Stajić Trošić, Jasna

Link to this page

Authority KeyName Variants
e3075dba-8594-4182-ac32-c1bcf9901a55
  • Stajić Trošić, Jasna (3)
Projects

Author's Bibliography

Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes

Marković, Radmila; Stevanović, Jasmina S.; Gvozdenović, Milica M.; Jugović, Branimir; Grujić, Aleksandar; Nedeljković, Dragutin; Stajić Trošić, Jasna

(Belgrade : ESG, 2013)

TY  - JOUR
AU  - Marković, Radmila
AU  - Stevanović, Jasmina S.
AU  - Gvozdenović, Milica M.
AU  - Jugović, Branimir
AU  - Grujić, Aleksandar
AU  - Nedeljković, Dragutin
AU  - Stajić Trošić, Jasna
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/365
AB  - The use of copper anodes with non standard content of impurities for the treatment of waste, sulphur acid solutions that came as a result of the industrial process of electrolytic copper refining was investigated. Those solutions contain the high content of copper, nickel and arsine, and because of that, the copper anodes with high content of Ni, Pb, Sn and Sb were prepared. Examination the effect of high impurities content as well as the influence of the solution temperature on the anodes behaviour during the electrolytic process under the conditions that are the same as the industrial was the aim of this work. Obtained results clearly indicate that tested anodes could be used for the refined during the electrorefining process. Dissolution of copper anodes was not stoppage after the first appearance of the passivation region for A1 and A2 anodes while appearance of passivation for A3 anode, for test duration of 72 h, was not registered. The start time of the first passivation appearance is shorter in the case of the anode with high content of all impurities, anode A1. The first passivation occurrence was detected on higher temperature after about 29 h from the test starts. The change of chemical composition of electrolyte was monitored during electrolysis. Concentration of nickel in the working electrolyte at the end of process is increased and it corresponds to the Ni content in anodes. The copper and arsenic concentrations are decreased during the process. Arsenic passes into the anode slime, while the copper is deposited on the cathode and also passed in the slime. After the process is finished, obtained solution could be used for the nickel recover using the electrochemically or chemically methods.
PB  - Belgrade : ESG
T2  - International Journal of Electrochemical Science
T1  - Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes
SP  - 7357
EP  - 7370
VL  - 8
UR  - https://hdl.handle.net/21.15107/rcub_dais_365
ER  - 
@article{
author = "Marković, Radmila and Stevanović, Jasmina S. and Gvozdenović, Milica M. and Jugović, Branimir and Grujić, Aleksandar and Nedeljković, Dragutin and Stajić Trošić, Jasna",
year = "2013",
abstract = "The use of copper anodes with non standard content of impurities for the treatment of waste, sulphur acid solutions that came as a result of the industrial process of electrolytic copper refining was investigated. Those solutions contain the high content of copper, nickel and arsine, and because of that, the copper anodes with high content of Ni, Pb, Sn and Sb were prepared. Examination the effect of high impurities content as well as the influence of the solution temperature on the anodes behaviour during the electrolytic process under the conditions that are the same as the industrial was the aim of this work. Obtained results clearly indicate that tested anodes could be used for the refined during the electrorefining process. Dissolution of copper anodes was not stoppage after the first appearance of the passivation region for A1 and A2 anodes while appearance of passivation for A3 anode, for test duration of 72 h, was not registered. The start time of the first passivation appearance is shorter in the case of the anode with high content of all impurities, anode A1. The first passivation occurrence was detected on higher temperature after about 29 h from the test starts. The change of chemical composition of electrolyte was monitored during electrolysis. Concentration of nickel in the working electrolyte at the end of process is increased and it corresponds to the Ni content in anodes. The copper and arsenic concentrations are decreased during the process. Arsenic passes into the anode slime, while the copper is deposited on the cathode and also passed in the slime. After the process is finished, obtained solution could be used for the nickel recover using the electrochemically or chemically methods.",
publisher = "Belgrade : ESG",
journal = "International Journal of Electrochemical Science",
title = "Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes",
pages = "7357-7370",
volume = "8",
url = "https://hdl.handle.net/21.15107/rcub_dais_365"
}
Marković, R., Stevanović, J. S., Gvozdenović, M. M., Jugović, B., Grujić, A., Nedeljković, D.,& Stajić Trošić, J.. (2013). Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes. in International Journal of Electrochemical Science
Belgrade : ESG., 8, 7357-7370.
https://hdl.handle.net/21.15107/rcub_dais_365
Marković R, Stevanović JS, Gvozdenović MM, Jugović B, Grujić A, Nedeljković D, Stajić Trošić J. Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes. in International Journal of Electrochemical Science. 2013;8:7357-7370.
https://hdl.handle.net/21.15107/rcub_dais_365 .
Marković, Radmila, Stevanović, Jasmina S., Gvozdenović, Milica M., Jugović, Branimir, Grujić, Aleksandar, Nedeljković, Dragutin, Stajić Trošić, Jasna, "Treatment of Waste Copper Electrolytes Using Insoluble and Soluble Anodes" in International Journal of Electrochemical Science, 8 (2013):7357-7370,
https://hdl.handle.net/21.15107/rcub_dais_365 .
2
3

Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

Marković, Radmila; Stevanović, Jasmina S.; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić Trošić, Jasna; Gvozdenović, Milica M.

(Springer US, 2012)

TY  - JOUR
AU  - Marković, Radmila
AU  - Stevanović, Jasmina S.
AU  - Avramović, Ljiljana
AU  - Nedeljković, Dragutin
AU  - Jugović, Branimir
AU  - Stajić Trošić, Jasna
AU  - Gvozdenović, Milica M.
PY  - 2012
UR  - https://dais.sanu.ac.rs/123456789/478
AB  - The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.
PB  - Springer US
T2  - Metallurgical and Materials Transactions B
T1  - Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment
SP  - 1388
EP  - 1392
VL  - 43
IS  - 6
DO  - 10.1007/s11663-012-9721-8
UR  - https://hdl.handle.net/21.15107/rcub_dais_478
ER  - 
@article{
author = "Marković, Radmila and Stevanović, Jasmina S. and Avramović, Ljiljana and Nedeljković, Dragutin and Jugović, Branimir and Stajić Trošić, Jasna and Gvozdenović, Milica M.",
year = "2012",
abstract = "The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.",
publisher = "Springer US",
journal = "Metallurgical and Materials Transactions B",
title = "Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment",
pages = "1388-1392",
volume = "43",
number = "6",
doi = "10.1007/s11663-012-9721-8",
url = "https://hdl.handle.net/21.15107/rcub_dais_478"
}
Marković, R., Stevanović, J. S., Avramović, L., Nedeljković, D., Jugović, B., Stajić Trošić, J.,& Gvozdenović, M. M.. (2012). Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment. in Metallurgical and Materials Transactions B
Springer US., 43(6), 1388-1392.
https://doi.org/10.1007/s11663-012-9721-8
https://hdl.handle.net/21.15107/rcub_dais_478
Marković R, Stevanović JS, Avramović L, Nedeljković D, Jugović B, Stajić Trošić J, Gvozdenović MM. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment. in Metallurgical and Materials Transactions B. 2012;43(6):1388-1392.
doi:10.1007/s11663-012-9721-8
https://hdl.handle.net/21.15107/rcub_dais_478 .
Marković, Radmila, Stevanović, Jasmina S., Avramović, Ljiljana, Nedeljković, Dragutin, Jugović, Branimir, Stajić Trošić, Jasna, Gvozdenović, Milica M., "Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment" in Metallurgical and Materials Transactions B, 43, no. 6 (2012):1388-1392,
https://doi.org/10.1007/s11663-012-9721-8 .,
https://hdl.handle.net/21.15107/rcub_dais_478 .
4
3
4

Behaviour of non-standard composition copper bearing anodes from the copper refining process

Marković, R.; Friedrich, B.; Stajić Trošić, Jasna; Jordović, Branka; Jugović, Branimir; Gvozdenović, Milica M.; Stevanović, Jasmina S.

