Friedrich, Bernd

Link to this page

Authority KeyName Variants
f88b687b-84e6-4f4b-b9c0-3ff5c86b03ec
  • Friedrich, Bernd (3)
Projects

Author's Bibliography

Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis

Alkan, Gözde; Mančić, Lidija; Tamura, Sayaka; Tomita, Koji; Tan, Zhenquan; Sun, Feifei; Rudolf, Rebeka; Ohara, Satoshi; Friedrich, Bernd; Milošević, Olivera

(Elsevier, 2019)

TY  - JOUR
AU  - Alkan, Gözde
AU  - Mančić, Lidija
AU  - Tamura, Sayaka
AU  - Tomita, Koji
AU  - Tan, Zhenquan
AU  - Sun, Feifei
AU  - Rudolf, Rebeka
AU  - Ohara, Satoshi
AU  - Friedrich, Bernd
AU  - Milošević, Olivera
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0921883119301141
UR  - http://dais.sanu.ac.rs/123456789/6264
AB  - Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis
SP  - 1409
EP  - 1418
VL  - 30
IS  - 7
DO  - 10.1016/j.apt.2019.04.024
ER  - 
@article{
author = "Alkan, Gözde and Mančić, Lidija and Tamura, Sayaka and Tomita, Koji and Tan, Zhenquan and Sun, Feifei and Rudolf, Rebeka and Ohara, Satoshi and Friedrich, Bernd and Milošević, Olivera",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0921883119301141, http://dais.sanu.ac.rs/123456789/6264",
abstract = "Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis",
pages = "1409-1418",
volume = "30",
number = "7",
doi = "10.1016/j.apt.2019.04.024"
}
Alkan, G., Mančić, L., Tamura, S., Tomita, K., Tan, Z., Sun, F., Rudolf, R., Ohara, S., Friedrich, B.,& Milošević, O. (2019). Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis.
Advanced Powder TechnologyElsevier., 30(7), 1409-1418.
https://doi.org/10.1016/j.apt.2019.04.024
Alkan G, Mančić L, Tamura S, Tomita K, Tan Z, Sun F, Rudolf R, Ohara S, Friedrich B, Milošević O. Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis. Advanced Powder Technology. 2019;30(7):1409-1418
Alkan Gözde, Mančić Lidija, Tamura Sayaka, Tomita Koji, Tan Zhenquan, Sun Feifei, Rudolf Rebeka, Ohara Satoshi, Friedrich Bernd, Milošević Olivera, "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis" 30, no. 7 (2019):1409-1418,
https://doi.org/10.1016/j.apt.2019.04.024 .
4
4
4

Deep insight into the photoluminescent monocrystalline particles: Heat-treatment, structure, mechanisms and mechanics

Alkan, Gözde; HakanYavas; Göksel, Berfu; Mančić, Lidija; Friedrich, Bernd; Milošević, Olivera

(Elsevier, 2019)

