Ohara, Satoshi

Link to this page

Authority KeyName Variants
34828221-23fe-4b85-9bf7-255e3a057885
  • Ohara, Satoshi (12)
Projects

Author's Bibliography

Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis

Alkan, Gözde; Mančić, Lidija; Tamura, Sayaka; Tomita, Koji; Tan, Zhenquan; Sun, Feifei; Rudolf, Rebeka; Ohara, Satoshi; Friedrich, Bernd; Milošević, Olivera

(Elsevier, 2019)

TY  - JOUR
AU  - Alkan, Gözde
AU  - Mančić, Lidija
AU  - Tamura, Sayaka
AU  - Tomita, Koji
AU  - Tan, Zhenquan
AU  - Sun, Feifei
AU  - Rudolf, Rebeka
AU  - Ohara, Satoshi
AU  - Friedrich, Bernd
AU  - Milošević, Olivera
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0921883119301141
UR  - http://dais.sanu.ac.rs/123456789/6264
AB  - Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis
SP  - 1409
EP  - 1418
VL  - 30
IS  - 7
DO  - 10.1016/j.apt.2019.04.024
ER  - 
@article{
author = "Alkan, Gözde and Mančić, Lidija and Tamura, Sayaka and Tomita, Koji and Tan, Zhenquan and Sun, Feifei and Rudolf, Rebeka and Ohara, Satoshi and Friedrich, Bernd and Milošević, Olivera",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0921883119301141, http://dais.sanu.ac.rs/123456789/6264",
abstract = "Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis",
pages = "1409-1418",
volume = "30",
number = "7",
doi = "10.1016/j.apt.2019.04.024"
}
Alkan, G., Mančić, L., Tamura, S., Tomita, K., Tan, Z., Sun, F., Rudolf, R., Ohara, S., Friedrich, B.,& Milošević, O. (2019). Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis.
Advanced Powder TechnologyElsevier., 30(7), 1409-1418.
https://doi.org/10.1016/j.apt.2019.04.024
Alkan G, Mančić L, Tamura S, Tomita K, Tan Z, Sun F, Rudolf R, Ohara S, Friedrich B, Milošević O. Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis. Advanced Powder Technology. 2019;30(7):1409-1418
Alkan Gözde, Mančić Lidija, Tamura Sayaka, Tomita Koji, Tan Zhenquan, Sun Feifei, Rudolf Rebeka, Ohara Satoshi, Friedrich Bernd, Milošević Olivera, "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis" 30, no. 7 (2019):1409-1418,
https://doi.org/10.1016/j.apt.2019.04.024 .
4
4
4

Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis

Alkan, Gözde; Mančić, Lidija; Tamura, Sayaka; Tomita, Koji; Tan, Zhenquan; Sun, Feifei; Rudolf, Rebeka; Ohara, Satoshi; Friedrich, Bernd; Milošević, Olivera

(Elsevier, 2019)

TY  - JOUR
AU  - Alkan, Gözde
AU  - Mančić, Lidija
AU  - Tamura, Sayaka
AU  - Tomita, Koji
AU  - Tan, Zhenquan
AU  - Sun, Feifei
AU  - Rudolf, Rebeka
AU  - Ohara, Satoshi
AU  - Friedrich, Bernd
AU  - Milošević, Olivera
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0921883119301141
UR  - http://dais.sanu.ac.rs/123456789/6265
AB  - Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis
SP  - 1409
EP  - 1418
VL  - 30
IS  - 7
DO  - 10.1016/j.apt.2019.04.024
ER  - 
@article{
author = "Alkan, Gözde and Mančić, Lidija and Tamura, Sayaka and Tomita, Koji and Tan, Zhenquan and Sun, Feifei and Rudolf, Rebeka and Ohara, Satoshi and Friedrich, Bernd and Milošević, Olivera",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0921883119301141, http://dais.sanu.ac.rs/123456789/6265",
abstract = "Ag@ (Y0.95 Eu0.05)2O3 nanocomposites were synthesized by single step Ultrasonic Spray Pyrolysis (USP). 800 °C synthesis temperature and 1.5 l/ min air flow were determined as optimal USP parameters. A detailed parametric study was conducted on samples with varying silver contents and heat treatment conditions. The effect of silver in both as prepared and heat treated samples were elucidated in terms of structural and functional properties. Ag incorporation decreased luminescence efficiency due to the lack of crystallization of matrix and non-homogenous distribution of Eu and Ag in as prepared samples. Heat treatment improved luminescence by improved crystal quality for all samples; however, with increasing Ag content effect of heat treatment was more pronounced owing to uniform distribution of Ag. 2.5 wt% Ag addition followed by 2 h heat treatment after USP synthesis is suggested as the most efficient nanocomposite for red light emitting down converting phosphor applications.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis",
pages = "1409-1418",
volume = "30",
number = "7",
doi = "10.1016/j.apt.2019.04.024"
}
Alkan, G., Mančić, L., Tamura, S., Tomita, K., Tan, Z., Sun, F., Rudolf, R., Ohara, S., Friedrich, B.,& Milošević, O. (2019). Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis.
Advanced Powder TechnologyElsevier., 30(7), 1409-1418.
https://doi.org/10.1016/j.apt.2019.04.024
Alkan G, Mančić L, Tamura S, Tomita K, Tan Z, Sun F, Rudolf R, Ohara S, Friedrich B, Milošević O. Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis. Advanced Powder Technology. 2019;30(7):1409-1418
Alkan Gözde, Mančić Lidija, Tamura Sayaka, Tomita Koji, Tan Zhenquan, Sun Feifei, Rudolf Rebeka, Ohara Satoshi, Friedrich Bernd, Milošević Olivera, "Plasmon enhanced luminescence in hierarchically structured Ag@ (Y0.95Eu0.05)2O3 nanocomposites synthesized by ultrasonic spray pyrolysis" 30, no. 7 (2019):1409-1418,
https://doi.org/10.1016/j.apt.2019.04.024 .
4
4
4

Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis

Dinić, Ivana; Mančić, Lidija; Rabanal, Maria Eugenia; Yamamoto, Kazuhiro; Ohara, Satoshi; Tamura, Sayaka; Koji, Tomita; Costa, Antonio Mario Leal Martins; Marinković, Bojan A.; Milošević, Olivera

(Elsevier, 2017)

TY  - JOUR
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Rabanal, Maria Eugenia
AU  - Yamamoto, Kazuhiro
AU  - Ohara, Satoshi
AU  - Tamura, Sayaka
AU  - Koji, Tomita
AU  - Costa, Antonio Mario Leal Martins
AU  - Marinković, Bojan A.
AU  - Milošević, Olivera
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/3687
AB  - In this feature article, we highlight our works on compositional and structural dependence of up-converting rare earth (RE) fluorides obtained through ethylenediamine tetraacetic acid (EDTA) assisted hydrothermal synthesis. Various nanostructures were obtained by tuning of experimental conditions, such as precursor’s concentration, degree of doping, reaction time and solvent used during synthesis. We correlated in detail the structural, morphological and optical properties of YF3 and NaYF4 compounds co-doped with Yb3+ and Er3+ (introduced in total mol% of 8 and 20). For this purpose, X-ray powder diffraction, scanning and transmission electron microscopy, energy dispersive X-ray and Furrier transform infrared spectroscopy, as well as, the photoluminescence spectra and decay times were recorded and analyzed. The particle size and phase content were found to be dependent on the nucleation rate, which, in turn, was governed by the precursor concentration, degree of doping and solvent type. The transformation from cubic to hexagonal NaYF4:Yb3+/Er3+ phase was found to be sensitive to the reaction time and precursors concentration, while the crystallization of orthorhombic YF3:Yb3+/Er3+ phase is achieved through lowering of dopants concentration or by changing of solvent during hydrothermal treatment. The up-conversion photoluminescence demonstrated morphology and crystal phase dependence and is found to be superior in microcrystalline samples, independent on their phase composition.
PB  - Elsevier
T2  - Advanced Powder Technology
T2  - Advanced Powder Technology
T1  - Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis
SP  - 73
EP  - 82
VL  - 28
IS  - 1
DO  - 10.1016/j.apt.2016.09.021
ER  - 
@article{
author = "Dinić, Ivana and Mančić, Lidija and Rabanal, Maria Eugenia and Yamamoto, Kazuhiro and Ohara, Satoshi and Tamura, Sayaka and Koji, Tomita and Costa, Antonio Mario Leal Martins and Marinković, Bojan A. and Milošević, Olivera",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/3687",
abstract = "In this feature article, we highlight our works on compositional and structural dependence of up-converting rare earth (RE) fluorides obtained through ethylenediamine tetraacetic acid (EDTA) assisted hydrothermal synthesis. Various nanostructures were obtained by tuning of experimental conditions, such as precursor’s concentration, degree of doping, reaction time and solvent used during synthesis. We correlated in detail the structural, morphological and optical properties of YF3 and NaYF4 compounds co-doped with Yb3+ and Er3+ (introduced in total mol% of 8 and 20). For this purpose, X-ray powder diffraction, scanning and transmission electron microscopy, energy dispersive X-ray and Furrier transform infrared spectroscopy, as well as, the photoluminescence spectra and decay times were recorded and analyzed. The particle size and phase content were found to be dependent on the nucleation rate, which, in turn, was governed by the precursor concentration, degree of doping and solvent type. The transformation from cubic to hexagonal NaYF4:Yb3+/Er3+ phase was found to be sensitive to the reaction time and precursors concentration, while the crystallization of orthorhombic YF3:Yb3+/Er3+ phase is achieved through lowering of dopants concentration or by changing of solvent during hydrothermal treatment. The up-conversion photoluminescence demonstrated morphology and crystal phase dependence and is found to be superior in microcrystalline samples, independent on their phase composition.",
publisher = "Elsevier",
journal = "Advanced Powder Technology, Advanced Powder Technology",
title = "Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis",
pages = "73-82",
volume = "28",
number = "1",
doi = "10.1016/j.apt.2016.09.021"
}
Dinić, I., Mančić, L., Rabanal, M. E., Yamamoto, K., Ohara, S., Tamura, S., Koji, T., Costa, A. M. L. M., Marinković, B. A.,& Milošević, O. (2017). Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis.
Advanced Powder TechnologyElsevier., 28(1), 73-82.
https://doi.org/10.1016/j.apt.2016.09.021
Dinić I, Mančić L, Rabanal ME, Yamamoto K, Ohara S, Tamura S, Koji T, Costa AMLM, Marinković BA, Milošević O. Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis. Advanced Powder Technology. 2017;28(1):73-82
Dinić Ivana, Mančić Lidija, Rabanal Maria Eugenia, Yamamoto Kazuhiro, Ohara Satoshi, Tamura Sayaka, Koji Tomita, Costa Antonio Mario Leal Martins, Marinković Bojan A., Milošević Olivera, "Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis" 28, no. 1 (2017):73-82,
https://doi.org/10.1016/j.apt.2016.09.021 .
10
8
8

PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles

Dinić, Ivana; Rabanal, Maria Eugenia; Yamamoto, Kazuhiro; Tan, Zhenquan; Ohara, Satoshi; Mančić, Lidija; Milošević, Olivera

(Elsevier, 2016)

TY  - JOUR
AU  - Dinić, Ivana
AU  - Rabanal, Maria Eugenia
AU  - Yamamoto, Kazuhiro
AU  - Tan, Zhenquan
AU  - Ohara, Satoshi
AU  - Mančić, Lidija
AU  - Milošević, Olivera
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/15965
AB  - Owing to their unique optical properties, up-converting rare earth fluorides have attracted extensive attention in recent years. Varieties of synthesis procedures which generate nano- and micro-crystals with controllable compositions have been reported. In the vast majority, surfactants, complexing agents and solvents play essential role in controlling particles morphology and surface characteristics. Here we report on a rapid solvothermal synthesis (200 °C, 2 h) of either PEG or PVP capped NaYF4:Yb3+/Er3+ particles. Their structural, morphological and luminescence characteristics have been studied based on X-ray powder diffractometry (XRPD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM) and photoluminescence measurements. Both polymers proved to be a good structure directing agents enabling generation of the well crystalline polymer coated up-converting particles with efficient emissions in visible spectrum. It was shown that generation of the hexagonal P63/m β-NaYF4:Yb3+/Er3+ phase with the most efficient green emission (CIE 0.31, 0.66) is enhanced when PVP is used during synthesis, while promotion of the cubic Fm-3m α-NaYF4:Yb3+/Er3+ phase that has a yellowish spectral output (CIE 0.41, 0.56) was observed in the particles produced in the presence of PEG. Beneficial effect on the luminescence intensity was observed with additional particles annealing in argon atmosphere.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles
SP  - 845
EP  - 853
VL  - 27
IS  - 3
DO  - 10.1016/j.apt.2015.11.010
ER  - 
@article{
author = "Dinić, Ivana and Rabanal, Maria Eugenia and Yamamoto, Kazuhiro and Tan, Zhenquan and Ohara, Satoshi and Mančić, Lidija and Milošević, Olivera",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/15965",
abstract = "Owing to their unique optical properties, up-converting rare earth fluorides have attracted extensive attention in recent years. Varieties of synthesis procedures which generate nano- and micro-crystals with controllable compositions have been reported. In the vast majority, surfactants, complexing agents and solvents play essential role in controlling particles morphology and surface characteristics. Here we report on a rapid solvothermal synthesis (200 °C, 2 h) of either PEG or PVP capped NaYF4:Yb3+/Er3+ particles. Their structural, morphological and luminescence characteristics have been studied based on X-ray powder diffractometry (XRPD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM) and photoluminescence measurements. Both polymers proved to be a good structure directing agents enabling generation of the well crystalline polymer coated up-converting particles with efficient emissions in visible spectrum. It was shown that generation of the hexagonal P63/m β-NaYF4:Yb3+/Er3+ phase with the most efficient green emission (CIE 0.31, 0.66) is enhanced when PVP is used during synthesis, while promotion of the cubic Fm-3m α-NaYF4:Yb3+/Er3+ phase that has a yellowish spectral output (CIE 0.41, 0.56) was observed in the particles produced in the presence of PEG. Beneficial effect on the luminescence intensity was observed with additional particles annealing in argon atmosphere.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles",
pages = "845-853",
volume = "27",
number = "3",
doi = "10.1016/j.apt.2015.11.010"
}
Dinić, I., Rabanal, M. E., Yamamoto, K., Tan, Z., Ohara, S., Mančić, L.,& Milošević, O. (2016). PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles.
Advanced Powder TechnologyElsevier., 27(3), 845-853.
https://doi.org/10.1016/j.apt.2015.11.010
Dinić I, Rabanal ME, Yamamoto K, Tan Z, Ohara S, Mančić L, Milošević O. PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles. Advanced Powder Technology. 2016;27(3):845-853
Dinić Ivana, Rabanal Maria Eugenia, Yamamoto Kazuhiro, Tan Zhenquan, Ohara Satoshi, Mančić Lidija, Milošević Olivera, "PEG and PVP assisted solvothermal synthesis of NaYF4:Yb3+/Er3+ up-conversion nanoparticles" 27, no. 3 (2016):845-853,
https://doi.org/10.1016/j.apt.2015.11.010 .
12
12
13

Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles

Dugandžić, Ivan; Mančić, Lidija; Tan, Z.; Hashishin, Takeshi; Ohara, Satoshi; Milošević, Olivera

(Osaka : Osaka University, 2014)

TY  - CONF
AU  - Dugandžić, Ivan
AU  - Mančić, Lidija
AU  - Tan, Z.
AU  - Hashishin, Takeshi
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
PY  - 2014
UR  - http://dais.sanu.ac.rs/123456789/822
AB  - Hierarchical structures, which refers to the materials that have more than one length scale, organized as the assemblage of primary units with high surface-to-volume ratio, play an important role in advanced materials design. Especially, the building of complex hierarchical structures exhibiting the hybrid organic-inorganic interfaces might be of special importance for the creation of advanced nanostructured materials having either improved or novel characteristics that bridges various scientific areas for the future diverse technological applications in catalysis, optics, energy, life science etc. Applying the bottom-up building blocks approaches, it is possible to create the hierarchical structures in a controlled manner having different morphologies, starting from aqueous, organic or colloidal precursor solutions. Among the diversity of the “bottom-up” chemical approaches, synthesis through dispersion phase (aerosol) enables generation of ultrafine, either single or complex structures with controlled stoichiometry, chemical and phase content. The opportunities of the hot wall aerosol processing, provided by high heating and cooling rates, short residence time and high surface reaction, refers to the synthesis of spherical three-dimensional (3D), hierarchically organized nanostructured particles with uniformly distributed components and phases. The particles composite inner structure, representing an assembly of nanosized primary particles, opens the possibility for particle surface modification and functionalization emphasizing their application in photovoltaics, energy transfer and bioimaging. This versatile technique has been used for the successful synthesis of hierarchically organized submicronic titanium (IV) oxide or Y2O3 up-conversion phosphor particles having the diverse levels of structural, morphological and functional complexity explored by means of appropriate selection of different precursor solutions, either true or colloid, surface modification and proper selection of rare-earth based dopants.
PB  - Osaka : Osaka University
C3  - Workshop of Advanced Nanocrystals and Processing towards Low Carbon Society Ibaraki, Osaka, Japan, 19th-21st February 2014
T1  - Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles
ER  - 
@conference{
author = "Dugandžić, Ivan and Mančić, Lidija and Tan, Z. and Hashishin, Takeshi and Ohara, Satoshi and Milošević, Olivera",
year = "2014",
url = "http://dais.sanu.ac.rs/123456789/822",
abstract = "Hierarchical structures, which refers to the materials that have more than one length scale, organized as the assemblage of primary units with high surface-to-volume ratio, play an important role in advanced materials design. Especially, the building of complex hierarchical structures exhibiting the hybrid organic-inorganic interfaces might be of special importance for the creation of advanced nanostructured materials having either improved or novel characteristics that bridges various scientific areas for the future diverse technological applications in catalysis, optics, energy, life science etc. Applying the bottom-up building blocks approaches, it is possible to create the hierarchical structures in a controlled manner having different morphologies, starting from aqueous, organic or colloidal precursor solutions. Among the diversity of the “bottom-up” chemical approaches, synthesis through dispersion phase (aerosol) enables generation of ultrafine, either single or complex structures with controlled stoichiometry, chemical and phase content. The opportunities of the hot wall aerosol processing, provided by high heating and cooling rates, short residence time and high surface reaction, refers to the synthesis of spherical three-dimensional (3D), hierarchically organized nanostructured particles with uniformly distributed components and phases. The particles composite inner structure, representing an assembly of nanosized primary particles, opens the possibility for particle surface modification and functionalization emphasizing their application in photovoltaics, energy transfer and bioimaging. This versatile technique has been used for the successful synthesis of hierarchically organized submicronic titanium (IV) oxide or Y2O3 up-conversion phosphor particles having the diverse levels of structural, morphological and functional complexity explored by means of appropriate selection of different precursor solutions, either true or colloid, surface modification and proper selection of rare-earth based dopants.",
publisher = "Osaka : Osaka University",
journal = "Workshop of Advanced Nanocrystals and Processing towards Low Carbon Society Ibaraki, Osaka, Japan, 19th-21st February 2014",
title = "Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles"
}
Dugandžić, I., Mančić, L., Tan, Z., Hashishin, T., Ohara, S.,& Milošević, O. (2014). Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles.
Workshop of Advanced Nanocrystals and Processing towards Low Carbon Society Ibaraki, Osaka, Japan, 19th-21st February 2014Osaka : Osaka University..
Dugandžić I, Mančić L, Tan Z, Hashishin T, Ohara S, Milošević O. Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles. Workshop of Advanced Nanocrystals and Processing towards Low Carbon Society Ibaraki, Osaka, Japan, 19th-21st February 2014. 2014;
Dugandžić Ivan, Mančić Lidija, Tan Z., Hashishin Takeshi, Ohara Satoshi, Milošević Olivera, "Aerosol Route as a Versatile Method for the Processing of Hierarchically Organized Hybrid Nano Particles" (2014)

Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing

Dugandžić, Ivan; Lojpur, Vesna; Mančić, Lidija; Dramićanin, Miroslav; Hashishin, Takeshi; Tan, Z.; Ohara, Satoshi; Milošević, Olivera

(Elsevier, 2013)

TY  - JOUR
AU  - Dugandžić, Ivan
AU  - Lojpur, Vesna
AU  - Mančić, Lidija
AU  - Dramićanin, Miroslav
AU  - Hashishin, Takeshi
AU  - Tan, Z.
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/15971
AB  - The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing
SP  - 852
EP  - 857
VL  - 25
IS  - 5
DO  - 10.1016/j.apt.2013.02.011
ER  - 
@article{
author = "Dugandžić, Ivan and Lojpur, Vesna and Mančić, Lidija and Dramićanin, Miroslav and Hashishin, Takeshi and Tan, Z. and Ohara, Satoshi and Milošević, Olivera",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/15971",
abstract = "The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing",
pages = "852-857",
volume = "25",
number = "5",
doi = "10.1016/j.apt.2013.02.011"
}
Dugandžić, I., Lojpur, V., Mančić, L., Dramićanin, M., Hashishin, T., Tan, Z., Ohara, S.,& Milošević, O. (2013). Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing.
Advanced Powder TechnologyElsevier., 25(5), 852-857.
https://doi.org/10.1016/j.apt.2013.02.011
Dugandžić I, Lojpur V, Mančić L, Dramićanin M, Hashishin T, Tan Z, Ohara S, Milošević O. Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing. Advanced Powder Technology. 2013;25(5):852-857
Dugandžić Ivan, Lojpur Vesna, Mančić Lidija, Dramićanin Miroslav, Hashishin Takeshi, Tan Z., Ohara Satoshi, Milošević Olivera, "Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing" 25, no. 5 (2013):852-857,
https://doi.org/10.1016/j.apt.2013.02.011 .
10
12
12

Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing

Dugandžić, Ivan; Lojpur, Vesna; Mančić, Lidija; Dramićanin, Miroslav; Rabanal, Maria Eugenia; Hashishin, Takeshi; Tan, Z.; Ohara, Satoshi; Milošević, Olivera

(Elsevier, 2013)

TY  - JOUR
AU  - Dugandžić, Ivan
AU  - Lojpur, Vesna
AU  - Mančić, Lidija
AU  - Dramićanin, Miroslav
AU  - Rabanal, Maria Eugenia
AU  - Hashishin, Takeshi
AU  - Tan, Z.
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/345
AB  - The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing
SP  - 852
EP  - 857
VL  - 24
IS  - 5
DO  - 10.1016/j.apt.2013.02.011
ER  - 
@article{
author = "Dugandžić, Ivan and Lojpur, Vesna and Mančić, Lidija and Dramićanin, Miroslav and Rabanal, Maria Eugenia and Hashishin, Takeshi and Tan, Z. and Ohara, Satoshi and Milošević, Olivera",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/345",
abstract = "The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing",
pages = "852-857",
volume = "24",
number = "5",
doi = "10.1016/j.apt.2013.02.011"
}
Dugandžić, I., Lojpur, V., Mančić, L., Dramićanin, M., Rabanal, M. E., Hashishin, T., Tan, Z., Ohara, S.,& Milošević, O. (2013). Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing.
Advanced Powder TechnologyElsevier., 24(5), 852-857.
https://doi.org/10.1016/j.apt.2013.02.011
Dugandžić I, Lojpur V, Mančić L, Dramićanin M, Rabanal ME, Hashishin T, Tan Z, Ohara S, Milošević O. Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing. Advanced Powder Technology. 2013;24(5):852-857
Dugandžić Ivan, Lojpur Vesna, Mančić Lidija, Dramićanin Miroslav, Rabanal Maria Eugenia, Hashishin Takeshi, Tan Z., Ohara Satoshi, Milošević Olivera, "Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing" 24, no. 5 (2013):852-857,
https://doi.org/10.1016/j.apt.2013.02.011 .
10
12
12

Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route

Lojpur, Vesna; Rabanal Jiménez, Maria Eugenia; Dramićanin, Miroslav; Tan, Z.; Hashishin, Takeshi; Ohara, Satoshi; Milošević, Olivera; Mančić, Lidija

(Elsevier, 2013)

TY  - JOUR
AU  - Lojpur, Vesna
AU  - Rabanal Jiménez, Maria Eugenia
AU  - Dramićanin, Miroslav
AU  - Tan, Z.
AU  - Hashishin, Takeshi
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/15980
AB  - Nanocrystalline up-converting Y₂ O₃Yb³⁺ Er³⁺ phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm3/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: ²H₉/₂ → ⁴I₁₅/₂ (blue: 407–420 nm), (²H₁₁/₂̦ ⁴S₃/₂) → ⁴I₁₅/₂ (green: 510–590 nm), and ⁴F₉/₂ → ⁴I₁₅/₂ (red: 640–720 nm). The significant improvement of the emission decay times were observed after thermal treatment and this effect is correlated further with the structural and morphological particles characteristics. For the anneal-ing time of 12 h a quite high emission decay times were achieved (blue: 0.14 ms, green: 0.32 ms and red: 0.39 ms).
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route
SP  - 584
EP  - 591
VL  - 580
DO  - 10.1016/j.jallcom.2013.07.125
ER  - 
@article{
author = "Lojpur, Vesna and Rabanal Jiménez, Maria Eugenia and Dramićanin, Miroslav and Tan, Z. and Hashishin, Takeshi and Ohara, Satoshi and Milošević, Olivera and Mančić, Lidija",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/15980",
abstract = "Nanocrystalline up-converting Y₂ O₃Yb³⁺ Er³⁺ phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm3/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: ²H₉/₂ → ⁴I₁₅/₂ (blue: 407–420 nm), (²H₁₁/₂̦ ⁴S₃/₂) → ⁴I₁₅/₂ (green: 510–590 nm), and ⁴F₉/₂ → ⁴I₁₅/₂ (red: 640–720 nm). The significant improvement of the emission decay times were observed after thermal treatment and this effect is correlated further with the structural and morphological particles characteristics. For the anneal-ing time of 12 h a quite high emission decay times were achieved (blue: 0.14 ms, green: 0.32 ms and red: 0.39 ms).",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route",
pages = "584-591",
volume = "580",
doi = "10.1016/j.jallcom.2013.07.125"
}
Lojpur, V., Rabanal Jiménez, M. E., Dramićanin, M., Tan, Z., Hashishin, T., Ohara, S., Milošević, O.,& Mančić, L. (2013). Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route.
Journal of Alloys and CompoundsElsevier., 580, 584-591.
https://doi.org/10.1016/j.jallcom.2013.07.125
Lojpur V, Rabanal Jiménez ME, Dramićanin M, Tan Z, Hashishin T, Ohara S, Milošević O, Mančić L. Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route. Journal of Alloys and Compounds. 2013;580:584-591
Lojpur Vesna, Rabanal Jiménez Maria Eugenia, Dramićanin Miroslav, Tan Z., Hashishin Takeshi, Ohara Satoshi, Milošević Olivera, Mančić Lidija, "Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route" 580 (2013):584-591,
https://doi.org/10.1016/j.jallcom.2013.07.125 .
9
11
11

Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route

Lojpur, Vesna; Mančić, Lidija; Rabanal, Maria Eugenia; Dramićanin, Miroslav; Tan, Z.; Hashishin, Takeshi; Ohara, Satoshi; Milošević, Olivera

(Elsevier, 2013)

