Kuzmanović, Maja

Link to this page

Authority KeyName Variants
orcid::0000-0002-8160-4804
  • Kuzmanović, Maja (37)
  • Jović, Maja (13)
  • Кузмановић, Маја (1)
Projects
Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)
Sinteza funkcionalnih materijala sa kontrolisanom strukturom na molekularnom i nano nivou Magnetic and radionuclide labeled nanostructured materials for medical applications
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200178 (University of Belgrade, Faculty of Biology) Sabanci University Nanotechnology Research and Application Center (SUNUM) starter through JECS Trust
Bilateral project Montenegro-Serbia: Bilateral project between Serbia and Slovenia "Developments of novel materials for alkaline-ion batteries" Synthesis, characterization and biological investigation of steroid derivatives and their molecular aggregates
Lithium-ion batteries and fuel cells - research and development Investigation of the relation in triad: Synthesis structure-properties for functional materials
United States National Institutes of Health (NIH) / National Institute of Dental and Craniofacial Research (NIDCR), Grant K99-DE021416 Bilateral project between Serbia and Austria (project No: SRB 24/2018, project title: Scaffolds with controlled 3-D architecture designed by photopolymerization)
Bilateral project between Serbia and Germany (DAAD project 57514776) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry)
HiSuperBat - High-Capacity Electrodes for Aqueous Rechargeable Multivalent-Ion Batteries and Supercapacitors: Next Step Towards a Hybrid Model

Author's Bibliography

Kinetic of the ZnTiO3 to Zn2TiO4 phase transition observed on nano dimensional powder and polycrystalline bulk specimen using thermal analysis - DTA and dilatometer

Labus, Nebojša; Szabó, Juraj; Marković, Smilja; Stanković, Ana; Dinić, Ivana; Mitrašinović, Aleksandar; Kuzmanović, Maja

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Labus, Nebojša
AU  - Szabó, Juraj
AU  - Marković, Smilja
AU  - Stanković, Ana
AU  - Dinić, Ivana
AU  - Mitrašinović, Aleksandar
AU  - Kuzmanović, Maja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16169
AB  - Phase transition from ZnTiO3 to Zn2TiO4 represents second order phase transition from perovskite (zinc metatitanate) with a hexagonal ilmenite structure (R¯3) to inverse spinel (zinc orthotitanate) cubic structure (Fd¯3m) stable from room temperature to its melting (liquid) was identified during sintering of ZnTiO3 nanopowder. Kinetic of the phase transition has been observed as dimensional changes using dilatometric device thermo-mechanical analyzer TMA SETARAM model SETSYS Evolution and as thermal changes with SETARAM SETSYS Evolution TGA-DTA/DSC device. Two forms of specimens were employed nanopowder and polycrystalline sintered bulk specimen. It was found that sintering process and relaxation of the nanodimensional powder particles stress phenomena strongly influence kinetic of the phase transition. Dilatometric results known from previous investigations are now compared with differential thermal analysis results.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.
T1  - Kinetic of the ZnTiO3 to Zn2TiO4 phase transition observed on nano dimensional powder and polycrystalline bulk specimen using thermal analysis - DTA and dilatometer
SP  - 87
EP  - 87
UR  - https://hdl.handle.net/21.15107/rcub_dais_16169
ER  - 
@conference{
author = "Labus, Nebojša and Szabó, Juraj and Marković, Smilja and Stanković, Ana and Dinić, Ivana and Mitrašinović, Aleksandar and Kuzmanović, Maja",
year = "2023",
abstract = "Phase transition from ZnTiO3 to Zn2TiO4 represents second order phase transition from perovskite (zinc metatitanate) with a hexagonal ilmenite structure (R¯3) to inverse spinel (zinc orthotitanate) cubic structure (Fd¯3m) stable from room temperature to its melting (liquid) was identified during sintering of ZnTiO3 nanopowder. Kinetic of the phase transition has been observed as dimensional changes using dilatometric device thermo-mechanical analyzer TMA SETARAM model SETSYS Evolution and as thermal changes with SETARAM SETSYS Evolution TGA-DTA/DSC device. Two forms of specimens were employed nanopowder and polycrystalline sintered bulk specimen. It was found that sintering process and relaxation of the nanodimensional powder particles stress phenomena strongly influence kinetic of the phase transition. Dilatometric results known from previous investigations are now compared with differential thermal analysis results.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.",
title = "Kinetic of the ZnTiO3 to Zn2TiO4 phase transition observed on nano dimensional powder and polycrystalline bulk specimen using thermal analysis - DTA and dilatometer",
pages = "87-87",
url = "https://hdl.handle.net/21.15107/rcub_dais_16169"
}
Labus, N., Szabó, J., Marković, S., Stanković, A., Dinić, I., Mitrašinović, A.,& Kuzmanović, M.. (2023). Kinetic of the ZnTiO3 to Zn2TiO4 phase transition observed on nano dimensional powder and polycrystalline bulk specimen using thermal analysis - DTA and dilatometer. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.
Belgrade : Serbian Ceramic Society., 87-87.
https://hdl.handle.net/21.15107/rcub_dais_16169
Labus N, Szabó J, Marković S, Stanković A, Dinić I, Mitrašinović A, Kuzmanović M. Kinetic of the ZnTiO3 to Zn2TiO4 phase transition observed on nano dimensional powder and polycrystalline bulk specimen using thermal analysis - DTA and dilatometer. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023.. 2023;:87-87.
https://hdl.handle.net/21.15107/rcub_dais_16169 .
Labus, Nebojša, Szabó, Juraj, Marković, Smilja, Stanković, Ana, Dinić, Ivana, Mitrašinović, Aleksandar, Kuzmanović, Maja, "Kinetic of the ZnTiO3 to Zn2TiO4 phase transition observed on nano dimensional powder and polycrystalline bulk specimen using thermal analysis - DTA and dilatometer" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. (2023):87-87,
https://hdl.handle.net/21.15107/rcub_dais_16169 .

Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte

Kuzmanović, Maja; Guberinić, Katarina; Kraljić Rokvić, Marijana; Stojković Simatović, Ivana

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Kuzmanović, Maja
AU  - Guberinić, Katarina
AU  - Kraljić Rokvić, Marijana
AU  - Stojković Simatović, Ivana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15153
AB  - Today, rechargeable Li- ion batteries have widespread use as power sources. However, the organic electrolytes used in these batteries are toxic, so the use of aqueous electrolytes is preferred. Vanadium pentoxide has been intensively studied as a cathode material for use in batteries with aqueous electrolytes. In this work, the V2O5 composite with reduced graphene oxide was synthesized by a simple sol-gel synthesis. Material was characterized by XRD, thermal analysis and optical microscope. The electrochemical properties of the composite material were examined by the method of cyclic voltammetry at different polarization speeds. Aqueous electrolytes LiNO3, NaNO3 and Mg (NO3)2 were used. These characteristics were correlated to determine for which type of batteries the tested composite can be used, as well as how reduced graphene oxide affects the stability and capacity value of V2O5.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte
SP  - 85
EP  - 86
UR  - https://hdl.handle.net/21.15107/rcub_dais_15153
ER  - 
@conference{
author = "Kuzmanović, Maja and Guberinić, Katarina and Kraljić Rokvić, Marijana and Stojković Simatović, Ivana",
year = "2023",
abstract = "Today, rechargeable Li- ion batteries have widespread use as power sources. However, the organic electrolytes used in these batteries are toxic, so the use of aqueous electrolytes is preferred. Vanadium pentoxide has been intensively studied as a cathode material for use in batteries with aqueous electrolytes. In this work, the V2O5 composite with reduced graphene oxide was synthesized by a simple sol-gel synthesis. Material was characterized by XRD, thermal analysis and optical microscope. The electrochemical properties of the composite material were examined by the method of cyclic voltammetry at different polarization speeds. Aqueous electrolytes LiNO3, NaNO3 and Mg (NO3)2 were used. These characteristics were correlated to determine for which type of batteries the tested composite can be used, as well as how reduced graphene oxide affects the stability and capacity value of V2O5.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte",
pages = "85-86",
url = "https://hdl.handle.net/21.15107/rcub_dais_15153"
}
Kuzmanović, M., Guberinić, K., Kraljić Rokvić, M.,& Stojković Simatović, I.. (2023). Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 85-86.
https://hdl.handle.net/21.15107/rcub_dais_15153
Kuzmanović M, Guberinić K, Kraljić Rokvić M, Stojković Simatović I. Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:85-86.
https://hdl.handle.net/21.15107/rcub_dais_15153 .
Kuzmanović, Maja, Guberinić, Katarina, Kraljić Rokvić, Marijana, Stojković Simatović, Ivana, "Electrochemical characteristics of V2O5/rGO synthesized by sol-gel method in water electrolyte" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):85-86,
https://hdl.handle.net/21.15107/rcub_dais_15153 .

The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles

Kuzmanović, Maja; Filipović, Nenad; Tomić, Nina; Stevanović, Magdalena

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Kuzmanović, Maja
AU  - Filipović, Nenad
AU  - Tomić, Nina
AU  - Stevanović, Magdalena
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15225
AB  - As the most abundant protein in the human body, collagen has been drawing the attention of many researchers from the biomedical field for a long time. It can be found as a constituent in versatile commercially available products. In the hydrogel form, it is used often in designing novel platforms for drug delivery or cell growth. On the other side, Selenium nanoparticles (SeNPs) are a relatively new selenium form that has proven records in enhanced antimicrobial, anticancer, antiviral, antioxidative activity, and reduced toxicity compared to other selenium forms. Therefore, in this work, we have examined the effects of different stabilizing agents, used in the preparation of selenium nanoparticles, on the formation, structure, and biocompatibility of composite hydrogel Collagen/SeNPs. Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), optical microscopy, and cell viability (MTT assay) were used for the characterizations of obtained hydrogels. SeNPs were synthesized by the chemical reduction in the form of colloidal solutions using (i) bovine serum albumin, (ii) chitosan, and(iii) glucose as stabilizing agents.
PB  - Belgrade : Serbian Ceramic Society
C3  - The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles
T1  - The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles
SP  - 86
EP  - 86
UR  - https://hdl.handle.net/21.15107/rcub_dais_15225
ER  - 
@conference{
author = "Kuzmanović, Maja and Filipović, Nenad and Tomić, Nina and Stevanović, Magdalena",
year = "2023",
abstract = "As the most abundant protein in the human body, collagen has been drawing the attention of many researchers from the biomedical field for a long time. It can be found as a constituent in versatile commercially available products. In the hydrogel form, it is used often in designing novel platforms for drug delivery or cell growth. On the other side, Selenium nanoparticles (SeNPs) are a relatively new selenium form that has proven records in enhanced antimicrobial, anticancer, antiviral, antioxidative activity, and reduced toxicity compared to other selenium forms. Therefore, in this work, we have examined the effects of different stabilizing agents, used in the preparation of selenium nanoparticles, on the formation, structure, and biocompatibility of composite hydrogel Collagen/SeNPs. Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), optical microscopy, and cell viability (MTT assay) were used for the characterizations of obtained hydrogels. SeNPs were synthesized by the chemical reduction in the form of colloidal solutions using (i) bovine serum albumin, (ii) chitosan, and(iii) glucose as stabilizing agents.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles",
title = "The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles",
pages = "86-86",
url = "https://hdl.handle.net/21.15107/rcub_dais_15225"
}
Kuzmanović, M., Filipović, N., Tomić, N.,& Stevanović, M.. (2023). The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles. in The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles
Belgrade : Serbian Ceramic Society., 86-86.
https://hdl.handle.net/21.15107/rcub_dais_15225
Kuzmanović M, Filipović N, Tomić N, Stevanović M. The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles. in The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles. 2023;:86-86.
https://hdl.handle.net/21.15107/rcub_dais_15225 .
Kuzmanović, Maja, Filipović, Nenad, Tomić, Nina, Stevanović, Magdalena, "The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles" in The effect of stabilizing agents on physicochemical properties and cell viability of composite hydrogel Collagen/Selenium nanoparticles (2023):86-86,
https://hdl.handle.net/21.15107/rcub_dais_15225 .

Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis

Stojanović, Zoran; Kuzmanović, Maja; Stevanović, Magdalena

(Ljubljana : Inštitut za kovinske materiale in tehnologije, 2023)

TY  - CONF
AU  - Stojanović, Zoran
AU  - Kuzmanović, Maja
AU  - Stevanović, Magdalena
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15763
AB  - Large language models (LLMs) like Generative pre-trained transformers (GPTs) emerged in past couple of years with increase of computational power. These models are used for various tasks in field of natural language processing, such as text classification, question answering and language translation. In this talk, research methodology, practical aspects and performance testing of fine – tuned LLMs, both commercial and open source in domain of materials synthesis, will be covered. So far, LLMs seems to have promising future in education, research and production only integrated with other chemistry tools, thus further development of integrated AI systems as well as LLMs is necessary to enhance performances and meet future demands.
PB  - Ljubljana : Inštitut za kovinske materiale in tehnologije
C3  - 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology
T1  - Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis
SP  - 78
EP  - 78
UR  - https://hdl.handle.net/21.15107/rcub_dais_15763
ER  - 
@conference{
author = "Stojanović, Zoran and Kuzmanović, Maja and Stevanović, Magdalena",
year = "2023",
abstract = "Large language models (LLMs) like Generative pre-trained transformers (GPTs) emerged in past couple of years with increase of computational power. These models are used for various tasks in field of natural language processing, such as text classification, question answering and language translation. In this talk, research methodology, practical aspects and performance testing of fine – tuned LLMs, both commercial and open source in domain of materials synthesis, will be covered. So far, LLMs seems to have promising future in education, research and production only integrated with other chemistry tools, thus further development of integrated AI systems as well as LLMs is necessary to enhance performances and meet future demands.",
publisher = "Ljubljana : Inštitut za kovinske materiale in tehnologije",
journal = "28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology",
title = "Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis",
pages = "78-78",
url = "https://hdl.handle.net/21.15107/rcub_dais_15763"
}
Stojanović, Z., Kuzmanović, M.,& Stevanović, M.. (2023). Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis. in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology
Ljubljana : Inštitut za kovinske materiale in tehnologije., 78-78.
https://hdl.handle.net/21.15107/rcub_dais_15763
Stojanović Z, Kuzmanović M, Stevanović M. Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis. in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology. 2023;:78-78.
https://hdl.handle.net/21.15107/rcub_dais_15763 .
Stojanović, Zoran, Kuzmanović, Maja, Stevanović, Magdalena, "Fine-Tuning and Performance Testing of Pre-Trained Large Language Models for Applications in Domain of Biomedical Materials Synthesis" in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology (2023):78-78,
https://hdl.handle.net/21.15107/rcub_dais_15763 .

