Paunović, Vesna

Link to this page

Authority KeyName Variants
296799c4-04ca-400e-997d-5096e3fabbbd
  • Paunović, Vesna (90)
Projects

Author's Bibliography

Graph theory applied to microelectronics intergranular relations

Mitić, Vojislav V.; Lazović, Goran; Ranđelović, Branislav; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(Taylor & Francis Group, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Ranđelović, Branislav
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12090
AB  - The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.
PB  - Taylor & Francis Group
T2  - Ferroelectrics
T1  - Graph theory applied to microelectronics intergranular relations
SP  - 145
EP  - 152
VL  - 570
IS  - 1
DO  - 10.1080/00150193.2020.1839265
UR  - https://hdl.handle.net/21.15107/rcub_dais_12090
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Ranđelović, Branislav and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2021",
abstract = "The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.",
publisher = "Taylor & Francis Group",
journal = "Ferroelectrics",
title = "Graph theory applied to microelectronics intergranular relations",
pages = "145-152",
volume = "570",
number = "1",
doi = "10.1080/00150193.2020.1839265",
url = "https://hdl.handle.net/21.15107/rcub_dais_12090"
}
Mitić, V. V., Lazović, G., Ranđelović, B., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B.. (2021). Graph theory applied to microelectronics intergranular relations. in Ferroelectrics
Taylor & Francis Group., 570(1), 145-152.
https://doi.org/10.1080/00150193.2020.1839265
https://hdl.handle.net/21.15107/rcub_dais_12090
Mitić VV, Lazović G, Ranđelović B, Paunović V, Radović I, Stajčić A, Vlahović B. Graph theory applied to microelectronics intergranular relations. in Ferroelectrics. 2021;570(1):145-152.
doi:10.1080/00150193.2020.1839265
https://hdl.handle.net/21.15107/rcub_dais_12090 .
Mitić, Vojislav V., Lazović, Goran, Ranđelović, Branislav, Paunović, Vesna, Radović, Ivana, Stajčić, Aleksandar, Vlahović, Branislav, "Graph theory applied to microelectronics intergranular relations" in Ferroelectrics, 570, no. 1 (2021):145-152,
https://doi.org/10.1080/00150193.2020.1839265 .,
https://hdl.handle.net/21.15107/rcub_dais_12090 .
3
3
4

The ceramics materials density defined by artificial neural networks

Ribar, Srđan; Mitić, Vojislav V.; Ranđelović, Branislav; Milošević, Dušan; Paunović, Vesna; Fecht, Hans-Jörg; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Ribar, Srđan
AU  - Mitić, Vojislav V.
AU  - Ranđelović, Branislav
AU  - Milošević, Dušan
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11909
AB  - Predicting the ceramic materials properties and designing the desired microstructures characteristics are very important objectives in ceramic samples consolidating process. The goal of our research is to calculate the density within consolidated BaTiO3-ceramic samples for different consolidation parameters, like sintering temperature, using obtained experimental data from the material’s surface, by applying back propagation neural network (BP). This method, as a very powerful tool, provides the possibility to calculate the exact values of desired microelectronic parameter at the level of the grains’ coating layers. The artificial neural networks, which have biomimetic similarities with biological neural networks, propagate the input signal forward, unlike the output signal, designated as error, which is propagated backwards spreading throughout the whole network, from output to input neuron layers. Between these two neuron layers, there are usually one or more hidden layers, where the grains of the sintered material are represented by network neurons. Adjustable coefficients, called weights, are forward propagated, like input signals, but they modify the calculated output error, so the neural network training procedure is necessary for reducing the error. Different consolidated samples density values, measured on the bulk, substituted the errors, which are calculated as contribution of all network elements, thus enabling the density calculation of all constituents of ceramic structure presented by neural network. In our future research we plan to increase the number of neurons and hidden layers in order to improve this method to become even more accurate and precise.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - The ceramics materials density defined by artificial neural networks
SP  - 42
EP  - 42
UR  - https://hdl.handle.net/21.15107/rcub_dais_11909
ER  - 
@conference{
author = "Ribar, Srđan and Mitić, Vojislav V. and Ranđelović, Branislav and Milošević, Dušan and Paunović, Vesna and Fecht, Hans-Jörg and Vlahović, Branislav",
year = "2021",
abstract = "Predicting the ceramic materials properties and designing the desired microstructures characteristics are very important objectives in ceramic samples consolidating process. The goal of our research is to calculate the density within consolidated BaTiO3-ceramic samples for different consolidation parameters, like sintering temperature, using obtained experimental data from the material’s surface, by applying back propagation neural network (BP). This method, as a very powerful tool, provides the possibility to calculate the exact values of desired microelectronic parameter at the level of the grains’ coating layers. The artificial neural networks, which have biomimetic similarities with biological neural networks, propagate the input signal forward, unlike the output signal, designated as error, which is propagated backwards spreading throughout the whole network, from output to input neuron layers. Between these two neuron layers, there are usually one or more hidden layers, where the grains of the sintered material are represented by network neurons. Adjustable coefficients, called weights, are forward propagated, like input signals, but they modify the calculated output error, so the neural network training procedure is necessary for reducing the error. Different consolidated samples density values, measured on the bulk, substituted the errors, which are calculated as contribution of all network elements, thus enabling the density calculation of all constituents of ceramic structure presented by neural network. In our future research we plan to increase the number of neurons and hidden layers in order to improve this method to become even more accurate and precise.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "The ceramics materials density defined by artificial neural networks",
pages = "42-42",
url = "https://hdl.handle.net/21.15107/rcub_dais_11909"
}
Ribar, S., Mitić, V. V., Ranđelović, B., Milošević, D., Paunović, V., Fecht, H.,& Vlahović, B.. (2021). The ceramics materials density defined by artificial neural networks. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 42-42.
https://hdl.handle.net/21.15107/rcub_dais_11909
Ribar S, Mitić VV, Ranđelović B, Milošević D, Paunović V, Fecht H, Vlahović B. The ceramics materials density defined by artificial neural networks. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:42-42.
https://hdl.handle.net/21.15107/rcub_dais_11909 .
Ribar, Srđan, Mitić, Vojislav V., Ranđelović, Branislav, Milošević, Dušan, Paunović, Vesna, Fecht, Hans-Jörg, Vlahović, Branislav, "The ceramics materials density defined by artificial neural networks" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):42-42,
https://hdl.handle.net/21.15107/rcub_dais_11909 .

Magnetic materials, Curie-Weiss law and fractal correction

Mitić, Vojislav V.; Serpa, Cristina; Stajčić, Aleksandar; Khamoushi, Kouros; Paunović, Vesna; Aleksić, Sanja; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Serpa, Cristina
AU  - Stajčić, Aleksandar
AU  - Khamoushi, Kouros
AU  - Paunović, Vesna
AU  - Aleksić, Sanja
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11907
AB  - Neodymium zinc titanate (NZT) is a very attractive perovskite due to its magnetic and dielectric properties. Considering the microstructure influence NZT stability and performance, it is of great importance to establish an approach for the analysis and prediction of grain boundary phenomena. The fractal nature analysis has already proved to be valuable for the reconstruction and prediction of ceramics intergranular electrical properties. However, no researches were performed on the fractal analysis applied on magnetic materials. This method could give an insight in magnetic properties change from the bulk to the grain interface level. In this study, fractal analysis was applied for the Curie-Weiss law correction, introducing fractal correction into magnetic materials for the first time. NZT powders used in this research for fractal analysis were obtained after sintering at different temperatures in the range from 1450°C to 1675°C.Connection between the microstructure fractal nature and the resulting magnetic permeability has been established, enabling the application on different magnetic materials in the future. This creates a foundation for new researches that will lead to further miniaturization of satellite and mobile devices.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Magnetic materials, Curie-Weiss law and fractal correction
SP  - 46
EP  - 46
UR  - https://hdl.handle.net/21.15107/rcub_dais_11907
ER  - 
@conference{
author = "Mitić, Vojislav V. and Serpa, Cristina and Stajčić, Aleksandar and Khamoushi, Kouros and Paunović, Vesna and Aleksić, Sanja and Vlahović, Branislav",
year = "2021",
abstract = "Neodymium zinc titanate (NZT) is a very attractive perovskite due to its magnetic and dielectric properties. Considering the microstructure influence NZT stability and performance, it is of great importance to establish an approach for the analysis and prediction of grain boundary phenomena. The fractal nature analysis has already proved to be valuable for the reconstruction and prediction of ceramics intergranular electrical properties. However, no researches were performed on the fractal analysis applied on magnetic materials. This method could give an insight in magnetic properties change from the bulk to the grain interface level. In this study, fractal analysis was applied for the Curie-Weiss law correction, introducing fractal correction into magnetic materials for the first time. NZT powders used in this research for fractal analysis were obtained after sintering at different temperatures in the range from 1450°C to 1675°C.Connection between the microstructure fractal nature and the resulting magnetic permeability has been established, enabling the application on different magnetic materials in the future. This creates a foundation for new researches that will lead to further miniaturization of satellite and mobile devices.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Magnetic materials, Curie-Weiss law and fractal correction",
pages = "46-46",
url = "https://hdl.handle.net/21.15107/rcub_dais_11907"
}
Mitić, V. V., Serpa, C., Stajčić, A., Khamoushi, K., Paunović, V., Aleksić, S.,& Vlahović, B.. (2021). Magnetic materials, Curie-Weiss law and fractal correction. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 46-46.
https://hdl.handle.net/21.15107/rcub_dais_11907
Mitić VV, Serpa C, Stajčić A, Khamoushi K, Paunović V, Aleksić S, Vlahović B. Magnetic materials, Curie-Weiss law and fractal correction. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:46-46.
https://hdl.handle.net/21.15107/rcub_dais_11907 .
Mitić, Vojislav V., Serpa, Cristina, Stajčić, Aleksandar, Khamoushi, Kouros, Paunović, Vesna, Aleksić, Sanja, Vlahović, Branislav, "Magnetic materials, Curie-Weiss law and fractal correction" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):46-46,
https://hdl.handle.net/21.15107/rcub_dais_11907 .

Analyses of the surface parameters in polycrystalline diamonds

Veljković, Sandra; Mitić, Vojislav V.; Paunović, Vesna; Lazović, Goran; Mohr, Marcus; Fecht, Hans

(Čačak : University of Kragujevac, Faculty of Technical Sciences, 2020)