TY  - JOUR
AU  - Alkan, Gözde
AU  - HakanYavas
AU  - Göksel, Berfu
AU  - Mančić, Lidija
AU  - Friedrich, Bernd
AU  - Milošević, Olivera
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S2238785418306811
UR  - http://dais.sanu.ac.rs/123456789/6953
AB  - The red light emitting down-converting Ag@Y2O3:Eu3+ phosphor particles were synthesized by one-step ultrasonic spray pyrolysis and exposed further to the heat treatment at 1000°C (12h). A detailed investigation on structural and functional properties of the as-prepared and heat treated particles was conducted in a comparative manner. High-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRPD) and focus ion beam milling (FIB) revealed in a great consistency the poorly crystallized and porous nature of the as-prepared particles. Well-crystallized coarser primary nanocrystals of Y2O3:Eu3+and Ag, which are hierarchically organized in dense spherical Ag@Y2O3:Eu3+ phosphor particles, were obtained through the heat treatment. Along with the change of structural properties, down conversion (red luminescence at 612nm owing to the Eu3+5D0→7F2 electric dipole transition) and mechanical endurance were enhanced 4-fold and 5-fold via heat treatment, respectively. This comparative study implies a good correlation between mechanical and luminescence behavior of phosphors, both strongly influenced by the particles structural properties.
PB  - Elsevier
T2  - Journal of Materials Research and Technology
T1  - Deep insight into the photoluminescent monocrystalline particles: Heat-treatment, structure, mechanisms and mechanics
SP  - 2466
EP  - 2472
VL  - 8
IS  - 2
DO  - 10.1016/j.jmrt.2018.10.013
ER  - 
@article{
author = "Alkan, Gözde and HakanYavas and Göksel, Berfu and Mančić, Lidija and Friedrich, Bernd and Milošević, Olivera",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S2238785418306811, http://dais.sanu.ac.rs/123456789/6953",
abstract = "The red light emitting down-converting Ag@Y2O3:Eu3+ phosphor particles were synthesized by one-step ultrasonic spray pyrolysis and exposed further to the heat treatment at 1000°C (12h). A detailed investigation on structural and functional properties of the as-prepared and heat treated particles was conducted in a comparative manner. High-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRPD) and focus ion beam milling (FIB) revealed in a great consistency the poorly crystallized and porous nature of the as-prepared particles. Well-crystallized coarser primary nanocrystals of Y2O3:Eu3+and Ag, which are hierarchically organized in dense spherical Ag@Y2O3:Eu3+ phosphor particles, were obtained through the heat treatment. Along with the change of structural properties, down conversion (red luminescence at 612nm owing to the Eu3+5D0→7F2 electric dipole transition) and mechanical endurance were enhanced 4-fold and 5-fold via heat treatment, respectively. This comparative study implies a good correlation between mechanical and luminescence behavior of phosphors, both strongly influenced by the particles structural properties.",
publisher = "Elsevier",
journal = "Journal of Materials Research and Technology",
title = "Deep insight into the photoluminescent monocrystalline particles: Heat-treatment, structure, mechanisms and mechanics",
pages = "2466-2472",
volume = "8",
number = "2",
doi = "10.1016/j.jmrt.2018.10.013"
}
Alkan, G., HakanYavas, Göksel, B., Mančić, L., Friedrich, B.,& Milošević, O. (2019). Deep insight into the photoluminescent monocrystalline particles: Heat-treatment, structure, mechanisms and mechanics.
Journal of Materials Research and TechnologyElsevier., 8(2), 2466-2472.
https://doi.org/10.1016/j.jmrt.2018.10.013
Alkan G, HakanYavas, Göksel B, Mančić L, Friedrich B, Milošević O. Deep insight into the photoluminescent monocrystalline particles: Heat-treatment, structure, mechanisms and mechanics. Journal of Materials Research and Technology. 2019;8(2):2466-2472
Alkan Gözde, HakanYavas, Göksel Berfu, Mančić Lidija, Friedrich Bernd, Milošević Olivera, "Deep insight into the photoluminescent monocrystalline particles: Heat-treatment, structure, mechanisms and mechanics" 8, no. 2 (2019):2466-2472,
https://doi.org/10.1016/j.jmrt.2018.10.013 .
1
1

Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis

Alkan, Gözde; Mančić, Lidija; Tamura, Sayaka; Tomita, Koji; Tan, Zhenquan; Sun, Feifei; Rudolf, Rebeka; Ohara, Satoshi; Friedrich, Bernd; Milošević, Olivera

(Elsevier, 2019)

TY  - JOUR
AU  - Alkan, Gözde
AU  - Mančić, Lidija
AU  - Tamura, Sayaka
AU  - Tomita, Koji
AU  - Tan, Zhenquan
AU  - Sun, Feifei
AU  - Rudolf, Rebeka
AU  - Ohara, Satoshi
AU  - Friedrich, Bernd
AU  - Milošević, Olivera
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0921883119301141
UR  - http://dais.sanu.ac.rs/123456789/6265
AB  - Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis
SP  - 1409
EP  - 1418
VL  - 30
IS  - 7
DO  - 10.1016/j.apt.2019.04.024
ER  - 
@article{
author = "Alkan, Gözde and Mančić, Lidija and Tamura, Sayaka and Tomita, Koji and Tan, Zhenquan and Sun, Feifei and Rudolf, Rebeka and Ohara, Satoshi and Friedrich, Bernd and Milošević, Olivera",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0921883119301141, http://dais.sanu.ac.rs/123456789/6265",
abstract = "Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis",
pages = "1409-1418",
volume = "30",
number = "7",
doi = "10.1016/j.apt.2019.04.024"
}
Alkan, G., Mančić, L., Tamura, S., Tomita, K., Tan, Z., Sun, F., Rudolf, R., Ohara, S., Friedrich, B.,& Milošević, O. (2019). Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis.
Advanced Powder TechnologyElsevier., 30(7), 1409-1418.
https://doi.org/10.1016/j.apt.2019.04.024
Alkan G, Mančić L, Tamura S, Tomita K, Tan Z, Sun F, Rudolf R, Ohara S, Friedrich B, Milošević O. Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis. Advanced Powder Technology. 2019;30(7):1409-1418
Alkan Gözde, Mančić Lidija, Tamura Sayaka, Tomita Koji, Tan Zhenquan, Sun Feifei, Rudolf Rebeka, Ohara Satoshi, Friedrich Bernd, Milošević Olivera, "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis" 30, no. 7 (2019):1409-1418,
https://doi.org/10.1016/j.apt.2019.04.024 .
4
4
4