Selenium nanoparticles: Effects of particle properties on biological activity

Filipović, Nenad; Tomić, Nina; Kuzmanović, Maja; Stojanović, Zoran; Stevanović, Magdalena

(Ljubljana : Inštitut za kovinske materiale in tehnologije, 2023)

TY  - CONF
AU  - Filipović, Nenad
AU  - Tomić, Nina
AU  - Kuzmanović, Maja
AU  - Stojanović, Zoran
AU  - Stevanović, Magdalena
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15762
AB  - Nanotechnology, as a most promising approach in material science, has resulted in numerous enhancements and breakthroughs in diverse scientific fields. One of the examples is selenium nanoparticles (SeNPs) which emerged as a new form with some improved properties compared to other Se forms. Among these properties, anticancer, antimicrobial, antioxidative, and reduced toxicity are the most interesting from the aspect of biomedical applications. Due to simplicity, short duration, scalability, and reproducibility, chemical reduction is a synthesis technique very often applied in SeNPs production. The choice of reducing agents, their molar ratio with a precursor, and the choice of stabilizing agents are recognized as determining parameters for the application efficiency of designed SeNPs.
This presentation includes an overview of the results of SeNPs obtained by the reduction of sodium selenite and stabilized with different agents. Furthermore, the effects of synthesis parameters on the properties of obtained particles (size, morphology, crystallinity, stability, surface chemistry) and biological activities such as antimicrobial, antioxidative, and cytotoxicity will be elaborate. In addition, some potential applications of SeNPs will be discussed, with particular reference to the results of in vivo experiments.
PB  - Ljubljana : Inštitut za kovinske materiale in tehnologije
C3  - 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology
T1  - Selenium nanoparticles: Effects of particle properties on biological activity
SP  - 32
EP  - 32
UR  - https://hdl.handle.net/21.15107/rcub_dais_15762
ER  - 
@conference{
author = "Filipović, Nenad and Tomić, Nina and Kuzmanović, Maja and Stojanović, Zoran and Stevanović, Magdalena",
year = "2023",
abstract = "Nanotechnology, as a most promising approach in material science, has resulted in numerous enhancements and breakthroughs in diverse scientific fields. One of the examples is selenium nanoparticles (SeNPs) which emerged as a new form with some improved properties compared to other Se forms. Among these properties, anticancer, antimicrobial, antioxidative, and reduced toxicity are the most interesting from the aspect of biomedical applications. Due to simplicity, short duration, scalability, and reproducibility, chemical reduction is a synthesis technique very often applied in SeNPs production. The choice of reducing agents, their molar ratio with a precursor, and the choice of stabilizing agents are recognized as determining parameters for the application efficiency of designed SeNPs.
This presentation includes an overview of the results of SeNPs obtained by the reduction of sodium selenite and stabilized with different agents. Furthermore, the effects of synthesis parameters on the properties of obtained particles (size, morphology, crystallinity, stability, surface chemistry) and biological activities such as antimicrobial, antioxidative, and cytotoxicity will be elaborate. In addition, some potential applications of SeNPs will be discussed, with particular reference to the results of in vivo experiments.",
publisher = "Ljubljana : Inštitut za kovinske materiale in tehnologije",
journal = "28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology",
title = "Selenium nanoparticles: Effects of particle properties on biological activity",
pages = "32-32",
url = "https://hdl.handle.net/21.15107/rcub_dais_15762"
}
Filipović, N., Tomić, N., Kuzmanović, M., Stojanović, Z.,& Stevanović, M.. (2023). Selenium nanoparticles: Effects of particle properties on biological activity. in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology
Ljubljana : Inštitut za kovinske materiale in tehnologije., 32-32.
https://hdl.handle.net/21.15107/rcub_dais_15762
Filipović N, Tomić N, Kuzmanović M, Stojanović Z, Stevanović M. Selenium nanoparticles: Effects of particle properties on biological activity. in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology. 2023;:32-32.
https://hdl.handle.net/21.15107/rcub_dais_15762 .
Filipović, Nenad, Tomić, Nina, Kuzmanović, Maja, Stojanović, Zoran, Stevanović, Magdalena, "Selenium nanoparticles: Effects of particle properties on biological activity" in 28. Mednarodna konferenca o materialih in tehnologijah = 28th International Conference on Materials and Technology (2023):32-32,
https://hdl.handle.net/21.15107/rcub_dais_15762 .

Nanoparticles: Potential for Use to Prevent Infections

Soria, Federico; Rako, Duje; de Graaf, Petra; Filipović, Nenad; Tomić, Nina; Kuzmanović, Maja; Stevanović, Magdalena

(Cham : Springer International Publishing, 2022)

TY  - CHAP
AU  - Filipović, Nenad
AU  - Tomić, Nina
AU  - Kuzmanović, Maja
AU  - Stevanović, Magdalena
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13184
AB  - One of the major issues related to medical devices and especially urinary stents are infections caused by different strains of bacteria and fungi, mainly in light of the recent rise in microbial resistance to existing antibiotics. Lately, it has been shown that nanomaterials could be superior alternatives to conventional antibiotics. Generally, nanoparticles are used for many applications in the biomedical field primarily due to the ability to adjust and control their physicochemical properties as well as their great reactivity due to the large surface-to-volume ratio. This has led to the formation of a new research field called nanomedicine which can be defined as the use of nanotechnology and nanomaterials in diagnostics, imaging, observing, prevention, control, and treatment of diseases. For example, coverings or coatings based on nanomaterials are now seen as a promising strategy for preventing or treating biofilms formation on healthcare kits, implants, and medical devices. Toxicity, inappropriate delivery, or degradation of conventionally used drugs for the treatment of infections may be avoided by using nanoparticles without or with encapsulated/immobilized active substances. Most of the materials which are used and examined for the preparation of the nanoparticles with encapsulated/immobilized active substances or smart reactive nanomaterials with antimicrobial effects are polymers, naturally derived antimicrobials, metal-based and non-metallic materials. This chapter provides an overview of the current state and future perspectives of the nanoparticle-based systems based on these materials for prevention, control, or elimination of biofilm-related infections on urinary stents. It also addresses manufacturing conditions indicating the huge potential for the improvement of existing and development of new promising stent solutions.
PB  - Cham : Springer International Publishing
T2  - Urinary Stents
T1  - Nanoparticles: Potential for Use to Prevent Infections
SP  - 325
EP  - 339
DO  - 10.1007/978-3-031-04484-7_26
UR  - https://hdl.handle.net/21.15107/rcub_dais_13184
ER  - 
@inbook{
editor = "Soria, Federico, Rako, Duje, de Graaf, Petra",
author = "Filipović, Nenad and Tomić, Nina and Kuzmanović, Maja and Stevanović, Magdalena",
year = "2022",
abstract = "One of the major issues related to medical devices and especially urinary stents are infections caused by different strains of bacteria and fungi, mainly in light of the recent rise in microbial resistance to existing antibiotics. Lately, it has been shown that nanomaterials could be superior alternatives to conventional antibiotics. Generally, nanoparticles are used for many applications in the biomedical field primarily due to the ability to adjust and control their physicochemical properties as well as their great reactivity due to the large surface-to-volume ratio. This has led to the formation of a new research field called nanomedicine which can be defined as the use of nanotechnology and nanomaterials in diagnostics, imaging, observing, prevention, control, and treatment of diseases. For example, coverings or coatings based on nanomaterials are now seen as a promising strategy for preventing or treating biofilms formation on healthcare kits, implants, and medical devices. Toxicity, inappropriate delivery, or degradation of conventionally used drugs for the treatment of infections may be avoided by using nanoparticles without or with encapsulated/immobilized active substances. Most of the materials which are used and examined for the preparation of the nanoparticles with encapsulated/immobilized active substances or smart reactive nanomaterials with antimicrobial effects are polymers, naturally derived antimicrobials, metal-based and non-metallic materials. This chapter provides an overview of the current state and future perspectives of the nanoparticle-based systems based on these materials for prevention, control, or elimination of biofilm-related infections on urinary stents. It also addresses manufacturing conditions indicating the huge potential for the improvement of existing and development of new promising stent solutions.",
publisher = "Cham : Springer International Publishing",
journal = "Urinary Stents",
booktitle = "Nanoparticles: Potential for Use to Prevent Infections",
pages = "325-339",
doi = "10.1007/978-3-031-04484-7_26",
url = "https://hdl.handle.net/21.15107/rcub_dais_13184"
}
Soria, F., Rako, D., de Graaf, P., Filipović, N., Tomić, N., Kuzmanović, M.,& Stevanović, M.. (2022). Nanoparticles: Potential for Use to Prevent Infections. in Urinary Stents
Cham : Springer International Publishing., 325-339.
https://doi.org/10.1007/978-3-031-04484-7_26
https://hdl.handle.net/21.15107/rcub_dais_13184
Soria F, Rako D, de Graaf P, Filipović N, Tomić N, Kuzmanović M, Stevanović M. Nanoparticles: Potential for Use to Prevent Infections. in Urinary Stents. 2022;:325-339.
doi:10.1007/978-3-031-04484-7_26
https://hdl.handle.net/21.15107/rcub_dais_13184 .
Soria, Federico, Rako, Duje, de Graaf, Petra, Filipović, Nenad, Tomić, Nina, Kuzmanović, Maja, Stevanović, Magdalena, "Nanoparticles: Potential for Use to Prevent Infections" in Urinary Stents (2022):325-339,
https://doi.org/10.1007/978-3-031-04484-7_26 .,
https://hdl.handle.net/21.15107/rcub_dais_13184 .
1

Cinnamon essential oil and its emulsion as efficient antibiofilm agents to combat Acinetobacter baumannii

Ganić, Tea; Vuletić, Stefana; Nikolić, Biljana; Stevanović, Magdalena; Kuzmanović, Maja; Kekić, Dušan; Đurović, Saša; Cvetković, Stefana; Mitić-Ćulafić, Dragana

(2022)

