Ercius, Peter

Link to this page

Authority KeyName Variants
orcid::0000-0002-6762-9976
  • Ercius, Peter (4)
Projects

Author's Bibliography

Comparative study on noble metal based nanocatalysts on different supports for low temperature fuel cells application

Gajić Krstajić, Ljiljana; Radmilović, Velimir R.; Ercius, Peter; Jović, Borka; Jović, Vladimir; Zabinski, Piotr; Elezović, Nevenka

(Belgrade : Materials Research Society of Serbia, 2018)

TY  - CONF
AU  - Gajić Krstajić, Ljiljana
AU  - Radmilović, Velimir R.
AU  - Ercius, Peter
AU  - Jović, Borka
AU  - Jović, Vladimir
AU  - Zabinski, Piotr
AU  - Elezović, Nevenka
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/3633
AB  - Platinum based nanostructures on carbon support are state of the art materials for proton exchange membrane fuel cells application. Contemporary research directions in this field imply synthesis and characterization of novel carbon free catalysts supports to overcome disadvantages of carbon supported ones. We have recently synthesized platinum and palladium nanocatalysts onto different novel metal oxide based supports: titanium-oxide, tin oxide and tungsten oxide, doped by different metals (Nb, Ru, Sb), to achieve satisfactory conductivity. These novel nanostructures were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), as well as by electrochemical techniques. The synthesized nanostructured catalysts were tested for oxygen reduction reaction. Obtained catalytic activities and stabilities were compared to the same noble metal loading catalysts on Vulcan XC-72 support. The results of comparison revealed many advantages of carbon free supported nanocatalysts, regarding both activity and stability.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
T1  - Comparative study on noble metal based nanocatalysts on different supports for low temperature fuel cells application
SP  - 112
EP  - 112
UR  - https://hdl.handle.net/21.15107/rcub_dais_3633
ER  - 
@conference{
author = "Gajić Krstajić, Ljiljana and Radmilović, Velimir R. and Ercius, Peter and Jović, Borka and Jović, Vladimir and Zabinski, Piotr and Elezović, Nevenka",
year = "2018",
abstract = "Platinum based nanostructures on carbon support are state of the art materials for proton exchange membrane fuel cells application. Contemporary research directions in this field imply synthesis and characterization of novel carbon free catalysts supports to overcome disadvantages of carbon supported ones. We have recently synthesized platinum and palladium nanocatalysts onto different novel metal oxide based supports: titanium-oxide, tin oxide and tungsten oxide, doped by different metals (Nb, Ru, Sb), to achieve satisfactory conductivity. These novel nanostructures were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), as well as by electrochemical techniques. The synthesized nanostructured catalysts were tested for oxygen reduction reaction. Obtained catalytic activities and stabilities were compared to the same noble metal loading catalysts on Vulcan XC-72 support. The results of comparison revealed many advantages of carbon free supported nanocatalysts, regarding both activity and stability.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018",
title = "Comparative study on noble metal based nanocatalysts on different supports for low temperature fuel cells application",
pages = "112-112",
url = "https://hdl.handle.net/21.15107/rcub_dais_3633"
}
Gajić Krstajić, L., Radmilović, V. R., Ercius, P., Jović, B., Jović, V., Zabinski, P.,& Elezović, N.. (2018). Comparative study on noble metal based nanocatalysts on different supports for low temperature fuel cells application. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
Belgrade : Materials Research Society of Serbia., 112-112.
https://hdl.handle.net/21.15107/rcub_dais_3633
Gajić Krstajić L, Radmilović VR, Ercius P, Jović B, Jović V, Zabinski P, Elezović N. Comparative study on noble metal based nanocatalysts on different supports for low temperature fuel cells application. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018. 2018;:112-112.
https://hdl.handle.net/21.15107/rcub_dais_3633 .
Gajić Krstajić, Ljiljana, Radmilović, Velimir R., Ercius, Peter, Jović, Borka, Jović, Vladimir, Zabinski, Piotr, Elezović, Nevenka, "Comparative study on noble metal based nanocatalysts on different supports for low temperature fuel cells application" in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018 (2018):112-112,
https://hdl.handle.net/21.15107/rcub_dais_3633 .

Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application

Gajić Krstajić, Ljiljana; Zabinski, Piotr; Radmilović, Velimir R.; Ercius, Peter; Krstajić Pajić, Mila; Lačnjevac, Uroš; Krstajić, Nedeljko; Elezović, Nevenka

(Belgrade : Materials Research Society of Serbia, 2016)

TY  - CONF
AU  - Gajić Krstajić, Ljiljana
AU  - Zabinski, Piotr
AU  - Radmilović, Velimir R.
AU  - Ercius, Peter
AU  - Krstajić Pajić, Mila
AU  - Lačnjevac, Uroš
AU  - Krstajić, Nedeljko
AU  - Elezović, Nevenka
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/895
AB  - Tungsten carbide was prepared by polycondensation of resorcinol and formaldehyde in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst at this support was synthesized by borohydride reduction method. The obtained materials were characterized by XRD, HRTEM, EELS, XPS and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. The presence of palladium based species was revealed. The catalytic activity for the hydrogen oxidation reaction and oxygen reduction were investigated in 0.5 M HClO4 by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalysts’ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown higher CO tolerance, compared even to Pt based catalyst. 

Acknowledgements: This work was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, contract No. 172054.
The authors would like to acknowledge networking support by the COST Action MP1407.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
T1  - Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application
SP  - 71
EP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_dais_895
ER  - 
@conference{
author = "Gajić Krstajić, Ljiljana and Zabinski, Piotr and Radmilović, Velimir R. and Ercius, Peter and Krstajić Pajić, Mila and Lačnjevac, Uroš and Krstajić, Nedeljko and Elezović, Nevenka",
year = "2016",
abstract = "Tungsten carbide was prepared by polycondensation of resorcinol and formaldehyde in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst at this support was synthesized by borohydride reduction method. The obtained materials were characterized by XRD, HRTEM, EELS, XPS and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. The presence of palladium based species was revealed. The catalytic activity for the hydrogen oxidation reaction and oxygen reduction were investigated in 0.5 M HClO4 by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalysts’ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown higher CO tolerance, compared even to Pt based catalyst. 

Acknowledgements: This work was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, contract No. 172054.
The authors would like to acknowledge networking support by the COST Action MP1407.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016",
title = "Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application",
pages = "71-71",
url = "https://hdl.handle.net/21.15107/rcub_dais_895"
}
Gajić Krstajić, L., Zabinski, P., Radmilović, V. R., Ercius, P., Krstajić Pajić, M., Lačnjevac, U., Krstajić, N.,& Elezović, N.. (2016). Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
Belgrade : Materials Research Society of Serbia., 71-71.
https://hdl.handle.net/21.15107/rcub_dais_895
Gajić Krstajić L, Zabinski P, Radmilović VR, Ercius P, Krstajić Pajić M, Lačnjevac U, Krstajić N, Elezović N. Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016. 2016;:71-71.
https://hdl.handle.net/21.15107/rcub_dais_895 .
Gajić Krstajić, Ljiljana, Zabinski, Piotr, Radmilović, Velimir R., Ercius, Peter, Krstajić Pajić, Mila, Lačnjevac, Uroš, Krstajić, Nedeljko, Elezović, Nevenka, "Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application" in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016 (2016):71-71,
https://hdl.handle.net/21.15107/rcub_dais_895 .

Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution

Elezović, Nevenka; Babić, Biljana M.; Gajić Krstajić, Ljiljana; Ercius, Peter; Radmilović, Velimir R.; Krstajić, Nedeljko; Vračar, Ljiljana

(Elsevier, 2012)

TY  - JOUR
AU  - Elezović, Nevenka
AU  - Babić, Biljana M.
AU  - Gajić Krstajić, Ljiljana
AU  - Ercius, Peter
AU  - Radmilović, Velimir R.
AU  - Krstajić, Nedeljko
AU  - Vračar, Ljiljana
PY  - 2012
UR  - https://dais.sanu.ac.rs/123456789/465
AB  - Platinum nanocatalyst at nano-tungsten carbide was synthesized, characterized and tested for oxygen reduction reaction (ORR) in 0.1 mol dm−3 NaOH, at 25 °C. Tungsten-carbide islands on nano-tungsten particles (WC) was synthesized from gel prepared by using nanoparticles of WO3, previously produced from W-powder oxidized in H2O2. The support was porous material with high specific surface area (177 m2 g−1).

The WC supported Pt (10 wt.%) catalyst was prepared by borohydride reduction method.

X-ray diffraction of the catalyst demonstrates successful reduction of Pt precursor to metallic form. STEM analysis of Pt/WC catalyst showed the existence of Pt particles lower than 2 nm in size, even the clusters of Pt atoms.

Electrochemically active surface area of Pt was determined from adsorption/desorption charge of hydrogen atoms.

Catalytic activity of the synthesized catalyst for ORR was studied by cyclic voltammetry and linear sweep voltammetry at rotating disk electrode. The onset potential on Pt/WC for ORR, comparing with Pt/Vulcan, was shifted to the positive potentials for about 150 mV. Pt/WC catalyst shows one Tafel slope of −0.105 V dec−1, remarkable catalytic activity expressed either through the value of the current density per real surface area, or through the mass activity and excellent stability.
PB  - Elsevier
T2  - Electrochimica Acta
T1  - Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution
SP  - 239
EP  - 246
DO  - 10.1016/j.electacta.2012.02.105
UR  - https://hdl.handle.net/21.15107/rcub_dais_465
ER  - 
@article{
author = "Elezović, Nevenka and Babić, Biljana M. and Gajić Krstajić, Ljiljana and Ercius, Peter and Radmilović, Velimir R. and Krstajić, Nedeljko and Vračar, Ljiljana",
year = "2012",
abstract = "Platinum nanocatalyst at nano-tungsten carbide was synthesized, characterized and tested for oxygen reduction reaction (ORR) in 0.1 mol dm−3 NaOH, at 25 °C. Tungsten-carbide islands on nano-tungsten particles (WC) was synthesized from gel prepared by using nanoparticles of WO3, previously produced from W-powder oxidized in H2O2. The support was porous material with high specific surface area (177 m2 g−1).

The WC supported Pt (10 wt.%) catalyst was prepared by borohydride reduction method.

X-ray diffraction of the catalyst demonstrates successful reduction of Pt precursor to metallic form. STEM analysis of Pt/WC catalyst showed the existence of Pt particles lower than 2 nm in size, even the clusters of Pt atoms.

Electrochemically active surface area of Pt was determined from adsorption/desorption charge of hydrogen atoms.