TY  - JOUR
AU  - Lojpur, Vesna
AU  - Mančić, Lidija
AU  - Rabanal, Maria Eugenia
AU  - Dramićanin, Miroslav
AU  - Tan, Z.
AU  - Hashishin, Takeshi
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/359
AB  - Nanocrystalline up-converting Y2O3:Yb3+, Er3+ phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm3/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: 2H9/2 → 4I15/2 (blue: 407–420 nm), (2H11/2, 4S3/2) → 4I15/2 (green: 510–590 nm), and 4F9/2 → 4I15/2 (red: 640–720 nm). The significant improvement of the emission decay times were observed after thermal treatment and this effect is correlated further with the structural and morphological particles characteristics. For the annealing time of 12 h a quite high emission decay times were achieved (blue: 0.14 ms, green: 0.32 ms and red: 0.39 ms).
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route
SP  - 584
EP  - 591
VL  - 580
DO  - 10.1016/j.jallcom.2013.07.125
ER  - 
@article{
author = "Lojpur, Vesna and Mančić, Lidija and Rabanal, Maria Eugenia and Dramićanin, Miroslav and Tan, Z. and Hashishin, Takeshi and Ohara, Satoshi and Milošević, Olivera",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/359",
abstract = "Nanocrystalline up-converting Y2O3:Yb3+, Er3+ phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm3/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: 2H9/2 → 4I15/2 (blue: 407–420 nm), (2H11/2, 4S3/2) → 4I15/2 (green: 510–590 nm), and 4F9/2 → 4I15/2 (red: 640–720 nm). The significant improvement of the emission decay times were observed after thermal treatment and this effect is correlated further with the structural and morphological particles characteristics. For the annealing time of 12 h a quite high emission decay times were achieved (blue: 0.14 ms, green: 0.32 ms and red: 0.39 ms).",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route",
pages = "584-591",
volume = "580",
doi = "10.1016/j.jallcom.2013.07.125"
}
Lojpur, V., Mančić, L., Rabanal, M. E., Dramićanin, M., Tan, Z., Hashishin, T., Ohara, S.,& Milošević, O. (2013). Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route.
Journal of Alloys and CompoundsElsevier., 580, 584-591.
https://doi.org/10.1016/j.jallcom.2013.07.125
Lojpur V, Mančić L, Rabanal ME, Dramićanin M, Tan Z, Hashishin T, Ohara S, Milošević O. Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route. Journal of Alloys and Compounds. 2013;580:584-591
Lojpur Vesna, Mančić Lidija, Rabanal Maria Eugenia, Dramićanin Miroslav, Tan Z., Hashishin Takeshi, Ohara Satoshi, Milošević Olivera, "Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route" 580 (2013):584-591,
https://doi.org/10.1016/j.jallcom.2013.07.125 .
9
11
11

The feasibility of aerosol route in the optically active nanoparticles processing

Milošević, Olivera; Mančić, Lidija; Rabanal, Maria Eugenia; Ohara, Satoshi

(FEMS, 2013)

TY  - CONF
AU  - Milošević, Olivera
AU  - Mančić, Lidija
AU  - Rabanal, Maria Eugenia
AU  - Ohara, Satoshi
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/821
AB  - Among the diversity of the soft chemical approaches for nanomaterials processing, synthesis through dispersion phase (aerosol) enables generation of ultrafine, either single or complex powders with controlled stoichiometry, chemical and phase content provided by high heating and cooling rates, short residence time and high surface reaction. This may favors to the formation of either amorphous, nanocrystalline or metastable phases that might have a huge impact in the processing of advanced functional materials having novel and unique structures and properties. Particularly, the opportunities of the hot wall aerosol processing, provided by high heating and cooling rates, short residence time and high surface reaction, is demonstrated for the synthesis of spherical three-dimensional (3D), hierarchically organized nanostructured particles with uniformly distributed components and phases. The particles composite inner structure, representing an assembly of nanosized primary particles, opens the possibility for particle surface modification and functionalization emphasizing their application in photovoltaics, energy transfer and bioimaging. The diverse levels of structural, morphological and functional complexity are explored by means of appropriate selection of different precursor solutions, either true or colloid, surface modification and proper selection of rare-earth based dopants for the generation of either photocatalytic titanium (IV) oxide or a range of up-conversion phosphor particles. With the help of various analyzing techniques like XRPD, SEM/EDS, FE-SEM, TEM, HR-TEM, STEM, nanotomography, UV-Vis diffusive reflectance (UV-Vis DRS), Fourier transform infrared (FTIR) spectroscopy and luminescence measurements, the synthesis of novel functional materials based on Y2O3:Eu,Yb,Er, NaYF4 and TiO2 for solving energy/environmental problems will be presented. The obtained results offer a general route for the synthesis of nanomaterials with tunable structure, morphology and optical properties.
PB  - FEMS
C3  - EUROMAT 2013: European Congress and Exhibition on Advanced Materials and Processes, Sevilla 8-13, October, 2013: CD Book of Abstracts
T1  - The feasibility of aerosol route in the optically active nanoparticles processing
ER  - 
@conference{
author = "Milošević, Olivera and Mančić, Lidija and Rabanal, Maria Eugenia and Ohara, Satoshi",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/821",
abstract = "Among the diversity of the soft chemical approaches for nanomaterials processing, synthesis through dispersion phase (aerosol) enables generation of ultrafine, either single or complex powders with controlled stoichiometry, chemical and phase content provided by high heating and cooling rates, short residence time and high surface reaction. This may favors to the formation of either amorphous, nanocrystalline or metastable phases that might have a huge impact in the processing of advanced functional materials having novel and unique structures and properties. Particularly, the opportunities of the hot wall aerosol processing, provided by high heating and cooling rates, short residence time and high surface reaction, is demonstrated for the synthesis of spherical three-dimensional (3D), hierarchically organized nanostructured particles with uniformly distributed components and phases. The particles composite inner structure, representing an assembly of nanosized primary particles, opens the possibility for particle surface modification and functionalization emphasizing their application in photovoltaics, energy transfer and bioimaging. The diverse levels of structural, morphological and functional complexity are explored by means of appropriate selection of different precursor solutions, either true or colloid, surface modification and proper selection of rare-earth based dopants for the generation of either photocatalytic titanium (IV) oxide or a range of up-conversion phosphor particles. With the help of various analyzing techniques like XRPD, SEM/EDS, FE-SEM, TEM, HR-TEM, STEM, nanotomography, UV-Vis diffusive reflectance (UV-Vis DRS), Fourier transform infrared (FTIR) spectroscopy and luminescence measurements, the synthesis of novel functional materials based on Y2O3:Eu,Yb,Er, NaYF4 and TiO2 for solving energy/environmental problems will be presented. The obtained results offer a general route for the synthesis of nanomaterials with tunable structure, morphology and optical properties.",
publisher = "FEMS",
journal = "EUROMAT 2013: European Congress and Exhibition on Advanced Materials and Processes, Sevilla 8-13, October, 2013: CD Book of Abstracts",
title = "The feasibility of aerosol route in the optically active nanoparticles processing"
}
Milošević, O., Mančić, L., Rabanal, M. E.,& Ohara, S. (2013). The feasibility of aerosol route in the optically active nanoparticles processing.
EUROMAT 2013: European Congress and Exhibition on Advanced Materials and Processes, Sevilla 8-13, October, 2013: CD Book of AbstractsFEMS..
Milošević O, Mančić L, Rabanal ME, Ohara S. The feasibility of aerosol route in the optically active nanoparticles processing. EUROMAT 2013: European Congress and Exhibition on Advanced Materials and Processes, Sevilla 8-13, October, 2013: CD Book of Abstracts. 2013;
Milošević Olivera, Mančić Lidija, Rabanal Maria Eugenia, Ohara Satoshi, "The feasibility of aerosol route in the optically active nanoparticles processing" (2013)