TY  - JOUR
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Paunović, Vesna
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Fecht, Hans
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10046
AB  - There is a progressing interests for polycrystalline diamonds and they have been more extensively used recently. This area has been intensively researched due to the outstanding potential of this material, and this necessitated presenting some of the latest application related to engineering in this paper. A better insight of polycrystalline diamonds properties can be achieved by intensively researching the surface structure. Samples of nanocrystalline diamonds grown by the chemical vapor deposition method are analyzed and accordingly, the focus of the research was the surface parameters and their structure. It is observed that waviness and texture are unique for any direction, their values are almost the same for the chosen directions and they vary approximately from -0.2 nm to 0.4 nm. Analyses of the parameters allowed a more detailed insight into the morphology of the surfaces of polycrystalline films.
PB  - Čačak : University of Kragujevac, Faculty of Technical Sciences
T2  - Serbian Journal of Electrical Engineering
T1  - Analyses of the surface parameters in polycrystalline diamonds
SP  - 111
EP  - 129
VL  - 17
IS  - 1
DO  - 10.2298/SJEE2001111V
UR  - https://hdl.handle.net/21.15107/rcub_dais_10046
ER  - 
@article{
author = "Veljković, Sandra and Mitić, Vojislav V. and Paunović, Vesna and Lazović, Goran and Mohr, Marcus and Fecht, Hans",
year = "2020",
abstract = "There is a progressing interests for polycrystalline diamonds and they have been more extensively used recently. This area has been intensively researched due to the outstanding potential of this material, and this necessitated presenting some of the latest application related to engineering in this paper. A better insight of polycrystalline diamonds properties can be achieved by intensively researching the surface structure. Samples of nanocrystalline diamonds grown by the chemical vapor deposition method are analyzed and accordingly, the focus of the research was the surface parameters and their structure. It is observed that waviness and texture are unique for any direction, their values are almost the same for the chosen directions and they vary approximately from -0.2 nm to 0.4 nm. Analyses of the parameters allowed a more detailed insight into the morphology of the surfaces of polycrystalline films.",
publisher = "Čačak : University of Kragujevac, Faculty of Technical Sciences",
journal = "Serbian Journal of Electrical Engineering",
title = "Analyses of the surface parameters in polycrystalline diamonds",
pages = "111-129",
volume = "17",
number = "1",
doi = "10.2298/SJEE2001111V",
url = "https://hdl.handle.net/21.15107/rcub_dais_10046"
}
Veljković, S., Mitić, V. V., Paunović, V., Lazović, G., Mohr, M.,& Fecht, H.. (2020). Analyses of the surface parameters in polycrystalline diamonds. in Serbian Journal of Electrical Engineering
Čačak : University of Kragujevac, Faculty of Technical Sciences., 17(1), 111-129.
https://doi.org/10.2298/SJEE2001111V
https://hdl.handle.net/21.15107/rcub_dais_10046
Veljković S, Mitić VV, Paunović V, Lazović G, Mohr M, Fecht H. Analyses of the surface parameters in polycrystalline diamonds. in Serbian Journal of Electrical Engineering. 2020;17(1):111-129.
doi:10.2298/SJEE2001111V
https://hdl.handle.net/21.15107/rcub_dais_10046 .
Veljković, Sandra, Mitić, Vojislav V., Paunović, Vesna, Lazović, Goran, Mohr, Marcus, Fecht, Hans, "Analyses of the surface parameters in polycrystalline diamonds" in Serbian Journal of Electrical Engineering, 17, no. 1 (2020):111-129,
https://doi.org/10.2298/SJEE2001111V .,
https://hdl.handle.net/21.15107/rcub_dais_10046 .

Structure and Properties of Nanocrystalline Tetragonal BaTiO3 Prepared by Combustion Solid State Synthesis

Filipović, Suzana; Anđelković, Ljubica; Jeremić, Dejan; Vulić, Predrag; Nikolić, Aleksandar; Marković, Smilja; Paunović, Vesna; Lević, Steva; Pavlović, Vladimir B.

(Belgrade : ETRAN, 2020)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Anđelković, Ljubica
AU  - Jeremić, Dejan
AU  - Vulić, Predrag
AU  - Nikolić, Aleksandar
AU  - Marković, Smilja
AU  - Paunović, Vesna
AU  - Lević, Steva
AU  - Pavlović, Vladimir B.
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/9449
AB  - Barium titanate (BaTiO3) attracts high scientific and technological attention due to good dielectric and electromechanical properties. Although BaTiO3 is one of the most frequently investigated ferroelectric materials, the need for finding new and/or improved synthesis methods of this material still exists. In this paper, a novel, mild synthesis route for producing tetragonal BaTiO3 from barium nitrate and Ti-oxalate precursor is presented. Morphology of the prepared and subsequently sintered BaTiO3 was determined by SEM. Particle size distribution of the as prepared powder was monitored by the laser diffraction. The phase composition, structure and lattice dynamics were investigated by XRD and Raman spectroscopy. Finally, dielectric parameters were determined in the temperature range from 30 to 180 degrees C, and within a variety of frequencies. Curie temperature was detected at 130 degrees C.
PB  - Belgrade : ETRAN
T2  - Science of Sintering
T1  - Structure and Properties of Nanocrystalline Tetragonal BaTiO3 Prepared by Combustion Solid State Synthesis
SP  - 257
EP  - 268
VL  - 52
DO  - 10.2298/SOS2003257F
UR  - https://hdl.handle.net/21.15107/rcub_dais_9449
ER  - 
@article{
author = "Filipović, Suzana and Anđelković, Ljubica and Jeremić, Dejan and Vulić, Predrag and Nikolić, Aleksandar and Marković, Smilja and Paunović, Vesna and Lević, Steva and Pavlović, Vladimir B.",
year = "2020",
abstract = "Barium titanate (BaTiO3) attracts high scientific and technological attention due to good dielectric and electromechanical properties. Although BaTiO3 is one of the most frequently investigated ferroelectric materials, the need for finding new and/or improved synthesis methods of this material still exists. In this paper, a novel, mild synthesis route for producing tetragonal BaTiO3 from barium nitrate and Ti-oxalate precursor is presented. Morphology of the prepared and subsequently sintered BaTiO3 was determined by SEM. Particle size distribution of the as prepared powder was monitored by the laser diffraction. The phase composition, structure and lattice dynamics were investigated by XRD and Raman spectroscopy. Finally, dielectric parameters were determined in the temperature range from 30 to 180 degrees C, and within a variety of frequencies. Curie temperature was detected at 130 degrees C.",
publisher = "Belgrade : ETRAN",
journal = "Science of Sintering",
title = "Structure and Properties of Nanocrystalline Tetragonal BaTiO3 Prepared by Combustion Solid State Synthesis",
pages = "257-268",
volume = "52",
doi = "10.2298/SOS2003257F",
url = "https://hdl.handle.net/21.15107/rcub_dais_9449"
}
Filipović, S., Anđelković, L., Jeremić, D., Vulić, P., Nikolić, A., Marković, S., Paunović, V., Lević, S.,& Pavlović, V. B.. (2020). Structure and Properties of Nanocrystalline Tetragonal BaTiO3 Prepared by Combustion Solid State Synthesis. in Science of Sintering
Belgrade : ETRAN., 52, 257-268.
https://doi.org/10.2298/SOS2003257F
https://hdl.handle.net/21.15107/rcub_dais_9449
Filipović S, Anđelković L, Jeremić D, Vulić P, Nikolić A, Marković S, Paunović V, Lević S, Pavlović VB. Structure and Properties of Nanocrystalline Tetragonal BaTiO3 Prepared by Combustion Solid State Synthesis. in Science of Sintering. 2020;52:257-268.
doi:10.2298/SOS2003257F
https://hdl.handle.net/21.15107/rcub_dais_9449 .
Filipović, Suzana, Anđelković, Ljubica, Jeremić, Dejan, Vulić, Predrag, Nikolić, Aleksandar, Marković, Smilja, Paunović, Vesna, Lević, Steva, Pavlović, Vladimir B., "Structure and Properties of Nanocrystalline Tetragonal BaTiO3 Prepared by Combustion Solid State Synthesis" in Science of Sintering, 52 (2020):257-268,
https://doi.org/10.2298/SOS2003257F .,
https://hdl.handle.net/21.15107/rcub_dais_9449 .

The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers

Mitić, Vojislav V.; Lazović, Goran; Lu, Chun-An; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(Basel : MDPI, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Lu, Chun-An
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/8957
AB  - The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated at a sintering temperature of 1350 °C. Within the study, the new frontiers for different electronic properties between the layers of BaTiO3 grains have been introduced. The research target was grain boundary investigations and the influence on dielectric properties. After scanning electron microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with larger grains showed a better compact state that led to a higher dielectric constant value. DC bias stability was also investigated and showed a connection between the grain size and capacitance stability. Analyses of functions that could approximate experimental curves were successfully employed. Practical application of fractal corrections was performed, based on surface (αs) and pore size (αp) corrections, which resulted in obtainment of the relation between the capacitance and Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature dependence for a set of experimental data is an important step towards further miniaturization of intergranular capacitors. © 2020 by the authors.
PB  - Basel : MDPI
T2  - Applied Sciences (Switzerland)
T1  - The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers
SP  - 3485
VL  - 10
IS  - 10
DO  - 10.3390/app10103485
UR  - https://hdl.handle.net/21.15107/rcub_dais_8957
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Lu, Chun-An and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2020",
abstract = "The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated at a sintering temperature of 1350 °C. Within the study, the new frontiers for different electronic properties between the layers of BaTiO3 grains have been introduced. The research target was grain boundary investigations and the influence on dielectric properties. After scanning electron microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with larger grains showed a better compact state that led to a higher dielectric constant value. DC bias stability was also investigated and showed a connection between the grain size and capacitance stability. Analyses of functions that could approximate experimental curves were successfully employed. Practical application of fractal corrections was performed, based on surface (αs) and pore size (αp) corrections, which resulted in obtainment of the relation between the capacitance and Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature dependence for a set of experimental data is an important step towards further miniaturization of intergranular capacitors. © 2020 by the authors.",
publisher = "Basel : MDPI",
journal = "Applied Sciences (Switzerland)",
title = "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers",
pages = "3485",
volume = "10",
number = "10",
doi = "10.3390/app10103485",
url = "https://hdl.handle.net/21.15107/rcub_dais_8957"
}
Mitić, V. V., Lazović, G., Lu, C., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B.. (2020). The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. in Applied Sciences (Switzerland)
Basel : MDPI., 10(10), 3485.
https://doi.org/10.3390/app10103485
https://hdl.handle.net/21.15107/rcub_dais_8957
Mitić VV, Lazović G, Lu C, Paunović V, Radović I, Stajčić A, Vlahović B. The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. in Applied Sciences (Switzerland). 2020;10(10):3485.
doi:10.3390/app10103485
https://hdl.handle.net/21.15107/rcub_dais_8957 .
Mitić, Vojislav V., Lazović, Goran, Lu, Chun-An, Paunović, Vesna, Radović, Ivana, Stajčić, Aleksandar, Vlahović, Branislav, "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers" in Applied Sciences (Switzerland), 10, no. 10 (2020):3485,
https://doi.org/10.3390/app10103485 .,
https://hdl.handle.net/21.15107/rcub_dais_8957 .
2
2

Niobium doping effect on BaTiO3 structure and dielectric properties

Paunović, Vesna; Mitić, Vojislav V.; Đorđević, M.; Prijić, Z.

(Elsevier, 2020)