TY  - JOUR
AU  - Ganić, Tea
AU  - Vuletić, Stefana
AU  - Nikolić, Biljana
AU  - Stevanović, Magdalena
AU  - Kuzmanović, Maja
AU  - Kekić, Dušan
AU  - Đurović, Saša
AU  - Cvetković, Stefana
AU  - Mitić-Ćulafić, Dragana
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13509
AB  - Acinetobacter baumannii is an emerging nosocomial pathogen resistant to a wide spectrum of antibiotics, with great potential to form a biofilm, which further aggravates treatment of infections caused by it. Therefore, searching for new potent agents that are efficient against A. baumannii seems to be a necessity. One of them, which has already been proven to possess a wide spectrum of biological activities, including antimicrobial effect, is cinnamon essential oil. Still, further increase of antibacterial efficacy and improvement of bioavailability of cinnamon oil is possible by emulsification process. The aim of this study was comparative analysis of cinnamon essential oil and its emulsion against biofilm forming A. baumannii clinical isolates. Furthermore, the investigation of toxicological aspects of possible applications of essential oil and emulsion was done as well. Gas chromatography–mass spectrometry of essential oil indicated trans-cinnamaldehyde as the most abundant component. The cinnamon emulsion was synthesized from cinnamon essential oil by combining modified low- and high- energy methods. Synthesized emulsion was characterized with Fourier-transform infrared spectroscopy and photon correlation spectroscopy. Both substances exhibited significant antibacterial (minimal inhibitory concentrations in the range 0.125–0.5 mg/ml) and antibiofilm effects (inhibitions of formation and reduction of pre-formed biofilm were 47–81 and 30–62%, respectively). Compared to essential oil, the efficacy of emulsion was even stronger considering the small share of pure oil (20%) in the emulsion. The result of biofilm eradication assay was confirmed by scanning electron microscopy. Even though the cytotoxicity was high especially for the emulsion, genotoxicity was not determined. In conclusion, strong antibacterial/antibiofilm effect against A. baumannii of the cinnamon essential oil and the fact that emulsification even potentiated the activity, seems to be of great significance. Observed cytotoxicity implicated that further analysis is needed in order to clearly determine active principles being responsible for obtained antibacterial/antibiofilm and cytotoxic properties. Copyright © 2022 Ganić, Vuletić, Nikolić, Stevanović, Kuzmanović, Kekić, Đurović, Cvetković and Mitić-Ćulafić.
T2  - Frontiers in Microbiology
T1  - Cinnamon essential oil and its emulsion as efficient antibiofilm agents to combat Acinetobacter baumannii
VL  - 13
DO  - 10.3389/fmicb.2022.989667
UR  - https://hdl.handle.net/21.15107/rcub_dais_13509
ER  - 
@article{
author = "Ganić, Tea and Vuletić, Stefana and Nikolić, Biljana and Stevanović, Magdalena and Kuzmanović, Maja and Kekić, Dušan and Đurović, Saša and Cvetković, Stefana and Mitić-Ćulafić, Dragana",
year = "2022",
abstract = "Acinetobacter baumannii is an emerging nosocomial pathogen resistant to a wide spectrum of antibiotics, with great potential to form a biofilm, which further aggravates treatment of infections caused by it. Therefore, searching for new potent agents that are efficient against A. baumannii seems to be a necessity. One of them, which has already been proven to possess a wide spectrum of biological activities, including antimicrobial effect, is cinnamon essential oil. Still, further increase of antibacterial efficacy and improvement of bioavailability of cinnamon oil is possible by emulsification process. The aim of this study was comparative analysis of cinnamon essential oil and its emulsion against biofilm forming A. baumannii clinical isolates. Furthermore, the investigation of toxicological aspects of possible applications of essential oil and emulsion was done as well. Gas chromatography–mass spectrometry of essential oil indicated trans-cinnamaldehyde as the most abundant component. The cinnamon emulsion was synthesized from cinnamon essential oil by combining modified low- and high- energy methods. Synthesized emulsion was characterized with Fourier-transform infrared spectroscopy and photon correlation spectroscopy. Both substances exhibited significant antibacterial (minimal inhibitory concentrations in the range 0.125–0.5 mg/ml) and antibiofilm effects (inhibitions of formation and reduction of pre-formed biofilm were 47–81 and 30–62%, respectively). Compared to essential oil, the efficacy of emulsion was even stronger considering the small share of pure oil (20%) in the emulsion. The result of biofilm eradication assay was confirmed by scanning electron microscopy. Even though the cytotoxicity was high especially for the emulsion, genotoxicity was not determined. In conclusion, strong antibacterial/antibiofilm effect against A. baumannii of the cinnamon essential oil and the fact that emulsification even potentiated the activity, seems to be of great significance. Observed cytotoxicity implicated that further analysis is needed in order to clearly determine active principles being responsible for obtained antibacterial/antibiofilm and cytotoxic properties. Copyright © 2022 Ganić, Vuletić, Nikolić, Stevanović, Kuzmanović, Kekić, Đurović, Cvetković and Mitić-Ćulafić.",
journal = "Frontiers in Microbiology",
title = "Cinnamon essential oil and its emulsion as efficient antibiofilm agents to combat Acinetobacter baumannii",
volume = "13",
doi = "10.3389/fmicb.2022.989667",
url = "https://hdl.handle.net/21.15107/rcub_dais_13509"
}
Ganić, T., Vuletić, S., Nikolić, B., Stevanović, M., Kuzmanović, M., Kekić, D., Đurović, S., Cvetković, S.,& Mitić-Ćulafić, D.. (2022). Cinnamon essential oil and its emulsion as efficient antibiofilm agents to combat Acinetobacter baumannii. in Frontiers in Microbiology, 13.
https://doi.org/10.3389/fmicb.2022.989667
https://hdl.handle.net/21.15107/rcub_dais_13509
Ganić T, Vuletić S, Nikolić B, Stevanović M, Kuzmanović M, Kekić D, Đurović S, Cvetković S, Mitić-Ćulafić D. Cinnamon essential oil and its emulsion as efficient antibiofilm agents to combat Acinetobacter baumannii. in Frontiers in Microbiology. 2022;13.
doi:10.3389/fmicb.2022.989667
https://hdl.handle.net/21.15107/rcub_dais_13509 .
Ganić, Tea, Vuletić, Stefana, Nikolić, Biljana, Stevanović, Magdalena, Kuzmanović, Maja, Kekić, Dušan, Đurović, Saša, Cvetković, Stefana, Mitić-Ćulafić, Dragana, "Cinnamon essential oil and its emulsion as efficient antibiofilm agents to combat Acinetobacter baumannii" in Frontiers in Microbiology, 13 (2022),
https://doi.org/10.3389/fmicb.2022.989667 .,
https://hdl.handle.net/21.15107/rcub_dais_13509 .
1
5
5

Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles

Stevanović, Magdalena; Filipović, Nenad; Kuzmanović, Maja; Tomić, Nina; Ušjak, Dušan; Milenković, Marina; Zheng, Kai; Stampfl, Juergen; Boccaccini, Aldo

(2022)

TY  - JOUR
AU  - Stevanović, Magdalena
AU  - Filipović, Nenad
AU  - Kuzmanović, Maja
AU  - Tomić, Nina
AU  - Ušjak, Dušan
AU  - Milenković, Marina
AU  - Zheng, Kai
AU  - Stampfl, Juergen
AU  - Boccaccini, Aldo
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13579
AB  - Multidrug-resistant bacterial strains represent an emerging global health threat and a great obstacle for bone tissue engineering. One of the major components of the extracellular matrix of the bone is a collagen protein, while selenium is an element that has antimicrobial potential, and is also important for bone metabolism and bone health. Here we represent the incorporation of selenium nanoparticles (SeNPs) synthesized by the green chemical reduction method into collagen gels to produce a composite material, collagen/SeNPs, with antimicrobial properties. The samples were comprehensively characterized by zeta potential measurements, dynamic light scattering inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), optical microscopy, field-emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry The cytotoxicity of the SeNPS, as well as collagen/SeNPs, was tested on the MRC-5 cells. It was revealed that collagen/SeNPS expressed a lower cytotoxic effect. Collagen/SeNPs showed significant antibacterial activity against all tested Gram-positive strains, the major causative agents of orthopedic infections as well as Candida albicans. Furthermore, three-dimensional β-tricalcium phosphate (3D-TCP) scaffolds were fabricated by a well-established 3D printing (lithography) method, and afterward preliminary coated by newly-synthesized SeNPs or collagen/SeNPs. In addition, uncoated 3D-TCP scaffolds as well as coated by collagen/SeNPs were subjected to biofilm formation. The production of Staphylococcus aureus biofilm on coated scaffolds by collagen/SeNPs was significantly reduced compared to the uncoated ones. © The Author(s) 2022.
T2  - Journal of Biomaterials Applications
T1  - Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles
SP  - 1800
EP  - 1811
VL  - 36
IS  - 10
DO  - 10.1177/08853282211073731
UR  - https://hdl.handle.net/21.15107/rcub_dais_13579
ER  - 
@article{
author = "Stevanović, Magdalena and Filipović, Nenad and Kuzmanović, Maja and Tomić, Nina and Ušjak, Dušan and Milenković, Marina and Zheng, Kai and Stampfl, Juergen and Boccaccini, Aldo",
year = "2022",
abstract = "Multidrug-resistant bacterial strains represent an emerging global health threat and a great obstacle for bone tissue engineering. One of the major components of the extracellular matrix of the bone is a collagen protein, while selenium is an element that has antimicrobial potential, and is also important for bone metabolism and bone health. Here we represent the incorporation of selenium nanoparticles (SeNPs) synthesized by the green chemical reduction method into collagen gels to produce a composite material, collagen/SeNPs, with antimicrobial properties. The samples were comprehensively characterized by zeta potential measurements, dynamic light scattering inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), optical microscopy, field-emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry The cytotoxicity of the SeNPS, as well as collagen/SeNPs, was tested on the MRC-5 cells. It was revealed that collagen/SeNPS expressed a lower cytotoxic effect. Collagen/SeNPs showed significant antibacterial activity against all tested Gram-positive strains, the major causative agents of orthopedic infections as well as Candida albicans. Furthermore, three-dimensional β-tricalcium phosphate (3D-TCP) scaffolds were fabricated by a well-established 3D printing (lithography) method, and afterward preliminary coated by newly-synthesized SeNPs or collagen/SeNPs. In addition, uncoated 3D-TCP scaffolds as well as coated by collagen/SeNPs were subjected to biofilm formation. The production of Staphylococcus aureus biofilm on coated scaffolds by collagen/SeNPs was significantly reduced compared to the uncoated ones. © The Author(s) 2022.",
journal = "Journal of Biomaterials Applications",
title = "Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles",
pages = "1800-1811",
volume = "36",
number = "10",
doi = "10.1177/08853282211073731",
url = "https://hdl.handle.net/21.15107/rcub_dais_13579"
}
Stevanović, M., Filipović, N., Kuzmanović, M., Tomić, N., Ušjak, D., Milenković, M., Zheng, K., Stampfl, J.,& Boccaccini, A.. (2022). Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles. in Journal of Biomaterials Applications, 36(10), 1800-1811.
https://doi.org/10.1177/08853282211073731
https://hdl.handle.net/21.15107/rcub_dais_13579
Stevanović M, Filipović N, Kuzmanović M, Tomić N, Ušjak D, Milenković M, Zheng K, Stampfl J, Boccaccini A. Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles. in Journal of Biomaterials Applications. 2022;36(10):1800-1811.
doi:10.1177/08853282211073731
https://hdl.handle.net/21.15107/rcub_dais_13579 .
Stevanović, Magdalena, Filipović, Nenad, Kuzmanović, Maja, Tomić, Nina, Ušjak, Dušan, Milenković, Marina, Zheng, Kai, Stampfl, Juergen, Boccaccini, Aldo, "Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles" in Journal of Biomaterials Applications, 36, no. 10 (2022):1800-1811,
https://doi.org/10.1177/08853282211073731 .,
https://hdl.handle.net/21.15107/rcub_dais_13579 .
1
1
1

Cinnamon essential oil and nanoemulsion: antibiofiIm activity on Acinetobacter baumannii clinical isolates

Ganić, Tea; Vuletić, Stefana; Stevanović, Magdalena; Kuzmanović, Maja; Cvetković, Stefana; Nikolić, Biljana; Đurović, Saša; Kekić, Dušan; Mitić-Ćulafić, Dragana

(Wroclaw : College of Physiotherapy, 2022)

TY  - CONF
AU  - Ganić, Tea
AU  - Vuletić, Stefana
AU  - Stevanović, Magdalena
AU  - Kuzmanović, Maja
AU  - Cvetković, Stefana
AU  - Nikolić, Biljana
AU  - Đurović, Saša
AU  - Kekić, Dušan
AU  - Mitić-Ćulafić, Dragana
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13610
AB  - Objective: Acinetobacter baumannii is a pathogenic species which presents a danger to healthcare facilities due to the rapid spread of antibiotic resistance. Plants are currently being explored as a potential source of bioactive compounds that could be used to combat infectious diseases. Cinnamon is used as a food spice, but essential oil has been proven for antimicrobial activity. Due to reduced stability and solubility of essential oil, nanoemulsion (NE) synthesis could provide stronger antimicrobial effects. Investigation and comparison of antimicrobial activity of cinnamon (Cinnamomum zeylanicum L.) bark essential oil (EO) and NE on the A. baumannii ATCC19606 and clinical isolates. Effect of EO and NE on biofilm formation and biofilm eradication.
Methods: GC/MS was performed in order to determine chemical composition of commercially purchased EO (P0125285, Frey + Lau, GmbH, Henstedt-Ulzburg, Germany). Droplet/particle size and polydispersity index of NE was determined by photon correlation spectroscopy (PCS). Minimal inhibitory concentration of EO and NE were defined using MIC assay. Effects of EO and NE were also examined on biofilm formation and eradication. Crystal violet staining was used for biofilm biomass quantification.
Results: GC/MS analysis determined that the most common compound was trans-Cinnamaldehyde (61.9%). NE droplet/particles had multimodal distribution, shown by PCS. MIC values for EO were in range 0.25mg/mL — 0.5mg/mL, and for NE 0.125mg/mL — 0.25mg/mL. Both tested substances showed good effect on biofilm eradication, and destroyed biofilm biomass up to 64%, whilst the inhibition of biofilm formation was up to 70%.
Conclusion: Taking all the results into account, it is a good start for further investigations of both EO and NE as a potential antimicrobial agent. Deeper knowledge about the mechanisms of actions of both of these tested substances could help us to understand the best and the most effective way to use them, in order to combat against Acinetobacter baumannii.
PB  - Wroclaw : College of Physiotherapy
C3  - Programme and the Book of Abstracts / 52nd International Symposium on Essential Oils, Wroclaw, 4-7 September, ISEO 2022
T1  - Cinnamon essential oil and nanoemulsion: antibiofiIm activity on Acinetobacter baumannii clinical isolates
SP  - 85
EP  - 85
UR  - https://hdl.handle.net/21.15107/rcub_dais_13610
ER  - 
@conference{
author = "Ganić, Tea and Vuletić, Stefana and Stevanović, Magdalena and Kuzmanović, Maja and Cvetković, Stefana and Nikolić, Biljana and Đurović, Saša and Kekić, Dušan and Mitić-Ćulafić, Dragana",
year = "2022",
abstract = "Objective: Acinetobacter baumannii is a pathogenic species which presents a danger to healthcare facilities due to the rapid spread of antibiotic resistance. Plants are currently being explored as a potential source of bioactive compounds that could be used to combat infectious diseases. Cinnamon is used as a food spice, but essential oil has been proven for antimicrobial activity. Due to reduced stability and solubility of essential oil, nanoemulsion (NE) synthesis could provide stronger antimicrobial effects. Investigation and comparison of antimicrobial activity of cinnamon (Cinnamomum zeylanicum L.) bark essential oil (EO) and NE on the A. baumannii ATCC19606 and clinical isolates. Effect of EO and NE on biofilm formation and biofilm eradication.
Methods: GC/MS was performed in order to determine chemical composition of commercially purchased EO (P0125285, Frey + Lau, GmbH, Henstedt-Ulzburg, Germany). Droplet/particle size and polydispersity index of NE was determined by photon correlation spectroscopy (PCS). Minimal inhibitory concentration of EO and NE were defined using MIC assay. Effects of EO and NE were also examined on biofilm formation and eradication. Crystal violet staining was used for biofilm biomass quantification.
Results: GC/MS analysis determined that the most common compound was trans-Cinnamaldehyde (61.9%). NE droplet/particles had multimodal distribution, shown by PCS. MIC values for EO were in range 0.25mg/mL — 0.5mg/mL, and for NE 0.125mg/mL — 0.25mg/mL. Both tested substances showed good effect on biofilm eradication, and destroyed biofilm biomass up to 64%, whilst the inhibition of biofilm formation was up to 70%.
Conclusion: Taking all the results into account, it is a good start for further investigations of both EO and NE as a potential antimicrobial agent. Deeper knowledge about the mechanisms of actions of both of these tested substances could help us to understand the best and the most effective way to use them, in order to combat against Acinetobacter baumannii.",
publisher = "Wroclaw : College of Physiotherapy",
journal = "Programme and the Book of Abstracts / 52nd International Symposium on Essential Oils, Wroclaw, 4-7 September, ISEO 2022",
title = "Cinnamon essential oil and nanoemulsion: antibiofiIm activity on Acinetobacter baumannii clinical isolates",
pages = "85-85",
url = "https://hdl.handle.net/21.15107/rcub_dais_13610"
}
Ganić, T., Vuletić, S., Stevanović, M., Kuzmanović, M., Cvetković, S., Nikolić, B., Đurović, S., Kekić, D.,& Mitić-Ćulafić, D.. (2022). Cinnamon essential oil and nanoemulsion: antibiofiIm activity on Acinetobacter baumannii clinical isolates. in Programme and the Book of Abstracts / 52nd International Symposium on Essential Oils, Wroclaw, 4-7 September, ISEO 2022
Wroclaw : College of Physiotherapy., 85-85.
https://hdl.handle.net/21.15107/rcub_dais_13610
Ganić T, Vuletić S, Stevanović M, Kuzmanović M, Cvetković S, Nikolić B, Đurović S, Kekić D, Mitić-Ćulafić D. Cinnamon essential oil and nanoemulsion: antibiofiIm activity on Acinetobacter baumannii clinical isolates. in Programme and the Book of Abstracts / 52nd International Symposium on Essential Oils, Wroclaw, 4-7 September, ISEO 2022. 2022;:85-85.
https://hdl.handle.net/21.15107/rcub_dais_13610 .
Ganić, Tea, Vuletić, Stefana, Stevanović, Magdalena, Kuzmanović, Maja, Cvetković, Stefana, Nikolić, Biljana, Đurović, Saša, Kekić, Dušan, Mitić-Ćulafić, Dragana, "Cinnamon essential oil and nanoemulsion: antibiofiIm activity on Acinetobacter baumannii clinical isolates" in Programme and the Book of Abstracts / 52nd International Symposium on Essential Oils, Wroclaw, 4-7 September, ISEO 2022 (2022):85-85,
https://hdl.handle.net/21.15107/rcub_dais_13610 .