(Elsevier Science Bv, Amsterdam, 2010)

TY  - JOUR
AU  - Marković, R.
AU  - Friedrich, B.
AU  - Stajić Trošić, Jasna
AU  - Jordović, Branka
AU  - Jugović, Branimir
AU  - Gvozdenović, Milica M.
AU  - Stevanović, Jasmina S.
PY  - 2010
UR  - https://dais.sanu.ac.rs/123456789/4844
AB  - This paper addresses on investigation the possibility of electrolytic treatment the sulphur acidic waste solution, obtained in the conventional electrolytic copper refining process. Beside the high copper concentration, the high concentration of other metals, in this case nickel, is the main characteristic of these waste solutions. Due to this fact, the copper bearing anodes with non-standard nickel, lead, tin and antimony content were specially prepared for the refining process. Nickel content of all anodes was approximately 7.5 mass%, and the content of lead, tin and antimony was varied. The preliminary results, obtained using the standard electrochemical techniques, have indicated that the copper bearing anodes could be used under the same conditions as well as in the conventional copper refining process. The measurements in constant galvanostatic pulse have pointed out that the all chemical elements from copper bearing anodes were dissolved and only copper was deposited onto the cathode. It was also pointed out that Ni concentration in the base working electrolyte (sulphur acidic waste solution), after 72 h of process, increased to 102 mass% at T-1 = 63 +/- 2 degrees C and up to 122 mass% at T-1 = 73 +/- 2 degrees C, while arsenic concentration decreased to a minimum value.
PB  - Elsevier Science Bv, Amsterdam
T2  - Journal of Hazardous Materials
T1  - Behaviour of non-standard composition copper bearing anodes from the copper refining process
SP  - 55
EP  - 63
VL  - 182
IS  - 1-3
DO  - 10.1016/j.jhazmat.2010.05.137
UR  - https://hdl.handle.net/21.15107/rcub_dais_4844
ER  - 
@article{
author = "Marković, R. and Friedrich, B. and Stajić Trošić, Jasna and Jordović, Branka and Jugović, Branimir and Gvozdenović, Milica M. and Stevanović, Jasmina S.",
year = "2010",
abstract = "This paper addresses on investigation the possibility of electrolytic treatment the sulphur acidic waste solution, obtained in the conventional electrolytic copper refining process. Beside the high copper concentration, the high concentration of other metals, in this case nickel, is the main characteristic of these waste solutions. Due to this fact, the copper bearing anodes with non-standard nickel, lead, tin and antimony content were specially prepared for the refining process. Nickel content of all anodes was approximately 7.5 mass%, and the content of lead, tin and antimony was varied. The preliminary results, obtained using the standard electrochemical techniques, have indicated that the copper bearing anodes could be used under the same conditions as well as in the conventional copper refining process. The measurements in constant galvanostatic pulse have pointed out that the all chemical elements from copper bearing anodes were dissolved and only copper was deposited onto the cathode. It was also pointed out that Ni concentration in the base working electrolyte (sulphur acidic waste solution), after 72 h of process, increased to 102 mass% at T-1 = 63 +/- 2 degrees C and up to 122 mass% at T-1 = 73 +/- 2 degrees C, while arsenic concentration decreased to a minimum value.",
publisher = "Elsevier Science Bv, Amsterdam",
journal = "Journal of Hazardous Materials",
title = "Behaviour of non-standard composition copper bearing anodes from the copper refining process",
pages = "55-63",
volume = "182",
number = "1-3",
doi = "10.1016/j.jhazmat.2010.05.137",
url = "https://hdl.handle.net/21.15107/rcub_dais_4844"
}
Marković, R., Friedrich, B., Stajić Trošić, J., Jordović, B., Jugović, B., Gvozdenović, M. M.,& Stevanović, J. S.. (2010). Behaviour of non-standard composition copper bearing anodes from the copper refining process. in Journal of Hazardous Materials
Elsevier Science Bv, Amsterdam., 182(1-3), 55-63.
https://doi.org/10.1016/j.jhazmat.2010.05.137
https://hdl.handle.net/21.15107/rcub_dais_4844
Marković R, Friedrich B, Stajić Trošić J, Jordović B, Jugović B, Gvozdenović MM, Stevanović JS. Behaviour of non-standard composition copper bearing anodes from the copper refining process. in Journal of Hazardous Materials. 2010;182(1-3):55-63.
doi:10.1016/j.jhazmat.2010.05.137
https://hdl.handle.net/21.15107/rcub_dais_4844 .
Marković, R., Friedrich, B., Stajić Trošić, Jasna, Jordović, Branka, Jugović, Branimir, Gvozdenović, Milica M., Stevanović, Jasmina S., "Behaviour of non-standard composition copper bearing anodes from the copper refining process" in Journal of Hazardous Materials, 182, no. 1-3 (2010):55-63,
https://doi.org/10.1016/j.jhazmat.2010.05.137 .,
https://hdl.handle.net/21.15107/rcub_dais_4844 .
5
4
5