TY  - JOUR
AU  - Paunović, Vesna
AU  - Mitić, Vojislav V.
AU  - Đorđević, M.
AU  - Prijić, Z.
PY  - 2020
UR  - http://www.sciencedirect.com/science/article/pii/S0272884219335205
UR  - https://dais.sanu.ac.rs/123456789/8964
AB  - The effect of Nb on the microstructure and dielectric properties of BaTiO3 ceramics was investigated. The Nb/Mn–BaTiO3 ceramics were prepared using a conventional solid-state method. The concentration of Nb varied from 0.1 to 5.0 at% but Mn was fixed at 0.05 at%. The SEM indicated that compositions of 0.1 and 0.5 at% Nb displayed a fairly uniform microstructure and homogeneous distribution of additives, with a grain size of less than 2 μm. In highly doped samples a wide range of microstructural features was observed, from homogeneous and completely fine-grained microstructure to the appearance of secondary abnormal grains with core-shell structure. The dielectric constant and the loss tangent of modified ceramics were measured as a function of temperature (20–180 °C) and frequency (100 Hz-1MHz) for different concentrations of additives. The obtained results have shown that the dielectric constant at, both, room temperature (εr) and Curie temperature (εrmax), decreased as the concentration of Nb5+ increased. Thus, the highest values for the dielectric constant at room temperature (εr = 6648) as well as at Curie temperature (εrmax = 7680) were measured for the 0.1Nb/Mn–BaTiO3 samples sintered at 1350 °C. The highly doped BaTiO3 ceramics were found to exhibit lower values of the dielectric constant and low dielectric losses at room temperature. In these samples, stable dielectric permittivity with a flat dielectric behavior over a wide temperature range is observed. The Curie constant for all series of samples decreases with an increase of dopant concentration and the highest values were measured from samples doped with 0.1 at% Nb. The effect of additives on the Curie constant change is more pronounced at higher sintering temperatures. The analysis of the critical nonlinearity exponent (γ = 1.07–1.27), for lower dopant concentrations, shows a sharp phase transformation. For samples with increased Nb content, the degree of nonlinearity γ is higher indicating a diffuse phase transformation.
PB  - Elsevier
T2  - Ceramics International
T1  - Niobium doping effect on BaTiO3 structure and dielectric properties
SP  - 8154
EP  - 8164
VL  - 46
IS  - 6
DO  - 10.1016/j.ceramint.2019.12.043
UR  - https://hdl.handle.net/21.15107/rcub_dais_8964
ER  - 
@article{
author = "Paunović, Vesna and Mitić, Vojislav V. and Đorđević, M. and Prijić, Z.",
year = "2020",
abstract = "The effect of Nb on the microstructure and dielectric properties of BaTiO3 ceramics was investigated. The Nb/Mn–BaTiO3 ceramics were prepared using a conventional solid-state method. The concentration of Nb varied from 0.1 to 5.0 at% but Mn was fixed at 0.05 at%. The SEM indicated that compositions of 0.1 and 0.5 at% Nb displayed a fairly uniform microstructure and homogeneous distribution of additives, with a grain size of less than 2 μm. In highly doped samples a wide range of microstructural features was observed, from homogeneous and completely fine-grained microstructure to the appearance of secondary abnormal grains with core-shell structure. The dielectric constant and the loss tangent of modified ceramics were measured as a function of temperature (20–180 °C) and frequency (100 Hz-1MHz) for different concentrations of additives. The obtained results have shown that the dielectric constant at, both, room temperature (εr) and Curie temperature (εrmax), decreased as the concentration of Nb5+ increased. Thus, the highest values for the dielectric constant at room temperature (εr = 6648) as well as at Curie temperature (εrmax = 7680) were measured for the 0.1Nb/Mn–BaTiO3 samples sintered at 1350 °C. The highly doped BaTiO3 ceramics were found to exhibit lower values of the dielectric constant and low dielectric losses at room temperature. In these samples, stable dielectric permittivity with a flat dielectric behavior over a wide temperature range is observed. The Curie constant for all series of samples decreases with an increase of dopant concentration and the highest values were measured from samples doped with 0.1 at% Nb. The effect of additives on the Curie constant change is more pronounced at higher sintering temperatures. The analysis of the critical nonlinearity exponent (γ = 1.07–1.27), for lower dopant concentrations, shows a sharp phase transformation. For samples with increased Nb content, the degree of nonlinearity γ is higher indicating a diffuse phase transformation.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Niobium doping effect on BaTiO3 structure and dielectric properties",
pages = "8154-8164",
volume = "46",
number = "6",
doi = "10.1016/j.ceramint.2019.12.043",
url = "https://hdl.handle.net/21.15107/rcub_dais_8964"
}
Paunović, V., Mitić, V. V., Đorđević, M.,& Prijić, Z.. (2020). Niobium doping effect on BaTiO3 structure and dielectric properties. in Ceramics International
Elsevier., 46(6), 8154-8164.
https://doi.org/10.1016/j.ceramint.2019.12.043
https://hdl.handle.net/21.15107/rcub_dais_8964
Paunović V, Mitić VV, Đorđević M, Prijić Z. Niobium doping effect on BaTiO3 structure and dielectric properties. in Ceramics International. 2020;46(6):8154-8164.
doi:10.1016/j.ceramint.2019.12.043
https://hdl.handle.net/21.15107/rcub_dais_8964 .
Paunović, Vesna, Mitić, Vojislav V., Đorđević, M., Prijić, Z., "Niobium doping effect on BaTiO3 structure and dielectric properties" in Ceramics International, 46, no. 6 (2020):8154-8164,
https://doi.org/10.1016/j.ceramint.2019.12.043 .,
https://hdl.handle.net/21.15107/rcub_dais_8964 .
5
5

Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis

Mitić, Vojislav V.; Veljković, Vlada B.; Lazović, Goran; Mohr, Marcus; Gluche, Peter; Paunović, Vesna; Fecht, Hans-Jörg

(Societa ceramica italiana, 2019)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Veljković, Vlada B.
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Gluche, Peter
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7024
AB  - Improvement of novel materials could be very good development base for enhancement of new technologies. One of the most promising material of modern science is undoubtedly synthesized diamond. Because of variety of modern applications, the research in this area is becoming intensive. Utilization of this material made great step forward in many areas, beside the most known jewelry, also in producing microcomponents, in medical-surgery, as well as in high professional industry. These and others specific application of polycrystal diamonds, require permanently research and improvement of their properties. Although, the first synthesized diamond was created half a century ago using high pressure - high temperature (HPHT) method, diamonds created by chemical vapor deposition (CVD) method were much more convenient for application in so many areas. By applying CVD method, microcrystalline diamond (MCD) with grain size approximately 100 nm were created. Due to some disadvantages of MCD films, like values of hardness and Young’s modulus, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, with average grains size of 5-100 nm and 3-5 nm, respectively. The properties of polycrystalline diamonds can vary depending on the consolidation process like composition and pressure of applied gases, filament setup and reactor geometry. In that sense, changing the parameters of consolidation process, there is a possibility to change the microstructure of thin films and understanding its fundamentals. Also, fractal nature analysis could contribute to the revealing possibilities for improvement of polycrystalline diamond films. During carried out experiments, it was observed that there is the influence of grain size on thermal and electrical conductivity - when the thermal conductivity is increasing then electro conductivity is decreasing and opposite. Relation between the structures and final properties of synthetized diamonds can be achieved by explaining these phenomena based on fractal nature.
PB  - Societa ceramica italiana
PB  - Politecnico di Torino
C3  - Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019
T1  - Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis
SP  - 672
EP  - 672
UR  - https://hdl.handle.net/21.15107/rcub_dais_7024
ER  - 
@conference{
author = "Mitić, Vojislav V. and Veljković, Vlada B. and Lazović, Goran and Mohr, Marcus and Gluche, Peter and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2019",
abstract = "Improvement of novel materials could be very good development base for enhancement of new technologies. One of the most promising material of modern science is undoubtedly synthesized diamond. Because of variety of modern applications, the research in this area is becoming intensive. Utilization of this material made great step forward in many areas, beside the most known jewelry, also in producing microcomponents, in medical-surgery, as well as in high professional industry. These and others specific application of polycrystal diamonds, require permanently research and improvement of their properties. Although, the first synthesized diamond was created half a century ago using high pressure - high temperature (HPHT) method, diamonds created by chemical vapor deposition (CVD) method were much more convenient for application in so many areas. By applying CVD method, microcrystalline diamond (MCD) with grain size approximately 100 nm were created. Due to some disadvantages of MCD films, like values of hardness and Young’s modulus, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, with average grains size of 5-100 nm and 3-5 nm, respectively. The properties of polycrystalline diamonds can vary depending on the consolidation process like composition and pressure of applied gases, filament setup and reactor geometry. In that sense, changing the parameters of consolidation process, there is a possibility to change the microstructure of thin films and understanding its fundamentals. Also, fractal nature analysis could contribute to the revealing possibilities for improvement of polycrystalline diamond films. During carried out experiments, it was observed that there is the influence of grain size on thermal and electrical conductivity - when the thermal conductivity is increasing then electro conductivity is decreasing and opposite. Relation between the structures and final properties of synthetized diamonds can be achieved by explaining these phenomena based on fractal nature.",
publisher = "Societa ceramica italiana, Politecnico di Torino",
journal = "Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019",
title = "Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis",
pages = "672-672",
url = "https://hdl.handle.net/21.15107/rcub_dais_7024"
}
Mitić, V. V., Veljković, V. B., Lazović, G., Mohr, M., Gluche, P., Paunović, V.,& Fecht, H.. (2019). Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis. in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019
Societa ceramica italiana., 672-672.
https://hdl.handle.net/21.15107/rcub_dais_7024
Mitić VV, Veljković VB, Lazović G, Mohr M, Gluche P, Paunović V, Fecht H. Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis. in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019. 2019;:672-672.
https://hdl.handle.net/21.15107/rcub_dais_7024 .
Mitić, Vojislav V., Veljković, Vlada B., Lazović, Goran, Mohr, Marcus, Gluche, Peter, Paunović, Vesna, Fecht, Hans-Jörg, "Modeling the thermal and electrical conductivity relation of synthesized diamonds within fractal nature analysis" in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019 (2019):672-672,
https://hdl.handle.net/21.15107/rcub_dais_7024 .

The structure analysis methods for synthetized diamonds consolidation and fractals characterization

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Mohr, Marcus; Fecht, Hans-Jörg

(Belgrade : Serbian Society for Microscopy, 2019)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Mohr, Marcus
AU  - Fecht, Hans-Jörg
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7015
AB  - Synthetized diamonds have application in many areas, especially for electronic devices and components or mechanisms in watches, and medicine where they can be used for surgery knifes. Considering that for small grains is commonly known that atomic structure of grain size has strong impact on structural characteristics of synthetized diamonds, research of fractal nature of
microstructure of diamond films can have very important role in optimization of properties of these films. Regarding these processes, it was applied several characterization methods like SEM, EDS. These data were prepared and used as a source for fractal analysis application. Fractal theory can help in explanation of systems in which, at first sight, roles chaos. For that reason, fractal analysis can be applied on surface topology of synthesized diamonds and during the process of characterization of grains morphology. Thin films of diamonds, which are examined, are formed in chemical vapor deposition or CVD process. Aldo in some implementations is desirable to reduce the grain size, it can bring to the reducing the hardness of ultra-nanocrystalline or UNCD thin films. Because of that, it is very important to find the optimum between smooth surfaces from one side and hardness from the other side in order to create contact which is resistant to wear. Diameter of grain and their fractal geometry are very important microstructural characteristics. which have strong influence on all physical and chemical characteristics. In this paper, the goal is development of more accurate models which describe transportation and mechanical properties of polycrystalline diamonds.
PB  - Belgrade : Serbian Society for Microscopy
PB  - Belgrade : Institute for Biological Research "Siniša Stanković"
C3  - MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]
T1  - The structure analysis methods for synthetized diamonds consolidation and fractals characterization
SP  - 380
EP  - 380
UR  - https://hdl.handle.net/21.15107/rcub_dais_7015
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Mohr, Marcus and Fecht, Hans-Jörg",
year = "2019",
abstract = "Synthetized diamonds have application in many areas, especially for electronic devices and components or mechanisms in watches, and medicine where they can be used for surgery knifes. Considering that for small grains is commonly known that atomic structure of grain size has strong impact on structural characteristics of synthetized diamonds, research of fractal nature of
microstructure of diamond films can have very important role in optimization of properties of these films. Regarding these processes, it was applied several characterization methods like SEM, EDS. These data were prepared and used as a source for fractal analysis application. Fractal theory can help in explanation of systems in which, at first sight, roles chaos. For that reason, fractal analysis can be applied on surface topology of synthesized diamonds and during the process of characterization of grains morphology. Thin films of diamonds, which are examined, are formed in chemical vapor deposition or CVD process. Aldo in some implementations is desirable to reduce the grain size, it can bring to the reducing the hardness of ultra-nanocrystalline or UNCD thin films. Because of that, it is very important to find the optimum between smooth surfaces from one side and hardness from the other side in order to create contact which is resistant to wear. Diameter of grain and their fractal geometry are very important microstructural characteristics. which have strong influence on all physical and chemical characteristics. In this paper, the goal is development of more accurate models which describe transportation and mechanical properties of polycrystalline diamonds.",
publisher = "Belgrade : Serbian Society for Microscopy, Belgrade : Institute for Biological Research "Siniša Stanković"",
journal = "MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]",
title = "The structure analysis methods for synthetized diamonds consolidation and fractals characterization",
pages = "380-380",
url = "https://hdl.handle.net/21.15107/rcub_dais_7015"
}
Veljković, S., Mitić, V. V., Lazović, G., Paunović, V., Mohr, M.,& Fecht, H.. (2019). The structure analysis methods for synthetized diamonds consolidation and fractals characterization. in MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]
Belgrade : Serbian Society for Microscopy., 380-380.
https://hdl.handle.net/21.15107/rcub_dais_7015
Veljković S, Mitić VV, Lazović G, Paunović V, Mohr M, Fecht H. The structure analysis methods for synthetized diamonds consolidation and fractals characterization. in MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]. 2019;:380-380.
https://hdl.handle.net/21.15107/rcub_dais_7015 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Mohr, Marcus, Fecht, Hans-Jörg, "The structure analysis methods for synthetized diamonds consolidation and fractals characterization" in MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia] (2019):380-380,
https://hdl.handle.net/21.15107/rcub_dais_7015 .

Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries

Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Veljković, Sandra; Ranđelović, Branislav; Vlahović, Branislav; Fecht, Hans

(Taylor & Francis, 2019)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
AU  - Fecht, Hans
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6686
AB  - Consolidation parameters have influence and can be used to control structure of BaTiO3 based materials. Microstructure and dielectric properties of Yb2O3 doped BaTiO3-ceramics, sintered from 1320 °C to 1380 °C have been investigated. The correlation between microstructure, capacity and dielectric properties of doped BaTiO3-ceramics, based on fractal geometry and micro-contact surfaces, has been developed. Using the fractal descriptors of the grains contact surface, the microstructure reconstruction constituents, as grains and pores shapes or intergranular contacts, has been successfully done. Obtained results indicated that fractal analysis contact surfaces descriptors of different shapes are very important for the prognosis of BaTiO3-ceramics microstructure and capacity and dielectric properties. The morphology of ceramics grains pointed out the validity of developing new structure analytical methods, based on different grains’ shape geometries. The grains contact structure based on Minkowski hull is presented as a new tool for BaTiO3-ceramics materials structure research. The materials properties prognosis are determined according to the correlations synthesis–structure–property, within Minkowski hull fractal frame. © 2019, © 2019 Taylor & Francis Group, LLC.
PB  - Taylor & Francis
T2  - Ferroelectrics
T1  - Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries
SP  - 184
EP  - 194
VL  - 545
IS  - 1
DO  - 10.1080/00150193.2019.1621704
UR  - https://hdl.handle.net/21.15107/rcub_dais_6686
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Veljković, Sandra and Ranđelović, Branislav and Vlahović, Branislav and Fecht, Hans",
year = "2019",
abstract = "Consolidation parameters have influence and can be used to control structure of BaTiO3 based materials. Microstructure and dielectric properties of Yb2O3 doped BaTiO3-ceramics, sintered from 1320 °C to 1380 °C have been investigated. The correlation between microstructure, capacity and dielectric properties of doped BaTiO3-ceramics, based on fractal geometry and micro-contact surfaces, has been developed. Using the fractal descriptors of the grains contact surface, the microstructure reconstruction constituents, as grains and pores shapes or intergranular contacts, has been successfully done. Obtained results indicated that fractal analysis contact surfaces descriptors of different shapes are very important for the prognosis of BaTiO3-ceramics microstructure and capacity and dielectric properties. The morphology of ceramics grains pointed out the validity of developing new structure analytical methods, based on different grains’ shape geometries. The grains contact structure based on Minkowski hull is presented as a new tool for BaTiO3-ceramics materials structure research. The materials properties prognosis are determined according to the correlations synthesis–structure–property, within Minkowski hull fractal frame. © 2019, © 2019 Taylor & Francis Group, LLC.",
publisher = "Taylor & Francis",
journal = "Ferroelectrics",
title = "Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries",
pages = "184-194",
volume = "545",
number = "1",
doi = "10.1080/00150193.2019.1621704",
url = "https://hdl.handle.net/21.15107/rcub_dais_6686"
}
Mitić, V. V., Lazović, G., Paunović, V., Veljković, S., Ranđelović, B., Vlahović, B.,& Fecht, H.. (2019). Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries. in Ferroelectrics
Taylor & Francis., 545(1), 184-194.
https://doi.org/10.1080/00150193.2019.1621704
https://hdl.handle.net/21.15107/rcub_dais_6686
Mitić VV, Lazović G, Paunović V, Veljković S, Ranđelović B, Vlahović B, Fecht H. Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries. in Ferroelectrics. 2019;545(1):184-194.
doi:10.1080/00150193.2019.1621704
https://hdl.handle.net/21.15107/rcub_dais_6686 .
Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Veljković, Sandra, Ranđelović, Branislav, Vlahović, Branislav, Fecht, Hans, "Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries" in Ferroelectrics, 545, no. 1 (2019):184-194,
https://doi.org/10.1080/00150193.2019.1621704 .,
https://hdl.handle.net/21.15107/rcub_dais_6686 .
2
2

The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers

Mitić, Vojislav V.; Lazović, Goran; Lu, Chun-An; Paunović, Vesna; Veljković, Sandra; Fecht, Hans-Jörg; Vlahović, Branislav

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Lu, Chun-An
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Fecht, Hans-Jörg
AU  - Vlahović, Branislav
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6680
AB  - The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 with MOD-Y salts and also on Y2O3. The samples have been consolidated at sintering interval 1200–1350 °C. We demonstrate the new frontiers for different electronic properties between the layers of BaTiO3 grains. As a research target we had GB composite, Nano size metal oxide dispersions, ACDC safety capacitance, nano scale grain boundary control, capacitance, GB control mobility in DC BS operation voltage. We applied all related characterizations and especially SEM. Fractal nature characterization and corrections include influences grains and pores surface and Brownian motions of particles. We established relation with all of this characteristics and temperature. Throw this experiments and results and fractals characterization, we opened new perspectives for higher electronic properties integrations between the grains and practically established the control within the processing, morphological structures and designing the properties. This is very important, new approach towards further miniaturization-fractal miniaturization and related, advanced technologies.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers
SP  - 40
EP  - 40
UR  - https://hdl.handle.net/21.15107/rcub_dais_6680
ER  - 
@conference{
author = "Mitić, Vojislav V. and Lazović, Goran and Lu, Chun-An and Paunović, Vesna and Veljković, Sandra and Fecht, Hans-Jörg and Vlahović, Branislav",
year = "2019",
abstract = "The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 with MOD-Y salts and also on Y2O3. The samples have been consolidated at sintering interval 1200–1350 °C. We demonstrate the new frontiers for different electronic properties between the layers of BaTiO3 grains. As a research target we had GB composite, Nano size metal oxide dispersions, ACDC safety capacitance, nano scale grain boundary control, capacitance, GB control mobility in DC BS operation voltage. We applied all related characterizations and especially SEM. Fractal nature characterization and corrections include influences grains and pores surface and Brownian motions of particles. We established relation with all of this characteristics and temperature. Throw this experiments and results and fractals characterization, we opened new perspectives for higher electronic properties integrations between the grains and practically established the control within the processing, morphological structures and designing the properties. This is very important, new approach towards further miniaturization-fractal miniaturization and related, advanced technologies.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers",
pages = "40-40",
url = "https://hdl.handle.net/21.15107/rcub_dais_6680"
}
Mitić, V. V., Lazović, G., Lu, C., Paunović, V., Veljković, S., Fecht, H.,& Vlahović, B.. (2019). The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 40-40.
https://hdl.handle.net/21.15107/rcub_dais_6680
Mitić VV, Lazović G, Lu C, Paunović V, Veljković S, Fecht H, Vlahović B. The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:40-40.
https://hdl.handle.net/21.15107/rcub_dais_6680 .
Mitić, Vojislav V., Lazović, Goran, Lu, Chun-An, Paunović, Vesna, Veljković, Sandra, Fecht, Hans-Jörg, Vlahović, Branislav, "The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers" in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):40-40,
https://hdl.handle.net/21.15107/rcub_dais_6680 .

BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model

Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Veljković, Sandra; Huang, W. C.; Vlahović, Branislav

(Societa ceramica italiana, 2019)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Huang, W. C.
AU  - Vlahović, Branislav
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7023
AB  - BaTiO3-ceramics is very well known electroceramics material and has a more than 300, now a days, very advanced applications. The atomic structures packed by Euclidian geometry, up to the nano sizes, are not suitable for particles flows and irregular structures. In order to analyze more originally these structures, apply fractal nature approach. There is existing trend in the now a days literature that a wide range of disordered systems can be characterized by the fractal nature over a microscopic correlation length. The modern ceramics science, faces with very important priorities of the future frontiers which opens new directions within higher knowledge structure even down to nano and due to lack of energy, towards new and alternative energy sources. There is a fact, that energy transformations are permitted on a small scale. Through our actual research we recognize that BaTiO3 and other electronics ceramics have fractal configuration nature based on three phenomena. Ceramic grains have fractal shape seeing as a contour in cross section or as a surface; the other one phenomena is related to so called “negative space” made of pores and inter-granular space. The porosity is extremely complex and has very important role in microelectronics, micro-capacity, PTC, piezoelectric and other phenomena. The third, there is Brownian process of fractal motions inside the material, during and after sintering, in the form of micro-particles flow (ions, atoms and electrons). These is important phenomenology based on inter-granular micro-capacity and super micro-capacitors in function of higher energy harvesting and storage. Fractal nature theory allows recognizing micro-capacitors with fractal electrodes. The method is based on iterative process which is compatible with the grains and pores model. In this paper, based on fractals corrected Heywang model, we analyse the electroresistivity as a part of intergranular micro-impedance. Also, we successfully applied the complex fractal correction on thermodynamic parameters, especially the temperature. On this way we continue to open the new fractal nature frontiers within the electro parameters, like elastoresistivity.
PB  - Societa ceramica italiana
PB  - Politecnico di Torino
C3  - Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019
T1  - BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model
SP  - 515
EP  - 515
UR  - https://hdl.handle.net/21.15107/rcub_dais_7023
ER  - 
@conference{
author = "Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Veljković, Sandra and Huang, W. C. and Vlahović, Branislav",
year = "2019",
abstract = "BaTiO3-ceramics is very well known electroceramics material and has a more than 300, now a days, very advanced applications. The atomic structures packed by Euclidian geometry, up to the nano sizes, are not suitable for particles flows and irregular structures. In order to analyze more originally these structures, apply fractal nature approach. There is existing trend in the now a days literature that a wide range of disordered systems can be characterized by the fractal nature over a microscopic correlation length. The modern ceramics science, faces with very important priorities of the future frontiers which opens new directions within higher knowledge structure even down to nano and due to lack of energy, towards new and alternative energy sources. There is a fact, that energy transformations are permitted on a small scale. Through our actual research we recognize that BaTiO3 and other electronics ceramics have fractal configuration nature based on three phenomena. Ceramic grains have fractal shape seeing as a contour in cross section or as a surface; the other one phenomena is related to so called “negative space” made of pores and inter-granular space. The porosity is extremely complex and has very important role in microelectronics, micro-capacity, PTC, piezoelectric and other phenomena. The third, there is Brownian process of fractal motions inside the material, during and after sintering, in the form of micro-particles flow (ions, atoms and electrons). These is important phenomenology based on inter-granular micro-capacity and super micro-capacitors in function of higher energy harvesting and storage. Fractal nature theory allows recognizing micro-capacitors with fractal electrodes. The method is based on iterative process which is compatible with the grains and pores model. In this paper, based on fractals corrected Heywang model, we analyse the electroresistivity as a part of intergranular micro-impedance. Also, we successfully applied the complex fractal correction on thermodynamic parameters, especially the temperature. On this way we continue to open the new fractal nature frontiers within the electro parameters, like elastoresistivity.",
publisher = "Societa ceramica italiana, Politecnico di Torino",
journal = "Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019",
title = "BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model",
pages = "515-515",
url = "https://hdl.handle.net/21.15107/rcub_dais_7023"
}
Mitić, V. V., Lazović, G., Paunović, V., Veljković, S., Huang, W. C.,& Vlahović, B.. (2019). BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model. in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019
Societa ceramica italiana., 515-515.
https://hdl.handle.net/21.15107/rcub_dais_7023
Mitić VV, Lazović G, Paunović V, Veljković S, Huang WC, Vlahović B. BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model. in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019. 2019;:515-515.
https://hdl.handle.net/21.15107/rcub_dais_7023 .
Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Veljković, Sandra, Huang, W. C., Vlahović, Branislav, "BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model" in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019 (2019):515-515,
https://hdl.handle.net/21.15107/rcub_dais_7023 .