Catalytic activity of the synthesized catalyst for ORR was studied by cyclic voltammetry and linear sweep voltammetry at rotating disk electrode. The onset potential on Pt/WC for ORR, comparing with Pt/Vulcan, was shifted to the positive potentials for about 150 mV. Pt/WC catalyst shows one Tafel slope of −0.105 V dec−1, remarkable catalytic activity expressed either through the value of the current density per real surface area, or through the mass activity and excellent stability.",
publisher = "Elsevier",
journal = "Electrochimica Acta",
title = "Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution",
pages = "239-246",
doi = "10.1016/j.electacta.2012.02.105",
url = "https://hdl.handle.net/21.15107/rcub_dais_465"
}
Elezović, N., Babić, B. M., Gajić Krstajić, L., Ercius, P., Radmilović, V. R., Krstajić, N.,& Vračar, L.. (2012). Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution. in Electrochimica Acta
Elsevier., 239-246.
https://doi.org/10.1016/j.electacta.2012.02.105
https://hdl.handle.net/21.15107/rcub_dais_465
Elezović N, Babić BM, Gajić Krstajić L, Ercius P, Radmilović VR, Krstajić N, Vračar L. Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution. in Electrochimica Acta. 2012;:239-246.
doi:10.1016/j.electacta.2012.02.105
https://hdl.handle.net/21.15107/rcub_dais_465 .
Elezović, Nevenka, Babić, Biljana M., Gajić Krstajić, Ljiljana, Ercius, Peter, Radmilović, Velimir R., Krstajić, Nedeljko, Vračar, Ljiljana, "Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution" in Electrochimica Acta (2012):239-246,
https://doi.org/10.1016/j.electacta.2012.02.105 .,
https://hdl.handle.net/21.15107/rcub_dais_465 .
53
46
53

Preparation and Characterization of Pt Nanocatalyst on Tungsten Based Support for Alkaline Fuel Cells Applications

Gajić Krstajić, Ljiljana; Elezović, Nevenka; Babić, Biljana M.; Ercius, Peter; Radmilović, Velimir R.; Krstajić, Nedeljko; Vračar, Ljiljana

(2011)

TY  - CONF
AU  - Gajić Krstajić, Ljiljana
AU  - Elezović, Nevenka
AU  - Babić, Biljana M.
AU  - Ercius, Peter
AU  - Radmilović, Velimir R.
AU  - Krstajić, Nedeljko
AU  - Vračar, Ljiljana
PY  - 2011
UR  - https://dais.sanu.ac.rs/123456789/155
AB  - Poster presented at the 13th Annual Conference of the Materials Research Society of Serbia - YUCOMAT 2011, Herceg Novi, Montenegro, September 5–9, 2011
T1  - Preparation and Characterization of Pt Nanocatalyst on Tungsten Based Support for Alkaline Fuel Cells Applications
UR  - https://hdl.handle.net/21.15107/rcub_dais_155
ER  - 
@conference{
author = "Gajić Krstajić, Ljiljana and Elezović, Nevenka and Babić, Biljana M. and Ercius, Peter and Radmilović, Velimir R. and Krstajić, Nedeljko and Vračar, Ljiljana",
year = "2011",
abstract = "Poster presented at the 13th Annual Conference of the Materials Research Society of Serbia - YUCOMAT 2011, Herceg Novi, Montenegro, September 5–9, 2011",
title = "Preparation and Characterization of Pt Nanocatalyst on Tungsten Based Support for Alkaline Fuel Cells Applications",
url = "https://hdl.handle.net/21.15107/rcub_dais_155"
}
Gajić Krstajić, L., Elezović, N., Babić, B. M., Ercius, P., Radmilović, V. R., Krstajić, N.,& Vračar, L.. (2011). Preparation and Characterization of Pt Nanocatalyst on Tungsten Based Support for Alkaline Fuel Cells Applications. .
https://hdl.handle.net/21.15107/rcub_dais_155
Gajić Krstajić L, Elezović N, Babić BM, Ercius P, Radmilović VR, Krstajić N, Vračar L. Preparation and Characterization of Pt Nanocatalyst on Tungsten Based Support for Alkaline Fuel Cells Applications. 2011;.
https://hdl.handle.net/21.15107/rcub_dais_155 .
Gajić Krstajić, Ljiljana, Elezović, Nevenka, Babić, Biljana M., Ercius, Peter, Radmilović, Velimir R., Krstajić, Nedeljko, Vračar, Ljiljana, "Preparation and Characterization of Pt Nanocatalyst on Tungsten Based Support for Alkaline Fuel Cells Applications" (2011),
https://hdl.handle.net/21.15107/rcub_dais_155 .