0358.v1
https://hdl.handle.net/21.15107/rcub_dais_11637
Jovanović AA, Lević S, Pavlović VB, Marković S, Pjanović R, Đorđević VB, Nedović V, Bugarski B. Freeze versus Spray Drying for Dry Wild Thyme (Thymus serpyllum L.) Extract Formulations: The Impact of Gelatin as a Coating Material. in Preprints. 2021;.
doi:10.20944/preprints202105.0358.v1
https://hdl.handle.net/21.15107/rcub_dais_11637 .
Jovanović, Aleksandra A., Lević, Steva, Pavlović, Vladimir B., Marković, Smilja, Pjanović, Rada, Đorđević, Verica B., Nedović, Viktor, Bugarski, Branko, "Freeze versus Spray Drying for Dry Wild Thyme (Thymus serpyllum L.) Extract Formulations: The Impact of Gelatin as a Coating Material" in Preprints (2021),
https://doi.org/10.20944/preprints202105.0358.v1 .,
https://hdl.handle.net/21.15107/rcub_dais_11637 .
1
7

Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes

Balanč, Bojana; Trifković, Kata; Đorđević, Verica; Marković, Smilja; Pjanović, Rada; Nedović, Viktor; Bugarski, Branko

(Elsevier, 2016)

TY  - JOUR
AU  - Balanč, Bojana
AU  - Trifković, Kata
AU  - Đorđević, Verica
AU  - Marković, Smilja
AU  - Pjanović, Rada
AU  - Nedović, Viktor
AU  - Bugarski, Branko
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/15455
AB  - We reported the design of liposome-loaded Ca-alginate microspheres as a drug delivery system for controlled release of resveratrol. The effect of admixed sucrose and chitosan coating was assessed in terms of physicochemical, thermal and release properties of liposome-in alginate systems with encapsulated resveratrol. The diameter of liposomes produced by proliposome method increased from 412 to 471 nm with addition of sucrose as a cryoprotectant. DSC analysis revealed that phospolipids interact with each other while forming the lipid bilayer and that resveratrol was incorporated within the lipid bilayer, causing destabilizing effect in the two temperature regions (137–202 °C and 240–270 °C). Liposomes were entrapped within polymer network and remained intact as determined by SEM cross-sectional observation of the microbeads. Liposomes interfered with the thermal behavior of alginate in the temperature region above 220 °C. The presence of liposomes decreased the strength of the beads in comparison to placebo beads, according to mechanical tests on compression. Release studies performed in Franz diffusion cell showed the overall resistance to mass transfer one order of magnitude higher (106 s/m) than the resistance ascribed solely to the liposomal membrane. The chitosan coating, visible as a dense surface layer (∼7 μm thick) in dry state, caused decrease in encapsulation efficiency of resveratrol (85% vs. 91%) and in size of the particles (d50 of 387 vs. 440 μm); the chitosan also caused weakening of the polymer matrix, but increased resistance to drug diffusion (11.4 × 105 s/m) in comparison to the uncoated alginate-liposome formulation (9.1 × 105 s/m).
PB  - Elsevier
T2  - Food Hydrocolloids
T1  - Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes
SP  - 832
EP  - 842
VL  - 61
DO  - 10.1016/j.foodhyd.2016.07.005
UR  - https://hdl.handle.net/21.15107/rcub_dais_15455
ER  - 
@article{
author = "Balanč, Bojana and Trifković, Kata and Đorđević, Verica and Marković, Smilja and Pjanović, Rada and Nedović, Viktor and Bugarski, Branko",
year = "2016",
abstract = "We reported the design of liposome-loaded Ca-alginate microspheres as a drug delivery system for controlled release of resveratrol. The effect of admixed sucrose and chitosan coating was assessed in terms of physicochemical, thermal and release properties of liposome-in alginate systems with encapsulated resveratrol. The diameter of liposomes produced by proliposome method increased from 412 to 471 nm with addition of sucrose as a cryoprotectant. DSC analysis revealed that phospolipids interact with each other while forming the lipid bilayer and that resveratrol was incorporated within the lipid bilayer, causing destabilizing effect in the two temperature regions (137–202 °C and 240–270 °C). Liposomes were entrapped within polymer network and remained intact as determined by SEM cross-sectional observation of the microbeads. Liposomes interfered with the thermal behavior of alginate in the temperature region above 220 °C. The presence of liposomes decreased the strength of the beads in comparison to placebo beads, according to mechanical tests on compression. Release studies performed in Franz diffusion cell showed the overall resistance to mass transfer one order of magnitude higher (106 s/m) than the resistance ascribed solely to the liposomal membrane. The chitosan coating, visible as a dense surface layer (∼7 μm thick) in dry state, caused decrease in encapsulation efficiency of resveratrol (85% vs. 91%) and in size of the particles (d50 of 387 vs. 440 μm); the chitosan also caused weakening of the polymer matrix, but increased resistance to drug diffusion (11.4 × 105 s/m) in comparison to the uncoated alginate-liposome formulation (9.1 × 105 s/m).",
publisher = "Elsevier",
journal = "Food Hydrocolloids",
title = "Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes",
pages = "832-842",
volume = "61",
doi = "10.1016/j.foodhyd.2016.07.005",
url = "https://hdl.handle.net/21.15107/rcub_dais_15455"
}
Balanč, B., Trifković, K., Đorđević, V., Marković, S., Pjanović, R., Nedović, V.,& Bugarski, B.. (2016). Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. in Food Hydrocolloids
Elsevier., 61, 832-842.
https://doi.org/10.1016/j.foodhyd.2016.07.005
https://hdl.handle.net/21.15107/rcub_dais_15455
Balanč B, Trifković K, Đorđević V, Marković S, Pjanović R, Nedović V, Bugarski B. Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. in Food Hydrocolloids. 2016;61:832-842.
doi:10.1016/j.foodhyd.2016.07.005
https://hdl.handle.net/21.15107/rcub_dais_15455 .
Balanč, Bojana, Trifković, Kata, Đorđević, Verica, Marković, Smilja, Pjanović, Rada, Nedović, Viktor, Bugarski, Branko, "Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes" in Food Hydrocolloids, 61 (2016):832-842,
https://doi.org/10.1016/j.foodhyd.2016.07.005 .,
https://hdl.handle.net/21.15107/rcub_dais_15455 .
68
41
62