The BaTiO3 ferroelectric properties within the microscale fractal nature

Mitić, Vojislav V.; Lazović, Goran; Lu, Chun-An; Paunović, Vesna; Veljković, Sandra; Newman, Nathan; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2019)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Lu, Chun-An
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Newman, Nathan
AU  - Vlahović, Branislav
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6979
AB  - The electronic ceramics applications based on ferroelectric and dielectric properties have enormous grow in function of very high microelectronics integrations. We used nano BaTiO3 with different versions of Y2O3 additives. We consolidated samples by sintering process in temperature interval from 1200 C to 1350 C. Here we also present some results as a “pre-coating” process for BaTiO3nano structure. This was quite original experimental process effected on different ferroelectrics characteristics between the grains. By our approach these relations between the grains corresponding to our ideas for fractal microelectronics properties integrations. The fractal nature analysis has been applied, too. We applied the complex fractal corrections between the grains and pores surfaces, including the particles Brownian’s Motion between the boundaries. This is completely new approach to the phenomenas of the ferroelectrics, dielectric and in general electronic properties integrations. we are on the way to create the correlation between the processing, structural and advance electronic properties for modern applications.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
T1  - The BaTiO3 ferroelectric properties within the microscale fractal nature
SP  - 36
EP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_dais_6979
ER  - 
@conference{
author = "Mitić, Vojislav V. and Lazović, Goran and Lu, Chun-An and Paunović, Vesna and Veljković, Sandra and Newman, Nathan and Vlahović, Branislav",
year = "2019",
abstract = "The electronic ceramics applications based on ferroelectric and dielectric properties have enormous grow in function of very high microelectronics integrations. We used nano BaTiO3 with different versions of Y2O3 additives. We consolidated samples by sintering process in temperature interval from 1200 C to 1350 C. Here we also present some results as a “pre-coating” process for BaTiO3nano structure. This was quite original experimental process effected on different ferroelectrics characteristics between the grains. By our approach these relations between the grains corresponding to our ideas for fractal microelectronics properties integrations. The fractal nature analysis has been applied, too. We applied the complex fractal corrections between the grains and pores surfaces, including the particles Brownian’s Motion between the boundaries. This is completely new approach to the phenomenas of the ferroelectrics, dielectric and in general electronic properties integrations. we are on the way to create the correlation between the processing, structural and advance electronic properties for modern applications.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019",
title = "The BaTiO3 ferroelectric properties within the microscale fractal nature",
pages = "36-36",
url = "https://hdl.handle.net/21.15107/rcub_dais_6979"
}
Mitić, V. V., Lazović, G., Lu, C., Paunović, V., Veljković, S., Newman, N.,& Vlahović, B.. (2019). The BaTiO3 ferroelectric properties within the microscale fractal nature. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
Belgrade : Serbian Ceramic Society., 36-36.
https://hdl.handle.net/21.15107/rcub_dais_6979
Mitić VV, Lazović G, Lu C, Paunović V, Veljković S, Newman N, Vlahović B. The BaTiO3 ferroelectric properties within the microscale fractal nature. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019. 2019;:36-36.
https://hdl.handle.net/21.15107/rcub_dais_6979 .
Mitić, Vojislav V., Lazović, Goran, Lu, Chun-An, Paunović, Vesna, Veljković, Sandra, Newman, Nathan, Vlahović, Branislav, "The BaTiO3 ferroelectric properties within the microscale fractal nature" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019 (2019):36-36,
https://hdl.handle.net/21.15107/rcub_dais_6979 .

Fractal frontiers in microelectronic ceramic materials

Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Cvetković, Nenad; Jovanović, Dejan; Veljković, Sandra; Ranđelović, Branislav; Vlahović, Branislav

(Elsevier, 2019)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Cvetković, Nenad
AU  - Jovanović, Dejan
AU  - Veljković, Sandra
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0272884219300227
UR  - https://dais.sanu.ac.rs/123456789/5252
AB  - The world's perennial need for energy and microelectronic miniaturization brings with it a broad set of technological and scientific challenges. Materials characterized by precise microstructural architectures based on fractal analysis and ranging in size down to nano scale represent an important avenue for finding novel solutions. Deep materials structure hierarchies of this type open new possibilities in capacity according to the Heywang model, especially when extended by a fractals approach and intergranular relationships supported and recognized by their fractal nature. These developments are opening new frontiers in microelectronics miniaturization. They build on early fractal applications that were used as tools in miniaturization research and also provided application perspectives for diverse energy technologies. In other words, fractals, as a crucial concept of modern theoretical-experimental physics and materials sciences, are tightly linked to higher integration processes and microelectronics miniaturization. They also hold potential for meeting the energy exploitation challenge. In this research context, for the first time we experimentally and theoretically investigated the electrostatic field between the grains within fractal nature aspects. It is essentially a theoretical experiment based on samples of experimental microstructures imaged with SEM, as previously published in a number of other papers. We now take the research a step further by consolidating the experimental samples with respect to the predicted distribution of grains and pores within the sample mass. We make an original contribution by opening the frame of scale sizes with respect to the technical processes of consolidation. This lets us predict the constitutive elements of the microstructures – approximately equidistant grains and pores. In this paper we define in a practical manner the final target elements for experimental consolidation of real samples. It is the main bridge between a designed microstructure and related characteristics – for example, fractal dimensions and final properties of next-generation fractal microelectronics.
PB  - Elsevier
T2  - Ceramics International
T1  - Fractal frontiers in microelectronic ceramic materials
SP  - 9679
EP  - 9685
VL  - 45
DO  - 10.1016/j.ceramint.2019.01.020
UR  - https://hdl.handle.net/21.15107/rcub_dais_5252
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Cvetković, Nenad and Jovanović, Dejan and Veljković, Sandra and Ranđelović, Branislav and Vlahović, Branislav",
year = "2019",
abstract = "The world's perennial need for energy and microelectronic miniaturization brings with it a broad set of technological and scientific challenges. Materials characterized by precise microstructural architectures based on fractal analysis and ranging in size down to nano scale represent an important avenue for finding novel solutions. Deep materials structure hierarchies of this type open new possibilities in capacity according to the Heywang model, especially when extended by a fractals approach and intergranular relationships supported and recognized by their fractal nature. These developments are opening new frontiers in microelectronics miniaturization. They build on early fractal applications that were used as tools in miniaturization research and also provided application perspectives for diverse energy technologies. In other words, fractals, as a crucial concept of modern theoretical-experimental physics and materials sciences, are tightly linked to higher integration processes and microelectronics miniaturization. They also hold potential for meeting the energy exploitation challenge. In this research context, for the first time we experimentally and theoretically investigated the electrostatic field between the grains within fractal nature aspects. It is essentially a theoretical experiment based on samples of experimental microstructures imaged with SEM, as previously published in a number of other papers. We now take the research a step further by consolidating the experimental samples with respect to the predicted distribution of grains and pores within the sample mass. We make an original contribution by opening the frame of scale sizes with respect to the technical processes of consolidation. This lets us predict the constitutive elements of the microstructures – approximately equidistant grains and pores. In this paper we define in a practical manner the final target elements for experimental consolidation of real samples. It is the main bridge between a designed microstructure and related characteristics – for example, fractal dimensions and final properties of next-generation fractal microelectronics.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Fractal frontiers in microelectronic ceramic materials",
pages = "9679-9685",
volume = "45",
doi = "10.1016/j.ceramint.2019.01.020",
url = "https://hdl.handle.net/21.15107/rcub_dais_5252"
}
Mitić, V. V., Lazović, G., Paunović, V., Cvetković, N., Jovanović, D., Veljković, S., Ranđelović, B.,& Vlahović, B.. (2019). Fractal frontiers in microelectronic ceramic materials. in Ceramics International
Elsevier., 45, 9679-9685.
https://doi.org/10.1016/j.ceramint.2019.01.020
https://hdl.handle.net/21.15107/rcub_dais_5252
Mitić VV, Lazović G, Paunović V, Cvetković N, Jovanović D, Veljković S, Ranđelović B, Vlahović B. Fractal frontiers in microelectronic ceramic materials. in Ceramics International. 2019;45:9679-9685.
doi:10.1016/j.ceramint.2019.01.020
https://hdl.handle.net/21.15107/rcub_dais_5252 .
Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Cvetković, Nenad, Jovanović, Dejan, Veljković, Sandra, Ranđelović, Branislav, Vlahović, Branislav, "Fractal frontiers in microelectronic ceramic materials" in Ceramics International, 45 (2019):9679-9685,
https://doi.org/10.1016/j.ceramint.2019.01.020 .,
https://hdl.handle.net/21.15107/rcub_dais_5252 .
12
9
11

Fractal frontiers in microelectronic ceramic materials

Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Cvetković, Nenad; Jovanović, Dejan; Veljković, Sandra; Ranđelović, Branislav; Vlahović, Branislav

(Elsevier, 2019)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Cvetković, Nenad
AU  - Jovanović, Dejan
AU  - Veljković, Sandra
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0272884219300227
UR  - https://dais.sanu.ac.rs/123456789/4795
AB  - The world's perennial need for energy and microelectronic miniaturization brings with it a broad set of technological and scientific challenges. Materials characterized by precise microstructural architectures based on fractal analysis and ranging in size down to nano scale represent an important avenue for finding novel solutions. Deep materials structure hierarchies of this type open new possibilities in capacity according to the Heywang model, especially when extended by a fractals approach and intergranular relationships supported and recognized by their fractal nature. These developments are opening new frontiers in microelectronics miniaturization. They build on early fractal applications that were used as tools in miniaturization research and also provided application perspectives for diverse energy technologies. In other words, fractals, as a crucial concept of modern theoretical-experimental physics and materials sciences, are tightly linked to higher integration processes and microelectronics miniaturization. They also hold potential for meeting the energy exploitation challenge. In this research context, for the first time we experimentally and theoretically investigated the electrostatic field between the grains within fractal nature aspects. It is essentially a theoretical experiment based on samples of experimental microstructures imaged with SEM, as previously published in a number of other papers. We now take the research a step further by consolidating the experimental samples with respect to the predicted distribution of grains and pores within the sample mass. We make an original contribution by opening the frame of scale sizes with respect to the technical processes of consolidation. This lets us predict the constitutive elements of the microstructures – approximately equidistant grains and pores. In this paper we define in a practical manner the final target elements for experimental consolidation of real samples. It is the main bridge between a designed microstructure and related characteristics – for example, fractal dimensions and final properties of next-generation fractal microelectronics.
PB  - Elsevier
T2  - Ceramics International
T1  - Fractal frontiers in microelectronic ceramic materials
SP  - 9679
EP  - 9685
VL  - 45
DO  - 10.1016/j.ceramint.2019.01.020
UR  - https://hdl.handle.net/21.15107/rcub_dais_4795
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Cvetković, Nenad and Jovanović, Dejan and Veljković, Sandra and Ranđelović, Branislav and Vlahović, Branislav",
year = "2019",
abstract = "The world's perennial need for energy and microelectronic miniaturization brings with it a broad set of technological and scientific challenges. Materials characterized by precise microstructural architectures based on fractal analysis and ranging in size down to nano scale represent an important avenue for finding novel solutions. Deep materials structure hierarchies of this type open new possibilities in capacity according to the Heywang model, especially when extended by a fractals approach and intergranular relationships supported and recognized by their fractal nature. These developments are opening new frontiers in microelectronics miniaturization. They build on early fractal applications that were used as tools in miniaturization research and also provided application perspectives for diverse energy technologies. In other words, fractals, as a crucial concept of modern theoretical-experimental physics and materials sciences, are tightly linked to higher integration processes and microelectronics miniaturization. They also hold potential for meeting the energy exploitation challenge. In this research context, for the first time we experimentally and theoretically investigated the electrostatic field between the grains within fractal nature aspects. It is essentially a theoretical experiment based on samples of experimental microstructures imaged with SEM, as previously published in a number of other papers. We now take the research a step further by consolidating the experimental samples with respect to the predicted distribution of grains and pores within the sample mass. We make an original contribution by opening the frame of scale sizes with respect to the technical processes of consolidation. This lets us predict the constitutive elements of the microstructures – approximately equidistant grains and pores. In this paper we define in a practical manner the final target elements for experimental consolidation of real samples. It is the main bridge between a designed microstructure and related characteristics – for example, fractal dimensions and final properties of next-generation fractal microelectronics.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Fractal frontiers in microelectronic ceramic materials",
pages = "9679-9685",
volume = "45",
doi = "10.1016/j.ceramint.2019.01.020",
url = "https://hdl.handle.net/21.15107/rcub_dais_4795"
}
Mitić, V. V., Lazović, G., Paunović, V., Cvetković, N., Jovanović, D., Veljković, S., Ranđelović, B.,& Vlahović, B.. (2019). Fractal frontiers in microelectronic ceramic materials. in Ceramics International
Elsevier., 45, 9679-9685.
https://doi.org/10.1016/j.ceramint.2019.01.020
https://hdl.handle.net/21.15107/rcub_dais_4795
Mitić VV, Lazović G, Paunović V, Cvetković N, Jovanović D, Veljković S, Ranđelović B, Vlahović B. Fractal frontiers in microelectronic ceramic materials. in Ceramics International. 2019;45:9679-9685.
doi:10.1016/j.ceramint.2019.01.020
https://hdl.handle.net/21.15107/rcub_dais_4795 .
Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Cvetković, Nenad, Jovanović, Dejan, Veljković, Sandra, Ranđelović, Branislav, Vlahović, Branislav, "Fractal frontiers in microelectronic ceramic materials" in Ceramics International, 45 (2019):9679-9685,
https://doi.org/10.1016/j.ceramint.2019.01.020 .,
https://hdl.handle.net/21.15107/rcub_dais_4795 .
12
9
10

