Alkan, G.

Link to this page

Authority KeyName Variants
2bf77516-0d66-4a0a-9129-af00e1cafc1f
  • Alkan, G. (2)
Projects

Author's Bibliography

Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP

Muñoz-Fernandez, Lidia; Alkan, G.; Milošević, Olivera; Rabanal, Maria Eugenia; Friedrich, B.

(Belgrade : Serbian Ceramic Society, 2017)

TY  - CONF
AU  - Muñoz-Fernandez, Lidia
AU  - Alkan, G.
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
AU  - Friedrich, B.
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/4775
AB  - Synthesis of ZnO:Ag core-shell nanoparticles were performed by ultrasonic spray pyrolysis (USP) from the corresponding nitrate solutions. Varying relative concentrations of Ag and ZnO precursors and two different equipment installation, allowing either common (single-step) or separate precipitation (two-steps) of Ag and ZnO, were examined in terms of their effect on final microstructure and photocatalytic properties using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM, TEM, HRTEM), UV-Vis spectroscopy and photocatalytic tests. Formation of phase-pure ZnO:Ag core- shell like particles where ZnO secondary submicron sized particles formed by primary crystals with the size of 5-20 nm were confirmed by TEM analyses. Structural analyses revealed variations in silver distribution and morphology within ZnO core depending on experimental conditions. Samples with fine and uniform silver distribution on ZnO surface display a strong silver-induced enhancement of photocatalytic performance and exhibits a significantly improved photocatalytic activity in the degradation of methyl blue (MB) than that of other noble metal free ZnO systems. Photocatalytic analyses (all samples reached > 45% MB degradation) confirm the all synthesized ZnO:Ag USP systems viability for environmental applications. The best result (93% of dye elimination) is obtained for sample exhibiting maximum available surface, which strongly depends on particle morphology, size and distribution. Moreover, all samples synthesized by single-step USP revealed higher dye elimination with respect to ones with two- steps USP due to favored distribution of silver in microstructure.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
T1  - Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP
SP  - 58
EP  - 58
UR  - https://hdl.handle.net/21.15107/rcub_dais_4775
ER  - 
@conference{
author = "Muñoz-Fernandez, Lidia and Alkan, G. and Milošević, Olivera and Rabanal, Maria Eugenia and Friedrich, B.",
year = "2017",
abstract = "Synthesis of ZnO:Ag core-shell nanoparticles were performed by ultrasonic spray pyrolysis (USP) from the corresponding nitrate solutions. Varying relative concentrations of Ag and ZnO precursors and two different equipment installation, allowing either common (single-step) or separate precipitation (two-steps) of Ag and ZnO, were examined in terms of their effect on final microstructure and photocatalytic properties using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM, TEM, HRTEM), UV-Vis spectroscopy and photocatalytic tests. Formation of phase-pure ZnO:Ag core- shell like particles where ZnO secondary submicron sized particles formed by primary crystals with the size of 5-20 nm were confirmed by TEM analyses. Structural analyses revealed variations in silver distribution and morphology within ZnO core depending on experimental conditions. Samples with fine and uniform silver distribution on ZnO surface display a strong silver-induced enhancement of photocatalytic performance and exhibits a significantly improved photocatalytic activity in the degradation of methyl blue (MB) than that of other noble metal free ZnO systems. Photocatalytic analyses (all samples reached > 45% MB degradation) confirm the all synthesized ZnO:Ag USP systems viability for environmental applications. The best result (93% of dye elimination) is obtained for sample exhibiting maximum available surface, which strongly depends on particle morphology, size and distribution. Moreover, all samples synthesized by single-step USP revealed higher dye elimination with respect to ones with two- steps USP due to favored distribution of silver in microstructure.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017",
title = "Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP",
pages = "58-58",
url = "https://hdl.handle.net/21.15107/rcub_dais_4775"
}
Muñoz-Fernandez, L., Alkan, G., Milošević, O., Rabanal, M. E.,& Friedrich, B.. (2017). Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
Belgrade : Serbian Ceramic Society., 58-58.
https://hdl.handle.net/21.15107/rcub_dais_4775
Muñoz-Fernandez L, Alkan G, Milošević O, Rabanal ME, Friedrich B. Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017. 2017;:58-58.
https://hdl.handle.net/21.15107/rcub_dais_4775 .
Muñoz-Fernandez, Lidia, Alkan, G., Milošević, Olivera, Rabanal, Maria Eugenia, Friedrich, B., "Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017 (2017):58-58,
https://hdl.handle.net/21.15107/rcub_dais_4775 .