Characterization of YAG:Ce powders thermal treated at different temperatures

Del Rosario, G.; Ohara, Satoshi; Mančić, Lidija; Milošević, Olivera

(2003)

TY  - CONF
AU  - Del Rosario, G.
AU  - Ohara, Satoshi
AU  - Mančić, Lidija
AU  - Milošević, Olivera
PY  - 2003
UR  - http://dais.sanu.ac.rs/123456789/337
AB  - Poster presented at the First International Meeting on Applied Physics - Applied Physics 2003, Badajoz, Spain.
T1  - Characterization of YAG:Ce powders thermal treated at different temperatures
ER  - 
@conference{
author = "Del Rosario, G. and Ohara, Satoshi and Mančić, Lidija and Milošević, Olivera",
year = "2003",
url = "http://dais.sanu.ac.rs/123456789/337",
abstract = "Poster presented at the First International Meeting on Applied Physics - Applied Physics 2003, Badajoz, Spain.",
title = "Characterization of YAG:Ce powders thermal treated at different temperatures"
}
Del Rosario, G., Ohara, S., Mančić, L.,& Milošević, O. (2003). Characterization of YAG:Ce powders thermal treated at different temperatures.
.
Del Rosario G, Ohara S, Mančić L, Milošević O. Characterization of YAG:Ce powders thermal treated at different temperatures. 2003;
Del Rosario G., Ohara Satoshi, Mančić Lidija, Milošević Olivera, "Characterization of YAG:Ce powders thermal treated at different temperatures" (2003)

Aerosol synthesis of phosphor based on Eu3+ activated gadolinium oxide matrices

Milošević, Olivera; Marić, Radenka; Ohara, Satoshi; Fukui, T.

(2000)

TY  - CONF
AU  - Milošević, Olivera
AU  - Marić, Radenka
AU  - Ohara, Satoshi
AU  - Fukui, T.
PY  - 2000
UR  - http://dais.sanu.ac.rs/123456789/338
AB  - Poster presented at the Seventh International Conference on Ceramic Processing Science, Inuyama, Japan, May 15-18, 2000
T1  - Aerosol synthesis of phosphor based on Eu3+ activated gadolinium oxide matrices
ER  - 
@conference{
author = "Milošević, Olivera and Marić, Radenka and Ohara, Satoshi and Fukui, T.",
year = "2000",
url = "http://dais.sanu.ac.rs/123456789/338",
abstract = "Poster presented at the Seventh International Conference on Ceramic Processing Science, Inuyama, Japan, May 15-18, 2000",
title = "Aerosol synthesis of phosphor based on Eu3+ activated gadolinium oxide matrices"
}
Milošević, O., Marić, R., Ohara, S.,& Fukui, T. (2000). Aerosol synthesis of phosphor based on Eu3+ activated gadolinium oxide matrices.
.
Milošević O, Marić R, Ohara S, Fukui T. Aerosol synthesis of phosphor based on Eu3+ activated gadolinium oxide matrices. 2000;
Milošević Olivera, Marić Radenka, Ohara Satoshi, Fukui T., "Aerosol synthesis of phosphor based on Eu3+ activated gadolinium oxide matrices" (2000)