Generalized Lorentz model description-Caputo-Fabrizio fractional derivative approach, of electrical, dielectric, conductive and magnetic processes in materials

Eldakli, Mohsan S. A.; Vosika, Zoran B.; Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna

(Belgrade : Serbian Ceramic Society, 2019)

TY  - CONF
AU  - Eldakli, Mohsan S. A.
AU  - Vosika, Zoran B.
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6973
AB  - In this study, generalized Lorentz model is basic one-particle model in the framework of dielectric, conductive and/or magnetic responses of materials.
AC conductivity studies of various BaTiO3 or similar ceramics produced equivalent circuits with impedance spectra, usually within the framework of RCPE elements serial connection (CPE - constant phase element) or Cole element. This element, in the generalized Lorentz model, corresponds to Caputo fractional derivative, who, as operator, contains a singular integral kernel in itself. However, in the literature, fractional derivatives with a non singular integral kernels have recently emerged. One of them is a Caputo-Fabrizio fractional derivative. In this work, physical basics and all three behaviors (dielectric, conductive and magnetic) of materials and their relationships are considered in the case of electric or magnetic alternate fields, which are the tools for experimental measurements.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
T1  - Generalized Lorentz model description-Caputo-Fabrizio fractional derivative approach, of electrical, dielectric, conductive and magnetic processes in materials
SP  - 62
EP  - 63
UR  - https://hdl.handle.net/21.15107/rcub_dais_6973
ER  - 
@conference{
author = "Eldakli, Mohsan S. A. and Vosika, Zoran B. and Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna",
year = "2019",
abstract = "In this study, generalized Lorentz model is basic one-particle model in the framework of dielectric, conductive and/or magnetic responses of materials.
AC conductivity studies of various BaTiO3 or similar ceramics produced equivalent circuits with impedance spectra, usually within the framework of RCPE elements serial connection (CPE - constant phase element) or Cole element. This element, in the generalized Lorentz model, corresponds to Caputo fractional derivative, who, as operator, contains a singular integral kernel in itself. However, in the literature, fractional derivatives with a non singular integral kernels have recently emerged. One of them is a Caputo-Fabrizio fractional derivative. In this work, physical basics and all three behaviors (dielectric, conductive and magnetic) of materials and their relationships are considered in the case of electric or magnetic alternate fields, which are the tools for experimental measurements.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019",
title = "Generalized Lorentz model description-Caputo-Fabrizio fractional derivative approach, of electrical, dielectric, conductive and magnetic processes in materials",
pages = "62-63",
url = "https://hdl.handle.net/21.15107/rcub_dais_6973"
}
Eldakli, M. S. A., Vosika, Z. B., Mitić, V. V., Lazović, G.,& Paunović, V.. (2019). Generalized Lorentz model description-Caputo-Fabrizio fractional derivative approach, of electrical, dielectric, conductive and magnetic processes in materials. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
Belgrade : Serbian Ceramic Society., 62-63.
https://hdl.handle.net/21.15107/rcub_dais_6973
Eldakli MSA, Vosika ZB, Mitić VV, Lazović G, Paunović V. Generalized Lorentz model description-Caputo-Fabrizio fractional derivative approach, of electrical, dielectric, conductive and magnetic processes in materials. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019. 2019;:62-63.
https://hdl.handle.net/21.15107/rcub_dais_6973 .
Eldakli, Mohsan S. A., Vosika, Zoran B., Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, "Generalized Lorentz model description-Caputo-Fabrizio fractional derivative approach, of electrical, dielectric, conductive and magnetic processes in materials" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019 (2019):62-63,
https://hdl.handle.net/21.15107/rcub_dais_6973 .

Electrical Characteristics of Ho doped BaTiO3 Ceramics

Đorđević, Miloš; Paunović, Vesna; Mitić, Vojislav V.

(Belgrade : Serbian Ceramic Society, 2019)

TY  - CONF
AU  - Đorđević, Miloš
AU  - Paunović, Vesna
AU  - Mitić, Vojislav V.
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6682
AB  - In this paper, electrical characteristics of Ho2O3 doped BaTiO3 ceramics were shown, using new method for measuring samples. The BaTiO3 doped samples were sintered at 1320°C for 4 hours. The concentration of the additives were from 0.05 to 1.0 at% Ho. The density was ranged from 83% to 91% of theoretical density (TD). The samples of BaTiO3 ceramics doped with Ho2O3 are characterized by spherical and irregular polygonal grains. The average grain size for samples doped with low content of Ho2O3 (0.05 at% Ho) ranged from 10 μm to 30 μm. An increase in dopant concentration causes a decrease in the average grain size in the investigated samples. So it is for samples doped with 1.0 at% Ho, grain size range between less than 1 mm – 2 mm. The variation of dielectric permittivity with temperature were measured in the temperature range from 30°C to 180°C and the frequency range from 100 Hz to 1 MHz. For measurement electrical characteristic a new method was used, which implemented to automate the sampling and to enable measurement without a human factor. The software application is connected via USB communication to a microcontroller, which measures the temperature in the furnace. When the temperature reaches the defined value, the microcontroller sends information to the software application. Then the application through GPIB communication activates the LCR meter, which measures the defined parameters of the tested samples. Based on parameters such as dielectric constant (εr), tangent losses (tan δ) and impedance, the characteristics of the tested samples were determined. Using the Curie-Weiss law and modified Curie-Weiss law, based on the measured values of the parameters, the Curie constant and the exponent of nonlinearity were determined.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
T1  - Electrical Characteristics of Ho doped BaTiO3 Ceramics
SP  - 55
EP  - 55
UR  - https://hdl.handle.net/21.15107/rcub_dais_6682
ER  - 
@conference{
author = "Đorđević, Miloš and Paunović, Vesna and Mitić, Vojislav V.",
year = "2019",
abstract = "In this paper, electrical characteristics of Ho2O3 doped BaTiO3 ceramics were shown, using new method for measuring samples. The BaTiO3 doped samples were sintered at 1320°C for 4 hours. The concentration of the additives were from 0.05 to 1.0 at% Ho. The density was ranged from 83% to 91% of theoretical density (TD). The samples of BaTiO3 ceramics doped with Ho2O3 are characterized by spherical and irregular polygonal grains. The average grain size for samples doped with low content of Ho2O3 (0.05 at% Ho) ranged from 10 μm to 30 μm. An increase in dopant concentration causes a decrease in the average grain size in the investigated samples. So it is for samples doped with 1.0 at% Ho, grain size range between less than 1 mm – 2 mm. The variation of dielectric permittivity with temperature were measured in the temperature range from 30°C to 180°C and the frequency range from 100 Hz to 1 MHz. For measurement electrical characteristic a new method was used, which implemented to automate the sampling and to enable measurement without a human factor. The software application is connected via USB communication to a microcontroller, which measures the temperature in the furnace. When the temperature reaches the defined value, the microcontroller sends information to the software application. Then the application through GPIB communication activates the LCR meter, which measures the defined parameters of the tested samples. Based on parameters such as dielectric constant (εr), tangent losses (tan δ) and impedance, the characteristics of the tested samples were determined. Using the Curie-Weiss law and modified Curie-Weiss law, based on the measured values of the parameters, the Curie constant and the exponent of nonlinearity were determined.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019",
title = "Electrical Characteristics of Ho doped BaTiO3 Ceramics",
pages = "55-55",
url = "https://hdl.handle.net/21.15107/rcub_dais_6682"
}
Đorđević, M., Paunović, V.,& Mitić, V. V.. (2019). Electrical Characteristics of Ho doped BaTiO3 Ceramics. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
Belgrade : Serbian Ceramic Society., 55-55.
https://hdl.handle.net/21.15107/rcub_dais_6682
Đorđević M, Paunović V, Mitić VV. Electrical Characteristics of Ho doped BaTiO3 Ceramics. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019. 2019;:55-55.
https://hdl.handle.net/21.15107/rcub_dais_6682 .
Đorđević, Miloš, Paunović, Vesna, Mitić, Vojislav V., "Electrical Characteristics of Ho doped BaTiO3 Ceramics" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019 (2019):55-55,
https://hdl.handle.net/21.15107/rcub_dais_6682 .

The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Mohr, Marcus; Fecht, Hans-Jörg

(Belgrade : Institute of Technical Sciences of SASA, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Mohr, Marcus
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4725
AB  - The development of new technologies is very often based on improvement of novel materials and the features of the existing ones as well as their application. Considering that the synthetic diamonds are one of the most appealing areas of modern materials science and its modern applications, the research in this area is becoming more intensive. Therefore, in this paper, an overview of the basic properties of natural and synthesized diamonds is firstly presented followed by the method of forming and parameters that affect the final properties of polycrystalline diamonds. The first method which was used for obtaining synthesized diamonds was HPHT (high pressure high temperature) method, by which were produced diamonds very similar to the natural ones. However, CVD (chemical vapor deposition) method for obtaining polycrystalline diamond films was more promising. By applying this method microcrystalline diamond (MCD) with grain size larger than 100 nm were created. Considering that there were some disadvantages of MCD, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, which average size of grains were 5-100 nm as well as 3-5 nm. Depending on the consolidation process (composition and pressure of applied gases, filament setup and reactor geometry) the properties of polycrystalline diamonds can vary. Detailed analysis of these materials nature can be additionally obtained by application of the fractal analysis which is presented in this paper.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
T1  - The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis
SP  - 58
EP  - 58
UR  - https://hdl.handle.net/21.15107/rcub_dais_4725
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Mohr, Marcus and Fecht, Hans-Jörg",
year = "2018",
abstract = "The development of new technologies is very often based on improvement of novel materials and the features of the existing ones as well as their application. Considering that the synthetic diamonds are one of the most appealing areas of modern materials science and its modern applications, the research in this area is becoming more intensive. Therefore, in this paper, an overview of the basic properties of natural and synthesized diamonds is firstly presented followed by the method of forming and parameters that affect the final properties of polycrystalline diamonds. The first method which was used for obtaining synthesized diamonds was HPHT (high pressure high temperature) method, by which were produced diamonds very similar to the natural ones. However, CVD (chemical vapor deposition) method for obtaining polycrystalline diamond films was more promising. By applying this method microcrystalline diamond (MCD) with grain size larger than 100 nm were created. Considering that there were some disadvantages of MCD, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, which average size of grains were 5-100 nm as well as 3-5 nm. Depending on the consolidation process (composition and pressure of applied gases, filament setup and reactor geometry) the properties of polycrystalline diamonds can vary. Detailed analysis of these materials nature can be additionally obtained by application of the fractal analysis which is presented in this paper.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia",
title = "The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis",
pages = "58-58",
url = "https://hdl.handle.net/21.15107/rcub_dais_4725"
}
Veljković, S., Mitić, V. V., Lazović, G., Paunović, V., Mohr, M.,& Fecht, H.. (2018). The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 58-58.
https://hdl.handle.net/21.15107/rcub_dais_4725
Veljković S, Mitić VV, Lazović G, Paunović V, Mohr M, Fecht H. The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia. 2018;:58-58.
https://hdl.handle.net/21.15107/rcub_dais_4725 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Mohr, Marcus, Fecht, Hans-Jörg, "The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis" in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia (2018):58-58,
https://hdl.handle.net/21.15107/rcub_dais_4725 .

Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers

Mitić, Vojislav V.; Veljković, Sandra; Lazović, Goran; Mohr, Marcus; Gluche, Peter; Paunović, Vesna; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Veljković, Sandra
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Gluche, Peter
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4120
AB  - Many areas, like the most known jewelry, medical-surgery, in high professional industry, as well as producing micro components, there are many possibilities for application of synthesized diamonds. These and others specific application of polycrystal diamonds, require permanently research and improvement of their properties. Such exploring could be much better with understanding fundamentals of microstructures. In such investigation, fractal nature analysis could significantly contribute to the revealing of possibilities for improvements. By the experimental procedure, it is noticed that the influence of grain size on thermal and electrical conductivity have notable impact. Considering that, these conductivities affect the possibility of application in many areas, explaining on microstructural nature is of high importance. The influence of relation between the structures and final properties of synthetized diamonds can be achieved by explaining these phenomena based on fractal nature. The aim of the investigation is the establishing thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers
SP  - 56
EP  - 57
UR  - https://hdl.handle.net/21.15107/rcub_dais_4120
ER  - 
@conference{
author = "Mitić, Vojislav V. and Veljković, Sandra and Lazović, Goran and Mohr, Marcus and Gluche, Peter and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2018",
abstract = "Many areas, like the most known jewelry, medical-surgery, in high professional industry, as well as producing micro components, there are many possibilities for application of synthesized diamonds. These and others specific application of polycrystal diamonds, require permanently research and improvement of their properties. Such exploring could be much better with understanding fundamentals of microstructures. In such investigation, fractal nature analysis could significantly contribute to the revealing of possibilities for improvements. By the experimental procedure, it is noticed that the influence of grain size on thermal and electrical conductivity have notable impact. Considering that, these conductivities affect the possibility of application in many areas, explaining on microstructural nature is of high importance. The influence of relation between the structures and final properties of synthetized diamonds can be achieved by explaining these phenomena based on fractal nature. The aim of the investigation is the establishing thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers",
pages = "56-57",
url = "https://hdl.handle.net/21.15107/rcub_dais_4120"
}
Mitić, V. V., Veljković, S., Lazović, G., Mohr, M., Gluche, P., Paunović, V.,& Fecht, H.. (2018). Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 56-57.
https://hdl.handle.net/21.15107/rcub_dais_4120
Mitić VV, Veljković S, Lazović G, Mohr M, Gluche P, Paunović V, Fecht H. Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:56-57.
https://hdl.handle.net/21.15107/rcub_dais_4120 .
Mitić, Vojislav V., Veljković, Sandra, Lazović, Goran, Mohr, Marcus, Gluche, Peter, Paunović, Vesna, Fecht, Hans-Jörg, "Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):56-57,
https://hdl.handle.net/21.15107/rcub_dais_4120 .

The synthesized diamonds microstructure consolidation review

Veljković, Sandra; Mitić, Vojislav V.; Mohr, Marcus; Paunović, Vesna; Lazović, Goran; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Mohr, Marcus
AU  - Paunović, Vesna
AU  - Lazović, Goran
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4100
AB  - Excellent mechanical, optical and thermal properties of diamonds are the advantages for which they are used in many areas and thus in the industrial as well. Considering that natural diamonds are rare and expensive, in order to overcome that, production of synthesized diamonds is a good solution. Hence, investigation of alternative producing methods led to discovery of commercially available chemical vapor deposition – CVD method. Using this method led to creation of microcrystalline diamond (MCD) with grain size larger than 100 nm. Because of some disadvantages of this synthesized diamond, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, with average size of grains ranging 5-100 nm and 3-5 nm, respectively. Reactor geometry, filament setup and gas phase conditions are also very important parameters for diamonds growth on silicon wafers, in addition to the mixture composition and pressure of applied gases. The goal of the paper is to present the relation of microstructure and diverse consolidation methods.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - The synthesized diamonds microstructure consolidation review
SP  - 89
EP  - 89
UR  - https://hdl.handle.net/21.15107/rcub_dais_4100
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Mohr, Marcus and Paunović, Vesna and Lazović, Goran and Fecht, Hans-Jörg",
year = "2018",
abstract = "Excellent mechanical, optical and thermal properties of diamonds are the advantages for which they are used in many areas and thus in the industrial as well. Considering that natural diamonds are rare and expensive, in order to overcome that, production of synthesized diamonds is a good solution. Hence, investigation of alternative producing methods led to discovery of commercially available chemical vapor deposition – CVD method. Using this method led to creation of microcrystalline diamond (MCD) with grain size larger than 100 nm. Because of some disadvantages of this synthesized diamond, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, with average size of grains ranging 5-100 nm and 3-5 nm, respectively. Reactor geometry, filament setup and gas phase conditions are also very important parameters for diamonds growth on silicon wafers, in addition to the mixture composition and pressure of applied gases. The goal of the paper is to present the relation of microstructure and diverse consolidation methods.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "The synthesized diamonds microstructure consolidation review",
pages = "89-89",
url = "https://hdl.handle.net/21.15107/rcub_dais_4100"
}
Veljković, S., Mitić, V. V., Mohr, M., Paunović, V., Lazović, G.,& Fecht, H.. (2018). The synthesized diamonds microstructure consolidation review. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 89-89.
https://hdl.handle.net/21.15107/rcub_dais_4100
Veljković S, Mitić VV, Mohr M, Paunović V, Lazović G, Fecht H. The synthesized diamonds microstructure consolidation review. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:89-89.
https://hdl.handle.net/21.15107/rcub_dais_4100 .
Veljković, Sandra, Mitić, Vojislav V., Mohr, Marcus, Paunović, Vesna, Lazović, Goran, Fecht, Hans-Jörg, "The synthesized diamonds microstructure consolidation review" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):89-89,
https://hdl.handle.net/21.15107/rcub_dais_4100 .

Electrical conductivity and fractal nature analysis synthesized diamonds phenomena

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Mohr, Marcus; Paunović, Vesna; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4102
AB  - Chemical Vapor Deposition – CVD can be used for creation of synthesized diamonds. The result of the process is the microstructure which is composed of numerous small grains. Such structure can be applied in various areas, like medicine, electronics, micromechanical systems, microelectromechanical systems – MEMS and many others. For these and many other applications, one of the most important feature is the electrical conductivity. Although the natural diamond is an excellent insulator, synthesized diamonds show different behavior. The exploring of this feature is a complex area with a strong convolution between grain size and sp2 bond ing effect. The optimization of the synthesized diamond properties requires the revealing of the size and the shape of the created crystallites. Due to the size of grains being significantly reduced, the fractal theory can help in analysis of the grain morphology and especially of electrical conductivity.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Electrical conductivity and fractal nature analysis synthesized diamonds phenomena
SP  - 89
EP  - 90
UR  - https://hdl.handle.net/21.15107/rcub_dais_4102
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Mohr, Marcus and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2018",
abstract = "Chemical Vapor Deposition – CVD can be used for creation of synthesized diamonds. The result of the process is the microstructure which is composed of numerous small grains. Such structure can be applied in various areas, like medicine, electronics, micromechanical systems, microelectromechanical systems – MEMS and many others. For these and many other applications, one of the most important feature is the electrical conductivity. Although the natural diamond is an excellent insulator, synthesized diamonds show different behavior. The exploring of this feature is a complex area with a strong convolution between grain size and sp2 bond ing effect. The optimization of the synthesized diamond properties requires the revealing of the size and the shape of the created crystallites. Due to the size of grains being significantly reduced, the fractal theory can help in analysis of the grain morphology and especially of electrical conductivity.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Electrical conductivity and fractal nature analysis synthesized diamonds phenomena",
pages = "89-90",
url = "https://hdl.handle.net/21.15107/rcub_dais_4102"
}
Veljković, S., Mitić, V. V., Lazović, G., Mohr, M., Paunović, V.,& Fecht, H.. (2018). Electrical conductivity and fractal nature analysis synthesized diamonds phenomena. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 89-90.
https://hdl.handle.net/21.15107/rcub_dais_4102
Veljković S, Mitić VV, Lazović G, Mohr M, Paunović V, Fecht H. Electrical conductivity and fractal nature analysis synthesized diamonds phenomena. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:89-90.
https://hdl.handle.net/21.15107/rcub_dais_4102 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Mohr, Marcus, Paunović, Vesna, Fecht, Hans-Jörg, "Electrical conductivity and fractal nature analysis synthesized diamonds phenomena" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):89-90,
https://hdl.handle.net/21.15107/rcub_dais_4102 .

The synthesized diamonds thermal conductivity and fractal nature

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Mohr, Marcus; Paunović, Vesna; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4101
AB  - It is well known that diamonds are almost the best thermal conductors. This property as well as other convenient features, leaded to intensive research of synthesized diamonds production. Also, the investigation of the most valuable characteristics is the aim of permanently exploring. The thermal conductivity of synthesized diamonds research is very important, and because of that, the knowledge of the thermal conductivity properties is a basic point for completely understanding the synthesized diamonds phenomena. The experimental procedure confirmed interesting results regarding thermal conductivity. Investigation of the influence of different inputs on the synthesized diamonds process is of high importance. Due to the fact that the dimensions of the grain size have an impact on thermal conductivity, and that they are very small in deposited films of synthesized diamonds, the investigation of their fractal nature could lead to the further explanation of phenomena. The goal of this paper is basic analysis of what is the influence on thermal conductivity in the light of fractal nature materials properties.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - The synthesized diamonds thermal conductivity and fractal nature
SP  - 90
EP  - 90
UR  - https://hdl.handle.net/21.15107/rcub_dais_4101
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Mohr, Marcus and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2018",
abstract = "It is well known that diamonds are almost the best thermal conductors. This property as well as other convenient features, leaded to intensive research of synthesized diamonds production. Also, the investigation of the most valuable characteristics is the aim of permanently exploring. The thermal conductivity of synthesized diamonds research is very important, and because of that, the knowledge of the thermal conductivity properties is a basic point for completely understanding the synthesized diamonds phenomena. The experimental procedure confirmed interesting results regarding thermal conductivity. Investigation of the influence of different inputs on the synthesized diamonds process is of high importance. Due to the fact that the dimensions of the grain size have an impact on thermal conductivity, and that they are very small in deposited films of synthesized diamonds, the investigation of their fractal nature could lead to the further explanation of phenomena. The goal of this paper is basic analysis of what is the influence on thermal conductivity in the light of fractal nature materials properties.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "The synthesized diamonds thermal conductivity and fractal nature",
pages = "90-90",
url = "https://hdl.handle.net/21.15107/rcub_dais_4101"
}
Veljković, S., Mitić, V. V., Lazović, G., Mohr, M., Paunović, V.,& Fecht, H.. (2018). The synthesized diamonds thermal conductivity and fractal nature. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 90-90.
https://hdl.handle.net/21.15107/rcub_dais_4101
Veljković S, Mitić VV, Lazović G, Mohr M, Paunović V, Fecht H. The synthesized diamonds thermal conductivity and fractal nature. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:90-90.
https://hdl.handle.net/21.15107/rcub_dais_4101 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Mohr, Marcus, Paunović, Vesna, Fecht, Hans-Jörg, "The synthesized diamonds thermal conductivity and fractal nature" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):90-90,
https://hdl.handle.net/21.15107/rcub_dais_4101 .