Synthesis of hierarchically structured Y2O3:Eu3*@ Ag nanocomposites with plasmon enhanced luminesencence via ultrasonic spray pyrolysis

Alkan, G.; Friedrich, B.; Mančić, Lidija; Milošević, Olivera

(Belgrade : Serbian Ceramic Society, 2017)

TY  - CONF
AU  - Alkan, G.
AU  - Friedrich, B.
AU  - Mančić, Lidija
AU  - Milošević, Olivera
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/2389
AB  - Y2O3:Eu3+@Ag nanocomposites have been successfully synthesized by ultrasonic spray pyrolysis (USP) and examined to reveal effects of surface plasmon resonance, associated to silver nanoparticles, to the luminescence efficiency of Y2O3: Eu3+ red-emitting phosphors. Various Ag concentrations (1, 2.5 and 5 wt. %) and heat-treatment regimes (as prepared, 2h, 12h) were applied to understand how size and distribution of the Ag nanoparticles affect the luminescence efficiency. Samples were characterized by TEM, XRPD and STEM to evaluate crystal structure and distribution of Eu3+ in Y2O3 matrix. In terms of Y, O and Eu ions, uniform distribution was observed in the particles interior, while the Ag is present at the particles surface showing that USP is feasible for synthesis of hierarchically organized Y2O3:Eu3+@Ag. In the case of higher Ag concentration, a deviation from uniform and finely distributed Ag nanoparticles on Y2O3:Eu3+ surface was detected having detrimental effect to the plasmon enhanced luminescence. Regardless from silver concentrations, all heat treated samples exhibited superior luminescence with respect to asprepared ones, while decrease of luminescence efficiency was detected with the increase of Ag concentration. The most intense red luminescence at 612 nm which is due Eu3+ 5D0→7F2 transition was observed in Y2O3:Eu3+@Ag system for sample with 1wt% Ag, annealed for 12 hours.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
T1  - Synthesis of hierarchically structured Y2O3:Eu3*@ Ag nanocomposites with plasmon enhanced luminesencence via ultrasonic spray pyrolysis
SP  - 70
EP  - 70
UR  - https://hdl.handle.net/21.15107/rcub_dais_2389
ER  - 
@conference{
author = "Alkan, G. and Friedrich, B. and Mančić, Lidija and Milošević, Olivera",
year = "2017",
abstract = "Y2O3:Eu3+@Ag nanocomposites have been successfully synthesized by ultrasonic spray pyrolysis (USP) and examined to reveal effects of surface plasmon resonance, associated to silver nanoparticles, to the luminescence efficiency of Y2O3: Eu3+ red-emitting phosphors. Various Ag concentrations (1, 2.5 and 5 wt. %) and heat-treatment regimes (as prepared, 2h, 12h) were applied to understand how size and distribution of the Ag nanoparticles affect the luminescence efficiency. Samples were characterized by TEM, XRPD and STEM to evaluate crystal structure and distribution of Eu3+ in Y2O3 matrix. In terms of Y, O and Eu ions, uniform distribution was observed in the particles interior, while the Ag is present at the particles surface showing that USP is feasible for synthesis of hierarchically organized Y2O3:Eu3+@Ag. In the case of higher Ag concentration, a deviation from uniform and finely distributed Ag nanoparticles on Y2O3:Eu3+ surface was detected having detrimental effect to the plasmon enhanced luminescence. Regardless from silver concentrations, all heat treated samples exhibited superior luminescence with respect to asprepared ones, while decrease of luminescence efficiency was detected with the increase of Ag concentration. The most intense red luminescence at 612 nm which is due Eu3+ 5D0→7F2 transition was observed in Y2O3:Eu3+@Ag system for sample with 1wt% Ag, annealed for 12 hours.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017",
title = "Synthesis of hierarchically structured Y2O3:Eu3*@ Ag nanocomposites with plasmon enhanced luminesencence via ultrasonic spray pyrolysis",
pages = "70-70",
url = "https://hdl.handle.net/21.15107/rcub_dais_2389"
}
Alkan, G., Friedrich, B., Mančić, L.,& Milošević, O.. (2017). Synthesis of hierarchically structured Y2O3:Eu3*@ Ag nanocomposites with plasmon enhanced luminesencence via ultrasonic spray pyrolysis. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
Belgrade : Serbian Ceramic Society., 70-70.
https://hdl.handle.net/21.15107/rcub_dais_2389
Alkan G, Friedrich B, Mančić L, Milošević O. Synthesis of hierarchically structured Y2O3:Eu3*@ Ag nanocomposites with plasmon enhanced luminesencence via ultrasonic spray pyrolysis. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017. 2017;:70-70.
https://hdl.handle.net/21.15107/rcub_dais_2389 .
Alkan, G., Friedrich, B., Mančić, Lidija, Milošević, Olivera, "Synthesis of hierarchically structured Y2O3:Eu3*@ Ag nanocomposites with plasmon enhanced luminesencence via ultrasonic spray pyrolysis" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017 (2017):70-70,
https://hdl.handle.net/21.15107/rcub_dais_2389 .