Validžić, Ivana

Link to this page

Authority KeyName Variants
orcid::0000-0001-9874-8583
  • Validžić, Ivana (3)
Projects

Author's Bibliography

Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity

Lojpur, Vesna; Krstić, Jelena; Kačarević-Popović, Zorica; Filipović, Nenad; Validžić, Ivana

(Springer, 2018)

TY  - JOUR
AU  - Lojpur, Vesna
AU  - Krstić, Jelena
AU  - Kačarević-Popović, Zorica
AU  - Filipović, Nenad
AU  - Validžić, Ivana
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4637
AB  - Producing green and efficient energy sources is a major challenge. As a consequence, the use of photovoltaic devices for conversion of light into electricity is growing worldwide. A lot of effort had been invested to create high-efficient solar cells, but their durability, stability, flexibility and efficiency at low light intensities are still unexplored. Here, we built a flexible solar cell made of p-doped, amorphized a-undoped and n-doped Sb2S3 solid carrier loaded with electrolyte. Indium tin oxide glass was the working electrode, and aluminium was the counter electrode. Every (p–a–n) flexible Sb2S3/solid carrier layers were obtained using a cheap casting/solvent evaporation technique, from a blend consisted of chitosan, polyethylene glycol and electrolyte containing 0.5 M potassium iodide and 0.05 M iodine, and corresponding synthesized amorphized a-undoped and p and n-doped Sb2S3 semiconductor. Results show that flexible Sb2S3 solar cell possesses good stability and efficiency of about 10% at 5% sun. Overall, our findings demonstrate for the first time that flexible solar cell can be made and used for low light intensity applications. © 2018, Springer International Publishing AG, part of Springer Nature.
PB  - Springer
T2  - Environmental Chemistry Letters
T1  - Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity
SP  - 659
EP  - 664
VL  - 16
IS  - 2
DO  - 10.1007/s10311-017-0702-7
UR  - https://hdl.handle.net/21.15107/rcub_dais_4637
ER  - 
@article{
author = "Lojpur, Vesna and Krstić, Jelena and Kačarević-Popović, Zorica and Filipović, Nenad and Validžić, Ivana",
year = "2018",
abstract = "Producing green and efficient energy sources is a major challenge. As a consequence, the use of photovoltaic devices for conversion of light into electricity is growing worldwide. A lot of effort had been invested to create high-efficient solar cells, but their durability, stability, flexibility and efficiency at low light intensities are still unexplored. Here, we built a flexible solar cell made of p-doped, amorphized a-undoped and n-doped Sb2S3 solid carrier loaded with electrolyte. Indium tin oxide glass was the working electrode, and aluminium was the counter electrode. Every (p–a–n) flexible Sb2S3/solid carrier layers were obtained using a cheap casting/solvent evaporation technique, from a blend consisted of chitosan, polyethylene glycol and electrolyte containing 0.5 M potassium iodide and 0.05 M iodine, and corresponding synthesized amorphized a-undoped and p and n-doped Sb2S3 semiconductor. Results show that flexible Sb2S3 solar cell possesses good stability and efficiency of about 10% at 5% sun. Overall, our findings demonstrate for the first time that flexible solar cell can be made and used for low light intensity applications. © 2018, Springer International Publishing AG, part of Springer Nature.",
publisher = "Springer",
journal = "Environmental Chemistry Letters",
title = "Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity",
pages = "659-664",
volume = "16",
number = "2",
doi = "10.1007/s10311-017-0702-7",
url = "https://hdl.handle.net/21.15107/rcub_dais_4637"
}
Lojpur, V., Krstić, J., Kačarević-Popović, Z., Filipović, N.,& Validžić, I.. (2018). Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity. in Environmental Chemistry Letters
Springer., 16(2), 659-664.
https://doi.org/10.1007/s10311-017-0702-7
https://hdl.handle.net/21.15107/rcub_dais_4637
Lojpur V, Krstić J, Kačarević-Popović Z, Filipović N, Validžić I. Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity. in Environmental Chemistry Letters. 2018;16(2):659-664.
doi:10.1007/s10311-017-0702-7
https://hdl.handle.net/21.15107/rcub_dais_4637 .
Lojpur, Vesna, Krstić, Jelena, Kačarević-Popović, Zorica, Filipović, Nenad, Validžić, Ivana, "Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity" in Environmental Chemistry Letters, 16, no. 2 (2018):659-664,
https://doi.org/10.1007/s10311-017-0702-7 .,
https://hdl.handle.net/21.15107/rcub_dais_4637 .
11
2
10

Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity

Lojpur, Vesna; Krstić, Jelena; Kačarević-Popović, Zorica; Filipović, Nenad; Validžić, Ivana

(Springer, 2018)

TY  - JOUR
AU  - Lojpur, Vesna
AU  - Krstić, Jelena
AU  - Kačarević-Popović, Zorica
AU  - Filipović, Nenad
AU  - Validžić, Ivana
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/3754
AB  - Producing green and efficient energy sources is a major challenge. As a consequence, the use of photovoltaic devices for conversion of light into electricity is growing worldwide. A lot of effort had been invested to create high-efficient solar cells, but their durability, stability, flexibility and efficiency at low light intensities are still unexplored. Here, we built a flexible solar cell made of p-doped, amorphized a-undoped and n-doped Sb2S3 solid carrier loaded with electrolyte. Indium tin oxide glass was the working electrode, and aluminium was the counter electrode. Every (p–a–n) flexible Sb2S3/solid carrier layers were obtained using a cheap casting/solvent evaporation technique, from a blend consisted of chitosan, polyethylene glycol and electrolyte containing 0.5 M potassium iodide and 0.05 M iodine, and corresponding synthesized amorphized a-undoped and p and n-doped Sb2S3 semiconductor. Results show that flexible Sb2S3 solar cell possesses good stability and efficiency of about 10% at 5% sun. Overall, our findings demonstrate for the first time that flexible solar cell can be made and used for low light intensity applications. © 2018, Springer International Publishing AG, part of Springer Nature.
PB  - Springer
T2  - Environmental Chemistry Letters
T1  - Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity
SP  - 659
EP  - 664
VL  - 16
IS  - 2
DO  - 10.1007/s10311-017-0702-7
UR  - https://hdl.handle.net/21.15107/rcub_dais_3754
ER  - 
@article{
author = "Lojpur, Vesna and Krstić, Jelena and Kačarević-Popović, Zorica and Filipović, Nenad and Validžić, Ivana",
year = "2018",
abstract = "Producing green and efficient energy sources is a major challenge. As a consequence, the use of photovoltaic devices for conversion of light into electricity is growing worldwide. A lot of effort had been invested to create high-efficient solar cells, but their durability, stability, flexibility and efficiency at low light intensities are still unexplored. Here, we built a flexible solar cell made of p-doped, amorphized a-undoped and n-doped Sb2S3 solid carrier loaded with electrolyte. Indium tin oxide glass was the working electrode, and aluminium was the counter electrode. Every (p–a–n) flexible Sb2S3/solid carrier layers were obtained using a cheap casting/solvent evaporation technique, from a blend consisted of chitosan, polyethylene glycol and electrolyte containing 0.5 M potassium iodide and 0.05 M iodine, and corresponding synthesized amorphized a-undoped and p and n-doped Sb2S3 semiconductor. Results show that flexible Sb2S3 solar cell possesses good stability and efficiency of about 10% at 5% sun. Overall, our findings demonstrate for the first time that flexible solar cell can be made and used for low light intensity applications. © 2018, Springer International Publishing AG, part of Springer Nature.",
publisher = "Springer",
journal = "Environmental Chemistry Letters",
title = "Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity",
pages = "659-664",
volume = "16",
number = "2",
doi = "10.1007/s10311-017-0702-7",
url = "https://hdl.handle.net/21.15107/rcub_dais_3754"
}
Lojpur, V., Krstić, J., Kačarević-Popović, Z., Filipović, N.,& Validžić, I.. (2018). Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity. in Environmental Chemistry Letters
Springer., 16(2), 659-664.
https://doi.org/10.1007/s10311-017-0702-7
https://hdl.handle.net/21.15107/rcub_dais_3754
Lojpur V, Krstić J, Kačarević-Popović Z, Filipović N, Validžić I. Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity. in Environmental Chemistry Letters. 2018;16(2):659-664.
doi:10.1007/s10311-017-0702-7
https://hdl.handle.net/21.15107/rcub_dais_3754 .
Lojpur, Vesna, Krstić, Jelena, Kačarević-Popović, Zorica, Filipović, Nenad, Validžić, Ivana, "Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity" in Environmental Chemistry Letters, 16, no. 2 (2018):659-664,
https://doi.org/10.1007/s10311-017-0702-7 .,
https://hdl.handle.net/21.15107/rcub_dais_3754 .
11
2
10

Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis

Validžić, Ivana; Jokanović, Vukoman; Uskoković, Dragan; Nedeljković, Jovan

(2008)

TY  - JOUR
AU  - Validžić, Ivana
AU  - Jokanović, Vukoman
AU  - Uskoković, Dragan
AU  - Nedeljković, Jovan
PY  - 2008
UR  - https://dais.sanu.ac.rs/123456789/3280
AB  - Silver iodide particles were synthesized in the process of ultrasonic spray pyrolysis using aqueous solutions of thermodynamically stable silver iodide clusters as precursor. The AgI particles were collected in solvents of different polarities such as water, 2-propanol and toluene. In order to study influence of solvent and aging time on the morphological and structural properties of the AgI particles ultra-filtration was employed to isolate solid material from solution. The scanning electron microscopy showed that morphology of the AgI particles is different for different solvents. The AgI particles with hexagonal/triangular shape were obtained in water and toluene, while in 2-propanol hollow spheres were formed. The X-ray diffraction analysis, besides wurtzite hexagonal and zinc blende cubic phases, revealed appearance of tetragonal high-pressure AgI modification for sample collected in toluene and for sample aged in 2-propanol. The aging in toluene induced transformation of all three modifications into single phase with one preferred orientation. (c) 2007 Elsevier B.V. All rights reserved.
T2  - Materials Chemistry and Physics
T1  - Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis
SP  - 28
EP  - 32
VL  - 107
IS  - 1
DO  - 10.1016/j.matchemphys.2007.06.035
UR  - https://hdl.handle.net/21.15107/rcub_dais_3280
ER  - 
@article{
author = "Validžić, Ivana and Jokanović, Vukoman and Uskoković, Dragan and Nedeljković, Jovan",
year = "2008",
abstract = "Silver iodide particles were synthesized in the process of ultrasonic spray pyrolysis using aqueous solutions of thermodynamically stable silver iodide clusters as precursor. The AgI particles were collected in solvents of different polarities such as water, 2-propanol and toluene. In order to study influence of solvent and aging time on the morphological and structural properties of the AgI particles ultra-filtration was employed to isolate solid material from solution. The scanning electron microscopy showed that morphology of the AgI particles is different for different solvents. The AgI particles with hexagonal/triangular shape were obtained in water and toluene, while in 2-propanol hollow spheres were formed. The X-ray diffraction analysis, besides wurtzite hexagonal and zinc blende cubic phases, revealed appearance of tetragonal high-pressure AgI modification for sample collected in toluene and for sample aged in 2-propanol. The aging in toluene induced transformation of all three modifications into single phase with one preferred orientation. (c) 2007 Elsevier B.V. All rights reserved.",
journal = "Materials Chemistry and Physics",
title = "Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis",
pages = "28-32",
volume = "107",
number = "1",
doi = "10.1016/j.matchemphys.2007.06.035",
url = "https://hdl.handle.net/21.15107/rcub_dais_3280"
}
Validžić, I., Jokanović, V., Uskoković, D.,& Nedeljković, J.. (2008). Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis. in Materials Chemistry and Physics, 107(1), 28-32.
https://doi.org/10.1016/j.matchemphys.2007.06.035
https://hdl.handle.net/21.15107/rcub_dais_3280
Validžić I, Jokanović V, Uskoković D, Nedeljković J. Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis. in Materials Chemistry and Physics. 2008;107(1):28-32.
doi:10.1016/j.matchemphys.2007.06.035
https://hdl.handle.net/21.15107/rcub_dais_3280 .
Validžić, Ivana, Jokanović, Vukoman, Uskoković, Dragan, Nedeljković, Jovan, "Influence of solvent on the structural and morphological properties of AgI particles prepared using ultrasonic spray pyrolysis" in Materials Chemistry and Physics, 107, no. 1 (2008):28-32,
https://doi.org/10.1016/j.matchemphys.2007.06.035 .,
https://hdl.handle.net/21.15107/rcub_dais_3280 .
21
21
22