Microstructure and EDS Characterization of Doped BaTiO3 Ceramics

Miljković, Miroslav; Paunović, Vesna; Mitić, Vojislav V.; Radosavljević Mihajlović, Ana; Veljković, Sandra

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Miljković, Miroslav
AU  - Paunović, Vesna
AU  - Mitić, Vojislav V.
AU  - Radosavljević Mihajlović, Ana
AU  - Veljković, Sandra
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4086
AB  - The purpose of this paper is an investigation of the effects of various dopants (La, Nb, Sb) on the microstructure properties, phase composition and contact surface of BaTiO3 based ceramics. The doped BaTiO3-ceramics were prepared by conventional solid state procedure and sintered up to 1350oC for four hours. The concentration of additive were range from 0.1 to 5.0 at% of La, Nb or Sb. The grain size and microstructure characteristics for various samples and their phase composition was carried out using a scanning electron microscope SEM (JEOL-JSM 5300) equipped with EDS (QX 2000S) system. The homogeneous and completely fine-grained was observed in samples doped with low concentration of dopant (0.1 and 0.5 at %). EDS analysis of this samples did not reveal any dopant-rich regions, which indicated a uniform incorporation of dopants within the samples. In high doped samples, apart from the fine grained matrix, the appearance of local area with secondary abnormal grains was observed. The increase of dopant concentration leads to the appearance of dopant-rich regions between grains.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Microstructure and EDS Characterization of Doped BaTiO3 Ceramics
SP  - 91
EP  - 91
UR  - https://hdl.handle.net/21.15107/rcub_dais_4086
ER  - 
@conference{
author = "Miljković, Miroslav and Paunović, Vesna and Mitić, Vojislav V. and Radosavljević Mihajlović, Ana and Veljković, Sandra",
year = "2018",
abstract = "The purpose of this paper is an investigation of the effects of various dopants (La, Nb, Sb) on the microstructure properties, phase composition and contact surface of BaTiO3 based ceramics. The doped BaTiO3-ceramics were prepared by conventional solid state procedure and sintered up to 1350oC for four hours. The concentration of additive were range from 0.1 to 5.0 at% of La, Nb or Sb. The grain size and microstructure characteristics for various samples and their phase composition was carried out using a scanning electron microscope SEM (JEOL-JSM 5300) equipped with EDS (QX 2000S) system. The homogeneous and completely fine-grained was observed in samples doped with low concentration of dopant (0.1 and 0.5 at %). EDS analysis of this samples did not reveal any dopant-rich regions, which indicated a uniform incorporation of dopants within the samples. In high doped samples, apart from the fine grained matrix, the appearance of local area with secondary abnormal grains was observed. The increase of dopant concentration leads to the appearance of dopant-rich regions between grains.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Microstructure and EDS Characterization of Doped BaTiO3 Ceramics",
pages = "91-91",
url = "https://hdl.handle.net/21.15107/rcub_dais_4086"
}
Miljković, M., Paunović, V., Mitić, V. V., Radosavljević Mihajlović, A.,& Veljković, S.. (2018). Microstructure and EDS Characterization of Doped BaTiO3 Ceramics. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 91-91.
https://hdl.handle.net/21.15107/rcub_dais_4086
Miljković M, Paunović V, Mitić VV, Radosavljević Mihajlović A, Veljković S. Microstructure and EDS Characterization of Doped BaTiO3 Ceramics. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:91-91.
https://hdl.handle.net/21.15107/rcub_dais_4086 .
Miljković, Miroslav, Paunović, Vesna, Mitić, Vojislav V., Radosavljević Mihajlović, Ana, Veljković, Sandra, "Microstructure and EDS Characterization of Doped BaTiO3 Ceramics" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):91-91,
https://hdl.handle.net/21.15107/rcub_dais_4086 .

Fractal nature structure reconstruction method in designing microstructure properties

Mitić, Vojislav V.; Kocić, Ljubiša; Paunović, Vesna; Lazović, Goran; Miljković, Miroslav

(Elsevier, 2018)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Kocić, Ljubiša
AU  - Paunović, Vesna
AU  - Lazović, Goran
AU  - Miljković, Miroslav
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/3741
AB  - In the process of predicting materials properties, it is necessary to predict microstructures. This is important for ceramic materials, for the purpose of miniaturization and for a higher level of integration. Although the method of material structure reconstruction is for the first time used on BaTiO3-ceramics by these authors, it can also be used for silicate, refractory and other ceramics, and, for any powder-based material. The reconstruction is based on the grain perimeter fractal analysis and the Richardson method. The main contribution of this paper is establishing the relationship between the electronic properties of BaTiO3-ceramics and its microstructural fractal nature. Similar relations can be used for any ceramics or even any materials. The samples consolidation includes both powder pressing (cold sintering phase) and sintering in a furnace (hot sintering phase). The fractal nature characterization has a very important role from the powder phase up to the final microstructure, through which structures it directly impacts electro-physical and other ceramics properties. Thereby, the new possibilities in the microstructure characterization applications are directly introduced to an engineering system, providing the new solutions related to computer aided support. This creates new industrial production and application possibilities, especially in the process of ceramics material consolidation, now based on microstructural properties, which is providing a basis for “fractal electronics’’ development. © 2018 Elsevier Ltd
PB  - Elsevier
T2  - Materials Research Bulletin
T1  - Fractal nature structure reconstruction method in designing microstructure properties
SP  - 175
EP  - 183
VL  - 101
DO  - 10.1016/j.materresbull.2018.01.019
UR  - https://hdl.handle.net/21.15107/rcub_dais_3741
ER  - 
@article{
author = "Mitić, Vojislav V. and Kocić, Ljubiša and Paunović, Vesna and Lazović, Goran and Miljković, Miroslav",
year = "2018",
abstract = "In the process of predicting materials properties, it is necessary to predict microstructures. This is important for ceramic materials, for the purpose of miniaturization and for a higher level of integration. Although the method of material structure reconstruction is for the first time used on BaTiO3-ceramics by these authors, it can also be used for silicate, refractory and other ceramics, and, for any powder-based material. The reconstruction is based on the grain perimeter fractal analysis and the Richardson method. The main contribution of this paper is establishing the relationship between the electronic properties of BaTiO3-ceramics and its microstructural fractal nature. Similar relations can be used for any ceramics or even any materials. The samples consolidation includes both powder pressing (cold sintering phase) and sintering in a furnace (hot sintering phase). The fractal nature characterization has a very important role from the powder phase up to the final microstructure, through which structures it directly impacts electro-physical and other ceramics properties. Thereby, the new possibilities in the microstructure characterization applications are directly introduced to an engineering system, providing the new solutions related to computer aided support. This creates new industrial production and application possibilities, especially in the process of ceramics material consolidation, now based on microstructural properties, which is providing a basis for “fractal electronics’’ development. © 2018 Elsevier Ltd",
publisher = "Elsevier",
journal = "Materials Research Bulletin",
title = "Fractal nature structure reconstruction method in designing microstructure properties",
pages = "175-183",
volume = "101",
doi = "10.1016/j.materresbull.2018.01.019",
url = "https://hdl.handle.net/21.15107/rcub_dais_3741"
}
Mitić, V. V., Kocić, L., Paunović, V., Lazović, G.,& Miljković, M.. (2018). Fractal nature structure reconstruction method in designing microstructure properties. in Materials Research Bulletin
Elsevier., 101, 175-183.
https://doi.org/10.1016/j.materresbull.2018.01.019
https://hdl.handle.net/21.15107/rcub_dais_3741
Mitić VV, Kocić L, Paunović V, Lazović G, Miljković M. Fractal nature structure reconstruction method in designing microstructure properties. in Materials Research Bulletin. 2018;101:175-183.
doi:10.1016/j.materresbull.2018.01.019
https://hdl.handle.net/21.15107/rcub_dais_3741 .
Mitić, Vojislav V., Kocić, Ljubiša, Paunović, Vesna, Lazović, Goran, Miljković, Miroslav, "Fractal nature structure reconstruction method in designing microstructure properties" in Materials Research Bulletin, 101 (2018):175-183,
https://doi.org/10.1016/j.materresbull.2018.01.019 .,
https://hdl.handle.net/21.15107/rcub_dais_3741 .
11
10
9

Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena

Mitić, Vojislav V.; Lazović, Goran; Vosika, Zoran B.; Paunović, Vesna; Veljković, Sandra; Danković, Danijel; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Vosika, Zoran B.
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Danković, Danijel
AU  - Vlahović, Branislav
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4088
AB  - Well known material with ferroelectric properties, BaTiO3-ceramics, have many advanced applications. Fractal approach in analyzing of these structures can be one of the solution for investigation of morphology. It is known that a wide range of disordered systems can be characterized by the fractal nature over a microscopic correlation length, and on a small scale the energy transformations are permitted. Due to the lack of energy, priorities of the future frontiers in ceramics science is to expand the knowledge even down to nano and towards new and alternative energy sources. Fractal configuration nature of BaTiO3 and other ceramics is based on phenomena that ceramic grains have fractal shape; there are pores and inter-granular space and there is particles Brownian fractal motion inside the material, during and after sintering, in the form of micro-particles flow, which is the most important. These important facts are in function of further developing of knowledge of energy harvesting and storage.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena
SP  - 92
EP  - 93
UR  - https://hdl.handle.net/21.15107/rcub_dais_4088
ER  - 
@conference{
author = "Mitić, Vojislav V. and Lazović, Goran and Vosika, Zoran B. and Paunović, Vesna and Veljković, Sandra and Danković, Danijel and Vlahović, Branislav",
year = "2018",
abstract = "Well known material with ferroelectric properties, BaTiO3-ceramics, have many advanced applications. Fractal approach in analyzing of these structures can be one of the solution for investigation of morphology. It is known that a wide range of disordered systems can be characterized by the fractal nature over a microscopic correlation length, and on a small scale the energy transformations are permitted. Due to the lack of energy, priorities of the future frontiers in ceramics science is to expand the knowledge even down to nano and towards new and alternative energy sources. Fractal configuration nature of BaTiO3 and other ceramics is based on phenomena that ceramic grains have fractal shape; there are pores and inter-granular space and there is particles Brownian fractal motion inside the material, during and after sintering, in the form of micro-particles flow, which is the most important. These important facts are in function of further developing of knowledge of energy harvesting and storage.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena",
pages = "92-93",
url = "https://hdl.handle.net/21.15107/rcub_dais_4088"
}
Mitić, V. V., Lazović, G., Vosika, Z. B., Paunović, V., Veljković, S., Danković, D.,& Vlahović, B.. (2018). Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 92-93.
https://hdl.handle.net/21.15107/rcub_dais_4088
Mitić VV, Lazović G, Vosika ZB, Paunović V, Veljković S, Danković D, Vlahović B. Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:92-93.
https://hdl.handle.net/21.15107/rcub_dais_4088 .
Mitić, Vojislav V., Lazović, Goran, Vosika, Zoran B., Paunović, Vesna, Veljković, Sandra, Danković, Danijel, Vlahović, Branislav, "Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):92-93,
https://hdl.handle.net/21.15107/rcub_dais_4088 .