Physicochemical and electrochemical characterization of carbon derived from Al- based metal organic framework

Kuzmanović, Maja; Milović, Miloš D.; Vujković, Milica

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Kuzmanović, Maja
AU  - Milović, Miloš D.
AU  - Vujković, Milica
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13616
AB  - Carbon materials derived from metal organic frameworks (MOF) have shown promising applications including energy storage and conversion, adsorption, gas storage and separation, catalysis, chemical sensing, and solid phase extraction. Here we present carbon materials derived from Al-based MOFs for use as electrodes in multivalent ion supercapacitors. Al MOFs were synthesized through complexation of fumaric acid with aluminum salts. Carbonization process of Al MOFs was followed by removal of Al2O3 via dissolving in NaOH solution. The properties of carbon materials were examined by X-ray diffraction (XRD), Thermogravimetric and Differential thermal analysis (TG/DTA), Fourier Infrared (FTIR) and Raman Spectroscopy, Particle Size Analysis (PSA), Scanning Electron Microscopy (SEM). The charge storage ability of carbon materials were examined in acidic and neutral aqueous solution using Cyclic Voltammetry at scan rates ranging from 5-500 mVs-1.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - Physicochemical and electrochemical characterization of carbon derived from Al- based metal organic framework
SP  - 39
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_dais_13616
ER  - 
@conference{
author = "Kuzmanović, Maja and Milović, Miloš D. and Vujković, Milica",
year = "2022",
abstract = "Carbon materials derived from metal organic frameworks (MOF) have shown promising applications including energy storage and conversion, adsorption, gas storage and separation, catalysis, chemical sensing, and solid phase extraction. Here we present carbon materials derived from Al-based MOFs for use as electrodes in multivalent ion supercapacitors. Al MOFs were synthesized through complexation of fumaric acid with aluminum salts. Carbonization process of Al MOFs was followed by removal of Al2O3 via dissolving in NaOH solution. The properties of carbon materials were examined by X-ray diffraction (XRD), Thermogravimetric and Differential thermal analysis (TG/DTA), Fourier Infrared (FTIR) and Raman Spectroscopy, Particle Size Analysis (PSA), Scanning Electron Microscopy (SEM). The charge storage ability of carbon materials were examined in acidic and neutral aqueous solution using Cyclic Voltammetry at scan rates ranging from 5-500 mVs-1.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "Physicochemical and electrochemical characterization of carbon derived from Al- based metal organic framework",
pages = "39-39",
url = "https://hdl.handle.net/21.15107/rcub_dais_13616"
}
Kuzmanović, M., Milović, M. D.,& Vujković, M.. (2022). Physicochemical and electrochemical characterization of carbon derived from Al- based metal organic framework. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 39-39.
https://hdl.handle.net/21.15107/rcub_dais_13616
Kuzmanović M, Milović MD, Vujković M. Physicochemical and electrochemical characterization of carbon derived from Al- based metal organic framework. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:39-39.
https://hdl.handle.net/21.15107/rcub_dais_13616 .
Kuzmanović, Maja, Milović, Miloš D., Vujković, Milica, "Physicochemical and electrochemical characterization of carbon derived from Al- based metal organic framework" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):39-39,
https://hdl.handle.net/21.15107/rcub_dais_13616 .

The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte

Jugović, Dragana; Milović, Miloš; Barudžija, Tanja; Kuzmanović, Maja; Vujković, Milica; Mitrić, Miodrag

(Basel : MDPI, 2022)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Barudžija, Tanja
AU  - Kuzmanović, Maja
AU  - Vujković, Milica
AU  - Mitrić, Miodrag
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13692
AB  - Layered VOPO4·2H2O is synthesized by the sonochemical method. An X-ray powder diffraction is used to examine the crystal structure, while scanning electron microscopy is used to reveal the morphology of the powder. The crystal structure refinement is performed in the P4/nmmZ space group. The electrochemical intercalation of several cations (Na+, Mg2+, Ca2+, and Al3+) in saturated nitrate aqueous solutions is investigated. The most notable reversible activity is found for the cycling in aluminium nitrate aqueous solution in the voltage range from −0.1 to 0.8 V vs. SCE. During the preparation of the electrode, it is observed that the structure is prone to changes that have not been recorded in the literature so far. Namely, the use of conventional binder PVDF in NMP solution deteriorates the structure and lowers the powder’s crystallinity, while the use of Nafion solution causes the rearrangement of the atoms in a new crystal form that can be described in the monoclinic P21/c space group. Consequently, these structural changes affect electrochemical performances. The observed differences in electrochemical performances are a result of structural rearrangements.
PB  - Basel : MDPI
T2  - Materials
T1  - The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte
VL  - 15
IS  - 24
DO  - 10.3390/ma15249041
UR  - https://hdl.handle.net/21.15107/rcub_dais_13692
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Barudžija, Tanja and Kuzmanović, Maja and Vujković, Milica and Mitrić, Miodrag",
year = "2022",
abstract = "Layered VOPO4·2H2O is synthesized by the sonochemical method. An X-ray powder diffraction is used to examine the crystal structure, while scanning electron microscopy is used to reveal the morphology of the powder. The crystal structure refinement is performed in the P4/nmmZ space group. The electrochemical intercalation of several cations (Na+, Mg2+, Ca2+, and Al3+) in saturated nitrate aqueous solutions is investigated. The most notable reversible activity is found for the cycling in aluminium nitrate aqueous solution in the voltage range from −0.1 to 0.8 V vs. SCE. During the preparation of the electrode, it is observed that the structure is prone to changes that have not been recorded in the literature so far. Namely, the use of conventional binder PVDF in NMP solution deteriorates the structure and lowers the powder’s crystallinity, while the use of Nafion solution causes the rearrangement of the atoms in a new crystal form that can be described in the monoclinic P21/c space group. Consequently, these structural changes affect electrochemical performances. The observed differences in electrochemical performances are a result of structural rearrangements.",
publisher = "Basel : MDPI",
journal = "Materials",
title = "The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte",
volume = "15",
number = "24",
doi = "10.3390/ma15249041",
url = "https://hdl.handle.net/21.15107/rcub_dais_13692"
}
Jugović, D., Milović, M., Barudžija, T., Kuzmanović, M., Vujković, M.,& Mitrić, M.. (2022). The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte. in Materials
Basel : MDPI., 15(24).
https://doi.org/10.3390/ma15249041
https://hdl.handle.net/21.15107/rcub_dais_13692
Jugović D, Milović M, Barudžija T, Kuzmanović M, Vujković M, Mitrić M. The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte. in Materials. 2022;15(24).
doi:10.3390/ma15249041
https://hdl.handle.net/21.15107/rcub_dais_13692 .
Jugović, Dragana, Milović, Miloš, Barudžija, Tanja, Kuzmanović, Maja, Vujković, Milica, Mitrić, Miodrag, "The Influence of a Binder in a Composite Electrode: The Case Study of Vanadyl Phosphate in Aqueous Electrolyte" in Materials, 15, no. 24 (2022),
https://doi.org/10.3390/ma15249041 .,
https://hdl.handle.net/21.15107/rcub_dais_13692 .
1

Ефекат етарског уља цимета и његове наноемулзије на формирање биофилма Acinetobacter baumannii

Ганић, Теа; Вулетић, Стефана; Цветковић, Стефана; Стевановић, Магдалена; Кузмановић, Маја; Ђуровић, Саша; Николић, Биљана; Митић-Ћулафић, Драгана

(Београд : Српско биолошко друштво, 2022)

TY  - CONF
AU  - Ганић, Теа
AU  - Вулетић, Стефана
AU  - Цветковић, Стефана
AU  - Стевановић, Магдалена
AU  - Кузмановић, Маја
AU  - Ђуровић, Саша
AU  - Николић, Биљана
AU  - Митић-Ћулафић, Драгана
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13611
AB  - Антимикробна резистенција представља велики проблем за јавно здравље због ограничених терапијских могућности. Acinetobacter baumannii је опортунистички патоген, отпоран на многе групе антибиотика и доводи до појаве болничких инфекција. Светска здравствена организација прогласила је A. baumannii за патогенa који ефикасно избегава ефекат конвенционалних антибиотика, тако да је потреба за новим антимикробним средствима евидентна. Природни производи укључујући етарска уља су препозната као добри антимикробни агенси. Цимет је вековима познат зачин који има широку примену и за етарско уље (ЕУ цимета) је показано да поседује различите биолошке активности. Циљ ове студије је било испитивање ефекта ЕУ цимета и његове новосинтетисане наноемулзије (НА) на формирање биофилма A. baumannii. ЕУ цимета је хемијски окарактерисано применом GC/MS анализе. Величина капи и полидисперзитет припремљених НА испитани су фотонском корелационом спектроскопијом. МИК вредности су одређене микродилуционом методом, а антибиофилм активност бојењем кристал виолетом. GC/MS анализа је показала да је најзаступљенија компонента испитиваног ЕУ транс-цинамалдехид (61,9%), док НА показују мултимодалну расподелу величине честица. МИК вредности су се кретале у опсегу 0,25-0,5 mg/mL за EУ и 0,125-0,25 mg/mL за НА. Инхибиција формирања биофилма се кретала до 59% и 69%, за ЕУ и НА. Добијени резултати показују да НА има јачи антимикробни и антибиофилм ефекат, па се може рећи да би емулзификација могла бити приступ ка ефикаснијем сузбијању инфекција А. baumannii.
PB  - Београд : Српско биолошко друштво
C3  - Основна и примењена истраживања, методика наставе : књига сажетака / Трећи Конгрес биолога Србије, Златибор, Србија 21-25. 9. 2022.
T1  - Ефекат етарског уља цимета и његове наноемулзије на формирање биофилма Acinetobacter baumannii
SP  - 255
EP  - 255
UR  - https://hdl.handle.net/21.15107/rcub_dais_13611
ER  - 
@conference{
author = "Ганић, Теа and Вулетић, Стефана and Цветковић, Стефана and Стевановић, Магдалена and Кузмановић, Маја and Ђуровић, Саша and Николић, Биљана and Митић-Ћулафић, Драгана",
year = "2022",
abstract = "Антимикробна резистенција представља велики проблем за јавно здравље због ограничених терапијских могућности. Acinetobacter baumannii је опортунистички патоген, отпоран на многе групе антибиотика и доводи до појаве болничких инфекција. Светска здравствена организација прогласила је A. baumannii за патогенa који ефикасно избегава ефекат конвенционалних антибиотика, тако да је потреба за новим антимикробним средствима евидентна. Природни производи укључујући етарска уља су препозната као добри антимикробни агенси. Цимет је вековима познат зачин који има широку примену и за етарско уље (ЕУ цимета) је показано да поседује различите биолошке активности. Циљ ове студије је било испитивање ефекта ЕУ цимета и његове новосинтетисане наноемулзије (НА) на формирање биофилма A. baumannii. ЕУ цимета је хемијски окарактерисано применом GC/MS анализе. Величина капи и полидисперзитет припремљених НА испитани су фотонском корелационом спектроскопијом. МИК вредности су одређене микродилуционом методом, а антибиофилм активност бојењем кристал виолетом. GC/MS анализа је показала да је најзаступљенија компонента испитиваног ЕУ транс-цинамалдехид (61,9%), док НА показују мултимодалну расподелу величине честица. МИК вредности су се кретале у опсегу 0,25-0,5 mg/mL за EУ и 0,125-0,25 mg/mL за НА. Инхибиција формирања биофилма се кретала до 59% и 69%, за ЕУ и НА. Добијени резултати показују да НА има јачи антимикробни и антибиофилм ефекат, па се може рећи да би емулзификација могла бити приступ ка ефикаснијем сузбијању инфекција А. baumannii.",
publisher = "Београд : Српско биолошко друштво",
journal = "Основна и примењена истраживања, методика наставе : књига сажетака / Трећи Конгрес биолога Србије, Златибор, Србија 21-25. 9. 2022.",
title = "Ефекат етарског уља цимета и његове наноемулзије на формирање биофилма Acinetobacter baumannii",
pages = "255-255",
url = "https://hdl.handle.net/21.15107/rcub_dais_13611"
}
Ганић, Т., Вулетић, С., Цветковић, С., Стевановић, М., Кузмановић, М., Ђуровић, С., Николић, Б.,& Митић-Ћулафић, Д.. (2022). Ефекат етарског уља цимета и његове наноемулзије на формирање биофилма Acinetobacter baumannii. in Основна и примењена истраживања, методика наставе : књига сажетака / Трећи Конгрес биолога Србије, Златибор, Србија 21-25. 9. 2022.
Београд : Српско биолошко друштво., 255-255.
https://hdl.handle.net/21.15107/rcub_dais_13611
Ганић Т, Вулетић С, Цветковић С, Стевановић М, Кузмановић М, Ђуровић С, Николић Б, Митић-Ћулафић Д. Ефекат етарског уља цимета и његове наноемулзије на формирање биофилма Acinetobacter baumannii. in Основна и примењена истраживања, методика наставе : књига сажетака / Трећи Конгрес биолога Србије, Златибор, Србија 21-25. 9. 2022.. 2022;:255-255.
https://hdl.handle.net/21.15107/rcub_dais_13611 .
Ганић, Теа, Вулетић, Стефана, Цветковић, Стефана, Стевановић, Магдалена, Кузмановић, Маја, Ђуровић, Саша, Николић, Биљана, Митић-Ћулафић, Драгана, "Ефекат етарског уља цимета и његове наноемулзије на формирање биофилма Acinetobacter baumannii" in Основна и примењена истраживања, методика наставе : књига сажетака / Трећи Конгрес биолога Србије, Златибор, Србија 21-25. 9. 2022. (2022):255-255,
https://hdl.handle.net/21.15107/rcub_dais_13611 .

Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix

Milović, Miloš; Jugović, Dragana; Vujković, Milica; Kuzmanović, Maja; Mraković, Ana; Mitrić, Miodrag

(Springer Science and Business Media LLC, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Jugović, Dragana
AU  - Vujković, Milica
AU  - Kuzmanović, Maja
AU  - Mraković, Ana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11635
AB  - The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.
PB  - Springer Science and Business Media LLC
T2  - Bulletin of Materials Science
T1  - Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix
SP  - 144
VL  - 44
IS  - 2
DO  - 10.1007/s12034-021-02397-3
UR  - https://hdl.handle.net/21.15107/rcub_dais_11635
ER  - 
@article{
author = "Milović, Miloš and Jugović, Dragana and Vujković, Milica and Kuzmanović, Maja and Mraković, Ana and Mitrić, Miodrag",
year = "2021",
abstract = "The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.",
publisher = "Springer Science and Business Media LLC",
journal = "Bulletin of Materials Science",
title = "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix",
pages = "144",
volume = "44",
number = "2",
doi = "10.1007/s12034-021-02397-3",
url = "https://hdl.handle.net/21.15107/rcub_dais_11635"
}
Milović, M., Jugović, D., Vujković, M., Kuzmanović, M., Mraković, A.,& Mitrić, M.. (2021). Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. in Bulletin of Materials Science
Springer Science and Business Media LLC., 44(2), 144.
https://doi.org/10.1007/s12034-021-02397-3
https://hdl.handle.net/21.15107/rcub_dais_11635
Milović M, Jugović D, Vujković M, Kuzmanović M, Mraković A, Mitrić M. Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. in Bulletin of Materials Science. 2021;44(2):144.
doi:10.1007/s12034-021-02397-3
https://hdl.handle.net/21.15107/rcub_dais_11635 .
Milović, Miloš, Jugović, Dragana, Vujković, Milica, Kuzmanović, Maja, Mraković, Ana, Mitrić, Miodrag, "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix" in Bulletin of Materials Science, 44, no. 2 (2021):144,
https://doi.org/10.1007/s12034-021-02397-3 .,
https://hdl.handle.net/21.15107/rcub_dais_11635 .
3
3

Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix

Milović, Miloš; Jugović, Dragana; Vujković, Milica; Kuzmanović, Maja; Mraković, Ana; Mitrić, Miodrag

(Springer Science and Business Media LLC, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Jugović, Dragana
AU  - Vujković, Milica
AU  - Kuzmanović, Maja
AU  - Mraković, Ana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11636
AB  - The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.
PB  - Springer Science and Business Media LLC
T2  - Bulletin of Materials Science
T1  - Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix
SP  - 144
VL  - 44
IS  - 2
DO  - 10.1007/s12034-021-02397-3
UR  - https://hdl.handle.net/21.15107/rcub_dais_11636
ER  - 
@article{
author = "Milović, Miloš and Jugović, Dragana and Vujković, Milica and Kuzmanović, Maja and Mraković, Ana and Mitrić, Miodrag",
year = "2021",
abstract = "The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.",
publisher = "Springer Science and Business Media LLC",
journal = "Bulletin of Materials Science",
title = "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix",
pages = "144",
volume = "44",
number = "2",
doi = "10.1007/s12034-021-02397-3",
url = "https://hdl.handle.net/21.15107/rcub_dais_11636"
}
Milović, M., Jugović, D., Vujković, M., Kuzmanović, M., Mraković, A.,& Mitrić, M.. (2021). Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. in Bulletin of Materials Science
Springer Science and Business Media LLC., 44(2), 144.
https://doi.org/10.1007/s12034-021-02397-3
https://hdl.handle.net/21.15107/rcub_dais_11636
Milović M, Jugović D, Vujković M, Kuzmanović M, Mraković A, Mitrić M. Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. in Bulletin of Materials Science. 2021;44(2):144.
doi:10.1007/s12034-021-02397-3
https://hdl.handle.net/21.15107/rcub_dais_11636 .
Milović, Miloš, Jugović, Dragana, Vujković, Milica, Kuzmanović, Maja, Mraković, Ana, Mitrić, Miodrag, "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix" in Bulletin of Materials Science, 44, no. 2 (2021):144,
https://doi.org/10.1007/s12034-021-02397-3 .,
https://hdl.handle.net/21.15107/rcub_dais_11636 .
3
3

Additive-free resveratrol micro- and nanoparticles and assessment of their toxicity

Tomić, Nina; Kuzmanović, Maja; Mitić Ćulafić, Dragana; Stevanović, Magdalena

(Belgrade : Institute of Technical Sciences of SASA, 2021)

TY  - CONF
AU  - Tomić, Nina
AU  - Kuzmanović, Maja
AU  - Mitić Ćulafić, Dragana
AU  - Stevanović, Magdalena
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12283
AB  - Resveratrol, polyphenol from stilbene family, has demonstrated beneficial effects on human health in numerous studies. Among these effects are cardioprotective, anti-cancer, neuroprotective, antimicrobial and other. In vivo, application of this phytochemical often lacks significant results. This is mainly because of its poor bioavailability, caused by low water solubility, sensitivity to light, oxygen and pH change, and high reactivity. Micro- and nanoformulations of resveratrol have been described to highly improve bioavailabiliy. However, there are limitations to this approach, such as demanding synthesis process, necessity of expensive or toxic chemicals, or poor loading capacity. We have used a simple physicochemical solvent-non solvent method to synthetise additive-free, stabile and uniform elongated resveratrol micro- and nanoparticles (RES-particles). The drying conditions were varied to examine their influence on the morphological characteristics of resveratrol particles. Differential effects of drying at ambient, low, and elevated temperature as well as effects of centrifugation and stability of RES-particle suspension during the time were documented. RES-particles were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), ultraviolet-visible (UV-Vis) spectrophotometry, Fourier transform infrared spectroscopy (FTIR) and optical microscopy. Biocompatibility of RESparticles was preliminary assessed through MTT toxicity assay.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
T1  - Additive-free resveratrol micro- and nanoparticles and assessment of their toxicity
SP  - 4
EP  - 4
UR  - https://hdl.handle.net/21.15107/rcub_dais_12283
ER  - 
@conference{
author = "Tomić, Nina and Kuzmanović, Maja and Mitić Ćulafić, Dragana and Stevanović, Magdalena",
year = "2021",
abstract = "Resveratrol, polyphenol from stilbene family, has demonstrated beneficial effects on human health in numerous studies. Among these effects are cardioprotective, anti-cancer, neuroprotective, antimicrobial and other. In vivo, application of this phytochemical often lacks significant results. This is mainly because of its poor bioavailability, caused by low water solubility, sensitivity to light, oxygen and pH change, and high reactivity. Micro- and nanoformulations of resveratrol have been described to highly improve bioavailabiliy. However, there are limitations to this approach, such as demanding synthesis process, necessity of expensive or toxic chemicals, or poor loading capacity. We have used a simple physicochemical solvent-non solvent method to synthetise additive-free, stabile and uniform elongated resveratrol micro- and nanoparticles (RES-particles). The drying conditions were varied to examine their influence on the morphological characteristics of resveratrol particles. Differential effects of drying at ambient, low, and elevated temperature as well as effects of centrifugation and stability of RES-particle suspension during the time were documented. RES-particles were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), ultraviolet-visible (UV-Vis) spectrophotometry, Fourier transform infrared spectroscopy (FTIR) and optical microscopy. Biocompatibility of RESparticles was preliminary assessed through MTT toxicity assay.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia",
title = "Additive-free resveratrol micro- and nanoparticles and assessment of their toxicity",
pages = "4-4",
url = "https://hdl.handle.net/21.15107/rcub_dais_12283"
}
Tomić, N., Kuzmanović, M., Mitić Ćulafić, D.,& Stevanović, M.. (2021). Additive-free resveratrol micro- and nanoparticles and assessment of their toxicity. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 4-4.
https://hdl.handle.net/21.15107/rcub_dais_12283
Tomić N, Kuzmanović M, Mitić Ćulafić D, Stevanović M. Additive-free resveratrol micro- and nanoparticles and assessment of their toxicity. in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia. 2021;:4-4.
https://hdl.handle.net/21.15107/rcub_dais_12283 .
Tomić, Nina, Kuzmanović, Maja, Mitić Ćulafić, Dragana, Stevanović, Magdalena, "Additive-free resveratrol micro- and nanoparticles and assessment of their toxicity" in Program and the Book of abstracts / Nineteenth Young Researchers' Conference Materials Science and Engineering, December 1-3, 2021, Belgrade, Serbia (2021):4-4,
https://hdl.handle.net/21.15107/rcub_dais_12283 .

Chapter 1 - Biomedical inorganic nanoparticles: preparation, properties, and perspectives

Stevanović, Magdalena; Lukić, Miodrag J.; Stanković, Ana; Filipović, Nenad; Kuzmanović, Maja; Janićijević, Željko

(Elsevier, 2019)

TY  - CHAP
AU  - Stevanović, Magdalena
AU  - Lukić, Miodrag J.
AU  - Stanković, Ana
AU  - Filipović, Nenad
AU  - Kuzmanović, Maja
AU  - Janićijević, Željko
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/B9780081028148000019
UR  - https://dais.sanu.ac.rs/123456789/5760
AB  - Nanotechnology has great potential in the biomedical field. Among other nanomaterials, inorganic nanoparticles have become extremely important since they possess unique physicochemical properties influenced by their specific surface structure. Consequently, inorganic nanoparticles exhibit enhanced functionalities such as biological response, antibacterial and antiviral properties, as well as optical, magnetic, and electrical responses. They have found applications in medicine, pharmacy, controlled drug delivery, optics, electronics, etc. In this chapter, reports on obtaining different metallic and ceramic inorganic nanoparticles such as gold, silver, selenium, copper, iron, zinc oxide, and hydroxyapatite for biomedical applications will be addressed. For each of these nanosystems, the main challenges regarding the currently achieved functional properties and further perspectives will also be presented.
PB  - Elsevier
T2  - Materials for Biomedical Engineering
T1  - Chapter 1 - Biomedical inorganic nanoparticles: preparation, properties, and perspectives
SP  - 1
EP  - 46
DO  - 10.1016/B978-0-08-102814-8.00001-9
UR  - https://hdl.handle.net/21.15107/rcub_dais_5760
ER  - 
@inbook{
author = "Stevanović, Magdalena and Lukić, Miodrag J. and Stanković, Ana and Filipović, Nenad and Kuzmanović, Maja and Janićijević, Željko",
year = "2019",
abstract = "Nanotechnology has great potential in the biomedical field. Among other nanomaterials, inorganic nanoparticles have become extremely important since they possess unique physicochemical properties influenced by their specific surface structure. Consequently, inorganic nanoparticles exhibit enhanced functionalities such as biological response, antibacterial and antiviral properties, as well as optical, magnetic, and electrical responses. They have found applications in medicine, pharmacy, controlled drug delivery, optics, electronics, etc. In this chapter, reports on obtaining different metallic and ceramic inorganic nanoparticles such as gold, silver, selenium, copper, iron, zinc oxide, and hydroxyapatite for biomedical applications will be addressed. For each of these nanosystems, the main challenges regarding the currently achieved functional properties and further perspectives will also be presented.",
publisher = "Elsevier",
journal = "Materials for Biomedical Engineering",
booktitle = "Chapter 1 - Biomedical inorganic nanoparticles: preparation, properties, and perspectives",
pages = "1-46",
doi = "10.1016/B978-0-08-102814-8.00001-9",
url = "https://hdl.handle.net/21.15107/rcub_dais_5760"
}
Stevanović, M., Lukić, M. J., Stanković, A., Filipović, N., Kuzmanović, M.,& Janićijević, Ž.. (2019). Chapter 1 - Biomedical inorganic nanoparticles: preparation, properties, and perspectives. in Materials for Biomedical Engineering
Elsevier., 1-46.
https://doi.org/10.1016/B978-0-08-102814-8.00001-9
https://hdl.handle.net/21.15107/rcub_dais_5760
Stevanović M, Lukić MJ, Stanković A, Filipović N, Kuzmanović M, Janićijević Ž. Chapter 1 - Biomedical inorganic nanoparticles: preparation, properties, and perspectives. in Materials for Biomedical Engineering. 2019;:1-46.
doi:10.1016/B978-0-08-102814-8.00001-9
https://hdl.handle.net/21.15107/rcub_dais_5760 .
Stevanović, Magdalena, Lukić, Miodrag J., Stanković, Ana, Filipović, Nenad, Kuzmanović, Maja, Janićijević, Željko, "Chapter 1 - Biomedical inorganic nanoparticles: preparation, properties, and perspectives" in Materials for Biomedical Engineering (2019):1-46,
https://doi.org/10.1016/B978-0-08-102814-8.00001-9 .,
https://hdl.handle.net/21.15107/rcub_dais_5760 .
3
5

Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C

Milović, Miloš; Jugović, Dragana; Mitrić, Miodrag; Kuzmanović, Maja; Vujković, Milica; Uskoković, Dragan

([s.l.] : [s.n.], 2019)

TY  - CONF
AU  - Milović, Miloš
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Kuzmanović, Maja
AU  - Vujković, Milica
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7047
AB  - Since Padhi et al. reported the electrochemical properties of LiFePO4 in 1997 [1], polyanion cathode materials for lithium-ion batteries attract interest of researchers because of the added safety and higher voltage values in comparison to the oxide analogues with the same M2+/3+ redox pair. The higher safety and higher voltage come from strong covalent bonding within the polyanion units and, over the years, these inherent characteristics have promoted the investigation of different polyanion compounds. Among them, lithium transition-metal silicates, Li2MSiO4, and pyrophosphates, Li2MP2O7, additionally offer the possibility of extraction/ insertion two lithium ions per formula unit thus increasing theoretical capacity. However, unlike their oxide counterparts, polyanion cathodes suffer considerably from low conductivity (both ionic and electronic) which significantly limits their rate performance and therefore application in high power devices. To overcome this obstacle various strategies were developed like minimization of particle size, addition of conductive additives and/or ion doping. In this study, the approach that was used includes preparation of Li2FeSiO4/C, LiFePO4/C a nd L i2FeP2O7/C composites where carbon is obtained by pyrolytical degradation of methylcellulose and in situ during formation of polyanion active material on high temperatures. Methylcellulose, or methyl cellulose ether, is a water-soluble derivative of cellulose with an ability to gel upon heating and reversibly liquefy upon cooling due to the hydrophobic interaction between molecules containing methoxyl groups [2]. Thanks to this outstanding ability, the methylcellulose acts not only as a carbon source, but also as a dispersing agent that enables both the homogeneous deployment of the precursor compounds and the control of active material’ particle growth from the earliest stages of crystallization. This further allowed a significant shortening of high temperature treatment (to several minutes long) with additional decreases of particle agglomeration. Being both simple and inexpensive, the described method is also beneficial for commercial purposes. The electrochemical and microstructural properties of the obtained powders were examined and compared. Also, the opportunity is taken to discuss potential of a redox couple Fe2+/Fe3+ (Figure 1) in a relation to the crystal structure of a given polyanion cathode.
PB  - [s.l.] : [s.n.]
C3  - Abstracts/Proceedings / mESC-IS 2019 : The Fourth International Symposium on Materials for Energy Storage and Conversion, 7-11 September 2019, Akyaka –Muğla
T1  - Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C
SP  - 42
EP  - 42
UR  - https://hdl.handle.net/21.15107/rcub_dais_7047
ER  - 
@conference{
author = "Milović, Miloš and Jugović, Dragana and Mitrić, Miodrag and Kuzmanović, Maja and Vujković, Milica and Uskoković, Dragan",
year = "2019",
abstract = "Since Padhi et al. reported the electrochemical properties of LiFePO4 in 1997 [1], polyanion cathode materials for lithium-ion batteries attract interest of researchers because of the added safety and higher voltage values in comparison to the oxide analogues with the same M2+/3+ redox pair. The higher safety and higher voltage come from strong covalent bonding within the polyanion units and, over the years, these inherent characteristics have promoted the investigation of different polyanion compounds. Among them, lithium transition-metal silicates, Li2MSiO4, and pyrophosphates, Li2MP2O7, additionally offer the possibility of extraction/ insertion two lithium ions per formula unit thus increasing theoretical capacity. However, unlike their oxide counterparts, polyanion cathodes suffer considerably from low conductivity (both ionic and electronic) which significantly limits their rate performance and therefore application in high power devices. To overcome this obstacle various strategies were developed like minimization of particle size, addition of conductive additives and/or ion doping. In this study, the approach that was used includes preparation of Li2FeSiO4/C, LiFePO4/C a nd L i2FeP2O7/C composites where carbon is obtained by pyrolytical degradation of methylcellulose and in situ during formation of polyanion active material on high temperatures. Methylcellulose, or methyl cellulose ether, is a water-soluble derivative of cellulose with an ability to gel upon heating and reversibly liquefy upon cooling due to the hydrophobic interaction between molecules containing methoxyl groups [2]. Thanks to this outstanding ability, the methylcellulose acts not only as a carbon source, but also as a dispersing agent that enables both the homogeneous deployment of the precursor compounds and the control of active material’ particle growth from the earliest stages of crystallization. This further allowed a significant shortening of high temperature treatment (to several minutes long) with additional decreases of particle agglomeration. Being both simple and inexpensive, the described method is also beneficial for commercial purposes. The electrochemical and microstructural properties of the obtained powders were examined and compared. Also, the opportunity is taken to discuss potential of a redox couple Fe2+/Fe3+ (Figure 1) in a relation to the crystal structure of a given polyanion cathode.",
publisher = "[s.l.] : [s.n.]",
journal = "Abstracts/Proceedings / mESC-IS 2019 : The Fourth International Symposium on Materials for Energy Storage and Conversion, 7-11 September 2019, Akyaka –Muğla",
title = "Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C",
pages = "42-42",
url = "https://hdl.handle.net/21.15107/rcub_dais_7047"
}
Milović, M., Jugović, D., Mitrić, M., Kuzmanović, M., Vujković, M.,& Uskoković, D.. (2019). Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C. in Abstracts/Proceedings / mESC-IS 2019 : The Fourth International Symposium on Materials for Energy Storage and Conversion, 7-11 September 2019, Akyaka –Muğla
[s.l.] : [s.n.]., 42-42.
https://hdl.handle.net/21.15107/rcub_dais_7047
Milović M, Jugović D, Mitrić M, Kuzmanović M, Vujković M, Uskoković D. Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C. in Abstracts/Proceedings / mESC-IS 2019 : The Fourth International Symposium on Materials for Energy Storage and Conversion, 7-11 September 2019, Akyaka –Muğla. 2019;:42-42.
https://hdl.handle.net/21.15107/rcub_dais_7047 .
Milović, Miloš, Jugović, Dragana, Mitrić, Miodrag, Kuzmanović, Maja, Vujković, Milica, Uskoković, Dragan, "Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C" in Abstracts/Proceedings / mESC-IS 2019 : The Fourth International Symposium on Materials for Energy Storage and Conversion, 7-11 September 2019, Akyaka –Muğla (2019):42-42,
https://hdl.handle.net/21.15107/rcub_dais_7047 .

Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate

Lukić, Miodrag J.; Kuzmanović, Maja; Sezen, Meltem; Bakan, Feray; Egelja, Adela; Veselinović, Ljiljana

(2018)

TY  - JOUR
AU  - Lukić, Miodrag J.
AU  - Kuzmanović, Maja
AU  - Sezen, Meltem
AU  - Bakan, Feray
AU  - Egelja, Adela
AU  - Veselinović, Ljiljana
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/3357
AB  - The present study describes sintering behaviour of hydroxyapatite (HAp) upon addition of lithium iron phosphate (LFP) (1-10 wt.%) system in inert (Ar) atmosphere. The interaction between materials and melting of LFP influenced early and intermediate stages of HAp sintering, shifting the densification curves towards low-temperature side. Analysis of densification process indicated significant differences upon LFP addition. The reaction mechanism that assumes the initial interaction between phosphates from LFP and calcium from HAp was proposed, generating calcium vacancies and contributing to HAp densification. Cross-sections of sintered samples showed changes in microstructural properties, with uniform atomic distribution and presence of Li2Fe3O4 spherical inclusions (200 nm) located at grain boundaries of calcium phosphate matrix. The Rietveld refinement analysis indicated changes in structural and microstructural parameters like crystallite size, anisotropy and microstructural strain of HAp upon LFP addition. Mechanical characterisation indicated improvements in fracture behaviour upon LFP addition.
T2  - Journal of the European Ceramic Society
T1  - Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate
SP  - 2120
EP  - 2133
VL  - 38
DO  - 10.1016/j.jeurceramsoc.2017.12.023
UR  - https://hdl.handle.net/21.15107/rcub_dais_3357
ER  - 
@article{
author = "Lukić, Miodrag J. and Kuzmanović, Maja and Sezen, Meltem and Bakan, Feray and Egelja, Adela and Veselinović, Ljiljana",
year = "2018",
abstract = "The present study describes sintering behaviour of hydroxyapatite (HAp) upon addition of lithium iron phosphate (LFP) (1-10 wt.%) system in inert (Ar) atmosphere. The interaction between materials and melting of LFP influenced early and intermediate stages of HAp sintering, shifting the densification curves towards low-temperature side. Analysis of densification process indicated significant differences upon LFP addition. The reaction mechanism that assumes the initial interaction between phosphates from LFP and calcium from HAp was proposed, generating calcium vacancies and contributing to HAp densification. Cross-sections of sintered samples showed changes in microstructural properties, with uniform atomic distribution and presence of Li2Fe3O4 spherical inclusions (200 nm) located at grain boundaries of calcium phosphate matrix. The Rietveld refinement analysis indicated changes in structural and microstructural parameters like crystallite size, anisotropy and microstructural strain of HAp upon LFP addition. Mechanical characterisation indicated improvements in fracture behaviour upon LFP addition.",
journal = "Journal of the European Ceramic Society",
title = "Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate",
pages = "2120-2133",
volume = "38",
doi = "10.1016/j.jeurceramsoc.2017.12.023",
url = "https://hdl.handle.net/21.15107/rcub_dais_3357"
}
Lukić, M. J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A.,& Veselinović, L.. (2018). Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. in Journal of the European Ceramic Society, 38, 2120-2133.
https://doi.org/10.1016/j.jeurceramsoc.2017.12.023
https://hdl.handle.net/21.15107/rcub_dais_3357
Lukić MJ, Kuzmanović M, Sezen M, Bakan F, Egelja A, Veselinović L. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. in Journal of the European Ceramic Society. 2018;38:2120-2133.
doi:10.1016/j.jeurceramsoc.2017.12.023
https://hdl.handle.net/21.15107/rcub_dais_3357 .
Lukić, Miodrag J., Kuzmanović, Maja, Sezen, Meltem, Bakan, Feray, Egelja, Adela, Veselinović, Ljiljana, "Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate" in Journal of the European Ceramic Society, 38 (2018):2120-2133,
https://doi.org/10.1016/j.jeurceramsoc.2017.12.023 .,
https://hdl.handle.net/21.15107/rcub_dais_3357 .
3
2
3

Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate

Lukić, Miodrag J.; Kuzmanović, Maja; Sezen, Meltem; Bakan, Feray; Egelja, Adela; Veselinović, Ljiljana

(2018)

TY  - JOUR
AU  - Lukić, Miodrag J.
AU  - Kuzmanović, Maja
AU  - Sezen, Meltem
AU  - Bakan, Feray
AU  - Egelja, Adela
AU  - Veselinović, Ljiljana
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4924
AB  - The present study describes sintering behaviour of hydroxyapatite (HAp) upon addition of lithium iron phosphate (LFP) (1-10 wt.%) system in inert (Ar) atmosphere. The interaction between materials and melting of LFP influenced early and intermediate stages of HAp sintering, shifting the densification curves towards low-temperature side. Analysis of densification process indicated significant differences upon LFP addition. The reaction mechanism that assumes the initial interaction between phosphates from LFP and calcium from HAp was proposed, generating calcium vacancies and contributing to HAp densification. Cross-sections of sintered samples showed changes in microstructural properties, with uniform atomic distribution and presence of Li2Fe3O4 spherical inclusions (200 nm) located at grain boundaries of calcium phosphate matrix. The Rietveld refinement analysis indicated changes in structural and microstructural parameters like crystallite size, anisotropy and microstructural strain of HAp upon LFP addition. Mechanical characterisation indicated improvements in fracture behaviour upon LFP addition.
T2  - Journal of the European Ceramic Society
T1  - Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate
SP  - 2120
EP  - 2133
VL  - 38
DO  - 10.1016/j.jeurceramsoc.2017.12.023
UR  - https://hdl.handle.net/21.15107/rcub_dais_4924
ER  - 
@article{
author = "Lukić, Miodrag J. and Kuzmanović, Maja and Sezen, Meltem and Bakan, Feray and Egelja, Adela and Veselinović, Ljiljana",
year = "2018",
abstract = "The present study describes sintering behaviour of hydroxyapatite (HAp) upon addition of lithium iron phosphate (LFP) (1-10 wt.%) system in inert (Ar) atmosphere. The interaction between materials and melting of LFP influenced early and intermediate stages of HAp sintering, shifting the densification curves towards low-temperature side. Analysis of densification process indicated significant differences upon LFP addition. The reaction mechanism that assumes the initial interaction between phosphates from LFP and calcium from HAp was proposed, generating calcium vacancies and contributing to HAp densification. Cross-sections of sintered samples showed changes in microstructural properties, with uniform atomic distribution and presence of Li2Fe3O4 spherical inclusions (200 nm) located at grain boundaries of calcium phosphate matrix. The Rietveld refinement analysis indicated changes in structural and microstructural parameters like crystallite size, anisotropy and microstructural strain of HAp upon LFP addition. Mechanical characterisation indicated improvements in fracture behaviour upon LFP addition.",
journal = "Journal of the European Ceramic Society",
title = "Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate",
pages = "2120-2133",
volume = "38",
doi = "10.1016/j.jeurceramsoc.2017.12.023",
url = "https://hdl.handle.net/21.15107/rcub_dais_4924"
}
Lukić, M. J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A.,& Veselinović, L.. (2018). Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. in Journal of the European Ceramic Society, 38, 2120-2133.
https://doi.org/10.1016/j.jeurceramsoc.2017.12.023
https://hdl.handle.net/21.15107/rcub_dais_4924
Lukić MJ, Kuzmanović M, Sezen M, Bakan F, Egelja A, Veselinović L. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. in Journal of the European Ceramic Society. 2018;38:2120-2133.
doi:10.1016/j.jeurceramsoc.2017.12.023
https://hdl.handle.net/21.15107/rcub_dais_4924 .
Lukić, Miodrag J., Kuzmanović, Maja, Sezen, Meltem, Bakan, Feray, Egelja, Adela, Veselinović, Ljiljana, "Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate" in Journal of the European Ceramic Society, 38 (2018):2120-2133,
https://doi.org/10.1016/j.jeurceramsoc.2017.12.023 .,
https://hdl.handle.net/21.15107/rcub_dais_4924 .
3
2
3

Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023

Lukić, Miodrag J.; Kuzmanović, Maja; Sezen, Meltem; Bakan, Feray; Egelja, Adela; Veselinović, Ljiljana

(2018)

TY  - DATA
AU  - Lukić, Miodrag J.
AU  - Kuzmanović, Maja
AU  - Sezen, Meltem
AU  - Bakan, Feray
AU  - Egelja, Adela
AU  - Veselinović, Ljiljana
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/5977
T2  - Journal of the European Ceramic Society
T1  - Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023
UR  - https://hdl.handle.net/21.15107/rcub_dais_5977
ER  - 
@misc{
author = "Lukić, Miodrag J. and Kuzmanović, Maja and Sezen, Meltem and Bakan, Feray and Egelja, Adela and Veselinović, Ljiljana",
year = "2018",
journal = "Journal of the European Ceramic Society",
title = "Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023",
url = "https://hdl.handle.net/21.15107/rcub_dais_5977"
}
Lukić, M. J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A.,& Veselinović, L.. (2018). Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023. in Journal of the European Ceramic Society.
https://hdl.handle.net/21.15107/rcub_dais_5977
Lukić MJ, Kuzmanović M, Sezen M, Bakan F, Egelja A, Veselinović L. Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023. in Journal of the European Ceramic Society. 2018;.
https://hdl.handle.net/21.15107/rcub_dais_5977 .
Lukić, Miodrag J., Kuzmanović, Maja, Sezen, Meltem, Bakan, Feray, Egelja, Adela, Veselinović, Ljiljana, "Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023" in Journal of the European Ceramic Society (2018),
https://hdl.handle.net/21.15107/rcub_dais_5977 .

Morfološke i elektrohemijske karakteristike prahova LiFePO4 sintetisanih u prisustvu različitih karboksilnih kiselina

Stojković Simatović, Ivana; Jugović, Dragana; Cvjetićanin, Nikola; Vujković, Milica; Kuzmanović, Maja

(Belgrade Univerzitet u Beogradu, Fakultet za fizičku hemiju, 2017)

TY  - THES
AU  - Kuzmanović, Maja
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/15988
UR  - http://eteze.bg.ac.rs/application/showtheses?thesesId=5007
UR  - http://nardus.mpn.gov.rs/123456789/8260
AB  - Predmet istraživanja ove doktorske disertacije je ispitivanje mogućnosti dobijanja prahova litijum gvožđe(II) fosfata (LiFePO4) novim i modifikovanim načinima sinteze. Zahvaljujući svojoj sposobnosti da reverzibilno interkalira/deinterkalira jone litijuma ovaj materijal se koristi kao katoda u litijum jonskim baterijama. Osnovni cilj ovih istraživanja je bio da se dobije čist materijal bez prisustva nečistoća, koji će imati pogodne fizičkohemijske karakteristike za elektrohemijsku primenu. Parametri kristalne građe mogu značajno uticati na elektrohemijske osobine, tako da je cilj istraživanja bio da se ovaj uticaj razjasni i da se sintetišu materijali koji bi u ovom smislu imali najoptimalniju morfologiju i ostale mikrostrukturne osobine. Polazeći iz vodenih rastvora, koji su se sastojali od jona litijuma, gvožđa i fosfora pomešanih u odnosu koji zadovoljava stehiometriju LiFePO4 i odgovarajuće karboksilne kiseline, dobijene su prekursorske smeše mikroemulzionom metodom, koprecipitacijom i liofilizacijom koje su dalje termički tretirane. Prekursorska smeša dobijena mikroemulzionom metodom je solvotermalno tretirana na temperaturi od 180 oC, dok su prekursorske smeše dobijene koprecipitacijom i liofilizacijom termički tretirane na visokim temperaturama (600-800 oC) u cilju dobijanja kristalnog praha LiFePO4. Korišćenjem eksperimentalnih tehnika rendgenske difrakcije na prahu, skenirajuće elektronske mikroskopije, Mesbauerove spektroskopije, rasejanja laserske svetlosti, termičke analize i elektrohemijske analize ispitan je uticaj različitih karboksilnih kiselina kao redukcionog sredstva i izvora ugljenika na morfološke i elektrohemijske karakteristike sintetisanih prahova.
AB  - The subject of this PhD thesis is investigation of possibility to synthesize lithium iron (II) phosphate (LiFePO4) powders with new and modified synthesis procedures. Due to its ability to reversibly intercalate/deintercalate lithium ions, this material is used as a cathode in lithium ion batteries. The main objective of this research was to synthesize pure material without any phase impurities, which would have appropriate physical chemical properties for electrochemical applications. Crystal lattice parameters can significantly influence electrochemical properties, and this thesis aim is to clarify this relation and to synthesize materials with optimal morphology and other microstructural properties. Starting from mixed aqueous solution of lithium, phosphorus and iron ions in stoichiometric ratio and different carboxylic acids, precursors mixtures were prepared by microemulsion, coprecipitation and lyophilisation techniques, and afterwards were thermally treated. To prepare crystal LiFePO4 powders, microemulsion-derived precursor mixture was solvothermally treated at 180 oC, while precursor mixtures obtained by coprecipitation and lyophilisation were thermally treated at high temperatures (600-800 oC). X-ray powder diffraction, scanning electron microscopy, Mossbauer spectroscopy, laser light scattering, and thermal and electrochemical analyses were used to investigate the influence of different carboxylic acids as reducing agents and carbon sources on morphological and electrochemical properties of synthesized powders
PB  - Belgrade Univerzitet u Beogradu, Fakultet za fizičku hemiju
T1  - Morfološke i elektrohemijske karakteristike prahova LiFePO4 sintetisanih u prisustvu različitih karboksilnih kiselina
T1  - Morfological and electrochemical properties of LiFePO4 powders synthesized in presence of different carboxylic acids
UR  - https://hdl.handle.net/21.15107/rcub_dais_15988
ER  - 
@phdthesis{
editor = "Stojković Simatović, Ivana, Jugović, Dragana, Cvjetićanin, Nikola, Vujković, Milica",
author = "Kuzmanović, Maja",
year = "2017",
abstract = "Predmet istraživanja ove doktorske disertacije je ispitivanje mogućnosti dobijanja prahova litijum gvožđe(II) fosfata (LiFePO4) novim i modifikovanim načinima sinteze. Zahvaljujući svojoj sposobnosti da reverzibilno interkalira/deinterkalira jone litijuma ovaj materijal se koristi kao katoda u litijum jonskim baterijama. Osnovni cilj ovih istraživanja je bio da se dobije čist materijal bez prisustva nečistoća, koji će imati pogodne fizičkohemijske karakteristike za elektrohemijsku primenu. Parametri kristalne građe mogu značajno uticati na elektrohemijske osobine, tako da je cilj istraživanja bio da se ovaj uticaj razjasni i da se sintetišu materijali koji bi u ovom smislu imali najoptimalniju morfologiju i ostale mikrostrukturne osobine. Polazeći iz vodenih rastvora, koji su se sastojali od jona litijuma, gvožđa i fosfora pomešanih u odnosu koji zadovoljava stehiometriju LiFePO4 i odgovarajuće karboksilne kiseline, dobijene su prekursorske smeše mikroemulzionom metodom, koprecipitacijom i liofilizacijom koje su dalje termički tretirane. Prekursorska smeša dobijena mikroemulzionom metodom je solvotermalno tretirana na temperaturi od 180 oC, dok su prekursorske smeše dobijene koprecipitacijom i liofilizacijom termički tretirane na visokim temperaturama (600-800 oC) u cilju dobijanja kristalnog praha LiFePO4. Korišćenjem eksperimentalnih tehnika rendgenske difrakcije na prahu, skenirajuće elektronske mikroskopije, Mesbauerove spektroskopije, rasejanja laserske svetlosti, termičke analize i elektrohemijske analize ispitan je uticaj različitih karboksilnih kiselina kao redukcionog sredstva i izvora ugljenika na morfološke i elektrohemijske karakteristike sintetisanih prahova., The subject of this PhD thesis is investigation of possibility to synthesize lithium iron (II) phosphate (LiFePO4) powders with new and modified synthesis procedures. Due to its ability to reversibly intercalate/deintercalate lithium ions, this material is used as a cathode in lithium ion batteries. The main objective of this research was to synthesize pure material without any phase impurities, which would have appropriate physical chemical properties for electrochemical applications. Crystal lattice parameters can significantly influence electrochemical properties, and this thesis aim is to clarify this relation and to synthesize materials with optimal morphology and other microstructural properties. Starting from mixed aqueous solution of lithium, phosphorus and iron ions in stoichiometric ratio and different carboxylic acids, precursors mixtures were prepared by microemulsion, coprecipitation and lyophilisation techniques, and afterwards were thermally treated. To prepare crystal LiFePO4 powders, microemulsion-derived precursor mixture was solvothermally treated at 180 oC, while precursor mixtures obtained by coprecipitation and lyophilisation were thermally treated at high temperatures (600-800 oC). X-ray powder diffraction, scanning electron microscopy, Mossbauer spectroscopy, laser light scattering, and thermal and electrochemical analyses were used to investigate the influence of different carboxylic acids as reducing agents and carbon sources on morphological and electrochemical properties of synthesized powders",
publisher = "Belgrade Univerzitet u Beogradu, Fakultet za fizičku hemiju",
title = "Morfološke i elektrohemijske karakteristike prahova LiFePO4 sintetisanih u prisustvu različitih karboksilnih kiselina, Morfological and electrochemical properties of LiFePO4 powders synthesized in presence of different carboxylic acids",
url = "https://hdl.handle.net/21.15107/rcub_dais_15988"
}
Stojković Simatović, I., Jugović, D., Cvjetićanin, N., Vujković, M.,& Kuzmanović, M.. (2017). Morfološke i elektrohemijske karakteristike prahova LiFePO4 sintetisanih u prisustvu različitih karboksilnih kiselina. 
Belgrade Univerzitet u Beogradu, Fakultet za fizičku hemiju..
https://hdl.handle.net/21.15107/rcub_dais_15988
Stojković Simatović I, Jugović D, Cvjetićanin N, Vujković M, Kuzmanović M. Morfološke i elektrohemijske karakteristike prahova LiFePO4 sintetisanih u prisustvu različitih karboksilnih kiselina. 2017;.
https://hdl.handle.net/21.15107/rcub_dais_15988 .
Stojković Simatović, Ivana, Jugović, Dragana, Cvjetićanin, Nikola, Vujković, Milica, Kuzmanović, Maja, "Morfološke i elektrohemijske karakteristike prahova LiFePO4 sintetisanih u prisustvu različitih karboksilnih kiselina" (2017),
https://hdl.handle.net/21.15107/rcub_dais_15988 .

Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor

Ignjatović, Nenad; Penov Gaši, Katarina; Wu, Victoria; Ajduković, Jovana; Kojić, Vesna V.; Vasiljević Radović, Dana; Kuzmanović, Maja; Uskoković, Vuk; Uskoković, Dragan

(Elsevier, 2016)

TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Penov Gaši, Katarina
AU  - Wu, Victoria
AU  - Ajduković, Jovana
AU  - Kojić, Vesna V.
AU  - Vasiljević Radović, Dana
AU  - Kuzmanović, Maja
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/15974
AB  - In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.
PB  - Elsevier
T2  - Colloids and Surfaces B: Biointerfaces
T1  - Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor
SP  - 629
EP  - 639
VL  - 148
DO  - 10.1016/j.colsurfb.2016.09.041
UR  - https://hdl.handle.net/21.15107/rcub_dais_15974
ER  - 
@article{
author = "Ignjatović, Nenad and Penov Gaši, Katarina and Wu, Victoria and Ajduković, Jovana and Kojić, Vesna V. and Vasiljević Radović, Dana and Kuzmanović, Maja and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.",
publisher = "Elsevier",
journal = "Colloids and Surfaces B: Biointerfaces",
title = "Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor",
pages = "629-639",
volume = "148",
doi = "10.1016/j.colsurfb.2016.09.041",
url = "https://hdl.handle.net/21.15107/rcub_dais_15974"
}
Ignjatović, N., Penov Gaši, K., Wu, V., Ajduković, J., Kojić, V. V., Vasiljević Radović, D., Kuzmanović, M., Uskoković, V.,& Uskoković, D.. (2016). Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. in Colloids and Surfaces B: Biointerfaces
Elsevier., 148, 629-639.
https://doi.org/10.1016/j.colsurfb.2016.09.041
https://hdl.handle.net/21.15107/rcub_dais_15974
Ignjatović N, Penov Gaši K, Wu V, Ajduković J, Kojić VV, Vasiljević Radović D, Kuzmanović M, Uskoković V, Uskoković D. Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. in Colloids and Surfaces B: Biointerfaces. 2016;148:629-639.
doi:10.1016/j.colsurfb.2016.09.041
https://hdl.handle.net/21.15107/rcub_dais_15974 .
Ignjatović, Nenad, Penov Gaši, Katarina, Wu, Victoria, Ajduković, Jovana, Kojić, Vesna V., Vasiljević Radović, Dana, Kuzmanović, Maja, Uskoković, Vuk, Uskoković, Dragan, "Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor" in Colloids and Surfaces B: Biointerfaces, 148 (2016):629-639,
https://doi.org/10.1016/j.colsurfb.2016.09.041 .,
https://hdl.handle.net/21.15107/rcub_dais_15974 .
25
18
28

Selective anticancer activity of hydroxyapatite/chitosan-poly(D,L)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor

Ignjatović, Nenad; Penov Gaši, Katarina; Wu, Victoria; Ajduković, Jovana; Kojić, Vesna; Vasiljević Radović, Dana; Kuzmanović, Maja; Uskoković, Vuk; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Penov Gaši, Katarina
AU  - Wu, Victoria
AU  - Ajduković, Jovana
AU  - Kojić, Vesna
AU  - Vasiljević Radović, Dana
AU  - Kuzmanović, Maja
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/15984
AB  - In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47 wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50 = 168 nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46 ± 2%), while simultaneously preserving high viability (83 ± 3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.
T2  - Colloids and Surfaces B: Biointerfaces
T1  - Selective anticancer activity of hydroxyapatite/chitosan-poly(D,L)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor
SP  - 629
EP  - 639
VL  - 148
DO  - 10.1016/j.colsurfb.2016.09.041
UR  - https://hdl.handle.net/21.15107/rcub_dais_15984
ER  - 
@article{
author = "Ignjatović, Nenad and Penov Gaši, Katarina and Wu, Victoria and Ajduković, Jovana and Kojić, Vesna and Vasiljević Radović, Dana and Kuzmanović, Maja and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47 wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50 = 168 nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46 ± 2%), while simultaneously preserving high viability (83 ± 3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.",
journal = "Colloids and Surfaces B: Biointerfaces",
title = "Selective anticancer activity of hydroxyapatite/chitosan-poly(D,L)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor",
pages = "629-639",
volume = "148",
doi = "10.1016/j.colsurfb.2016.09.041",
url = "https://hdl.handle.net/21.15107/rcub_dais_15984"
}
Ignjatović, N., Penov Gaši, K., Wu, V., Ajduković, J., Kojić, V., Vasiljević Radović, D., Kuzmanović, M., Uskoković, V.,& Uskoković, D.. (2016). Selective anticancer activity of hydroxyapatite/chitosan-poly(D,L)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. in Colloids and Surfaces B: Biointerfaces, 148, 629-639.
https://doi.org/10.1016/j.colsurfb.2016.09.041
https://hdl.handle.net/21.15107/rcub_dais_15984
Ignjatović N, Penov Gaši K, Wu V, Ajduković J, Kojić V, Vasiljević Radović D, Kuzmanović M, Uskoković V, Uskoković D. Selective anticancer activity of hydroxyapatite/chitosan-poly(D,L)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. in Colloids and Surfaces B: Biointerfaces. 2016;148:629-639.
doi:10.1016/j.colsurfb.2016.09.041
https://hdl.handle.net/21.15107/rcub_dais_15984 .
Ignjatović, Nenad, Penov Gaši, Katarina, Wu, Victoria, Ajduković, Jovana, Kojić, Vesna, Vasiljević Radović, Dana, Kuzmanović, Maja, Uskoković, Vuk, Uskoković, Dragan, "Selective anticancer activity of hydroxyapatite/chitosan-poly(D,L)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor" in Colloids and Surfaces B: Biointerfaces, 148 (2016):629-639,
https://doi.org/10.1016/j.colsurfb.2016.09.041 .,
https://hdl.handle.net/21.15107/rcub_dais_15984 .
25
18
28

A Facile Determination Method for an Androstane-based Lung Cancer Inhibitor Loaded in Nano/Micro Particles Based on Hydroxyapatite by Means of DTA/TGA Coupled with On-line Mass Spectrometry

Ignjatović, Nenad; Kuzmanović, Maja; Penov Gaši, Katarina; Ajduković, Jovana; Kojić, Vesna; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2015)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Kuzmanović, Maja
AU  - Penov Gaši, Katarina
AU  - Ajduković, Jovana
AU  - Kojić, Vesna
AU  - Uskoković, Dragan
PY  - 2015
UR  - https://dais.sanu.ac.rs/123456789/826
AB  - In our study, we examined the possibilities for the application of Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a fingerprint for identification purposes in drug loading processes. Androstane derivative 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl acetate (2-OAc) with antitumor activity was loaded in nano hydroxyapatite (HAp) coated with chitosan-poly(D,L)-lactide-co-glycolide (Ch-PLGA) by emulsification and finally freeze-dried. By means of DTA/TGA-MS, it was quickly determined that the form of 2-OAc was the same before and after loading. The observed exothermic and endothermic processes due to the transformation of material with simultaneous analysis of gas products have proven to be successful in the analysis of drug loading processes in multi-component ceramic-polymer carriers. The loading efficiency of 74.7% was determined using the Differential Scanning Calorimetry (DSC) technique. A FT-IR analysis confirmed the qualitative composition of the synthesized 2-OAc-loaded HAp/Ch-PLGA. The in vitro antiproliferative activity was evaluated against human cell lines: lung adenocarcinoma (A549), as well as healthy fetal lung fibroblasts (MRC-5). The results of DET and MTT tests have revealed a high viability of healthy cells MRC-5 (82%) and the death of cancer cells A549 (46%) after a treatment with 2-OAc-loaded HAp/Ch-PLGA.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015
T1  - A Facile Determination Method for an Androstane-based Lung Cancer Inhibitor Loaded in Nano/Micro Particles Based on Hydroxyapatite by Means of DTA/TGA Coupled with On-line Mass Spectrometry
SP  - 35
EP  - 35
UR  - https://hdl.handle.net/21.15107/rcub_dais_826
ER  - 
@conference{
author = "Ignjatović, Nenad and Kuzmanović, Maja and Penov Gaši, Katarina and Ajduković, Jovana and Kojić, Vesna and Uskoković, Dragan",
year = "2015",
abstract = "In our study, we examined the possibilities for the application of Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a fingerprint for identification purposes in drug loading processes. Androstane derivative 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl acetate (2-OAc) with antitumor activity was loaded in nano hydroxyapatite (HAp) coated with chitosan-poly(D,L)-lactide-co-glycolide (Ch-PLGA) by emulsification and finally freeze-dried. By means of DTA/TGA-MS, it was quickly determined that the form of 2-OAc was the same before and after loading. The observed exothermic and endothermic processes due to the transformation of material with simultaneous analysis of gas products have proven to be successful in the analysis of drug loading processes in multi-component ceramic-polymer carriers. The loading efficiency of 74.7% was determined using the Differential Scanning Calorimetry (DSC) technique. A FT-IR analysis confirmed the qualitative composition of the synthesized 2-OAc-loaded HAp/Ch-PLGA. The in vitro antiproliferative activity was evaluated against human cell lines: lung adenocarcinoma (A549), as well as healthy fetal lung fibroblasts (MRC-5). The results of DET and MTT tests have revealed a high viability of healthy cells MRC-5 (82%) and the death of cancer cells A549 (46%) after a treatment with 2-OAc-loaded HAp/Ch-PLGA.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015",
title = "A Facile Determination Method for an Androstane-based Lung Cancer Inhibitor Loaded in Nano/Micro Particles Based on Hydroxyapatite by Means of DTA/TGA Coupled with On-line Mass Spectrometry",
pages = "35-35",
url = "https://hdl.handle.net/21.15107/rcub_dais_826"
}
Ignjatović, N., Kuzmanović, M., Penov Gaši, K., Ajduković, J., Kojić, V.,& Uskoković, D.. (2015). A Facile Determination Method for an Androstane-based Lung Cancer Inhibitor Loaded in Nano/Micro Particles Based on Hydroxyapatite by Means of DTA/TGA Coupled with On-line Mass Spectrometry. in Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015
Belgrade : Materials Research Society of Serbia., 35-35.
https://hdl.handle.net/21.15107/rcub_dais_826
Ignjatović N, Kuzmanović M, Penov Gaši K, Ajduković J, Kojić V, Uskoković D. A Facile Determination Method for an Androstane-based Lung Cancer Inhibitor Loaded in Nano/Micro Particles Based on Hydroxyapatite by Means of DTA/TGA Coupled with On-line Mass Spectrometry. in Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015. 2015;:35-35.
https://hdl.handle.net/21.15107/rcub_dais_826 .
Ignjatović, Nenad, Kuzmanović, Maja, Penov Gaši, Katarina, Ajduković, Jovana, Kojić, Vesna, Uskoković, Dragan, "A Facile Determination Method for an Androstane-based Lung Cancer Inhibitor Loaded in Nano/Micro Particles Based on Hydroxyapatite by Means of DTA/TGA Coupled with On-line Mass Spectrometry" in Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015 (2015):35-35,
https://hdl.handle.net/21.15107/rcub_dais_826 .

The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite

Kuzmanović, Maja; Jugović, Dragana; Mitrić, Miodrag; Jokić, Bojan; Cvjetićanin, Nikola; Uskoković, Dragan

(Elsevier, 2015)

TY  - JOUR
AU  - Kuzmanović, Maja
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Jokić, Bojan
AU  - Cvjetićanin, Nikola
AU  - Uskoković, Dragan
PY  - 2015
UR  - https://dais.sanu.ac.rs/123456789/15434
AB  - Olivine-type LiFePO4 composite powders with carbon were synthesized by freeze drying and subsequent thermal annealing. The main purpose of the research is to explore how various dicarboxylic acids as carbon sources influence the electrochemical properties of the resulting composites. Three dicarboxylic acids (oxalic, malonic, and adipic) were used as a carbon source. The synthesis was followed by X-ray powder diffraction, scanning electron microscopy, particle-size analysis, and electrochemical experiments. It is shown that the amount of the in situ formed carbon depends on the thermal behaviour of the acids in inert atmosphere rather than on their carbon content. Cyclic voltammetry experiments and galvanostatic cycling illustrate the behaviour of different powders: the powder obtained with oxalic acid yields the highest discharge capacity at small currents, while the one obtained with adipic acid shows better high-current response. Malonic acid has turned out to be a poor carbon source and it consequently yields powder with poor electrochemical performance.
PB  - Elsevier
T2  - Ceramics International
T1  - The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite
SP  - 6753
EP  - 6758
VL  - 41
IS  - 5, Part B
DO  - 10.1016/j.ceramint.2015.01.121
UR  - https://hdl.handle.net/21.15107/rcub_dais_15434
ER  - 
@article{
author = "Kuzmanović, Maja and Jugović, Dragana and Mitrić, Miodrag and Jokić, Bojan and Cvjetićanin, Nikola and Uskoković, Dragan",
year = "2015",
abstract = "Olivine-type LiFePO4 composite powders with carbon were synthesized by freeze drying and subsequent thermal annealing. The main purpose of the research is to explore how various dicarboxylic acids as carbon sources influence the electrochemical properties of the resulting composites. Three dicarboxylic acids (oxalic, malonic, and adipic) were used as a carbon source. The synthesis was followed by X-ray powder diffraction, scanning electron microscopy, particle-size analysis, and electrochemical experiments. It is shown that the amount of the in situ formed carbon depends on the thermal behaviour of the acids in inert atmosphere rather than on their carbon content. Cyclic voltammetry experiments and galvanostatic cycling illustrate the behaviour of different powders: the powder obtained with oxalic acid yields the highest discharge capacity at small currents, while the one obtained with adipic acid shows better high-current response. Malonic acid has turned out to be a poor carbon source and it consequently yields powder with poor electrochemical performance.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite",
pages = "6753-6758",
volume = "41",
number = "5, Part B",
doi = "10.1016/j.ceramint.2015.01.121",
url = "https://hdl.handle.net/21.15107/rcub_dais_15434"
}
Kuzmanović, M., Jugović, D., Mitrić, M., Jokić, B., Cvjetićanin, N.,& Uskoković, D.. (2015). The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite. in Ceramics International
Elsevier., 41(5, Part B), 6753-6758.
https://doi.org/10.1016/j.ceramint.2015.01.121
https://hdl.handle.net/21.15107/rcub_dais_15434
Kuzmanović M, Jugović D, Mitrić M, Jokić B, Cvjetićanin N, Uskoković D. The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite. in Ceramics International. 2015;41(5, Part B):6753-6758.
doi:10.1016/j.ceramint.2015.01.121
https://hdl.handle.net/21.15107/rcub_dais_15434 .
Kuzmanović, Maja, Jugović, Dragana, Mitrić, Miodrag, Jokić, Bojan, Cvjetićanin, Nikola, Uskoković, Dragan, "The use of various dicarboxylic acids as a carbon source for the preparation of LiFePO4/C composite" in Ceramics International, 41, no. 5, Part B (2015):6753-6758,
https://doi.org/10.1016/j.ceramint.2015.01.121 .,
https://hdl.handle.net/21.15107/rcub_dais_15434 .
15
15
16