Mitić, Vojislav V.

Link to this page

Authority KeyName Variants
2611a781-6978-4fd3-aec1-d1504e639332
  • Mitić, Vojislav V. (162)
  • Mitić, Vojislav (3)
Projects
Directed synthesis, structure and properties of multifunctional materials Utilization of by-products and recycled waste materials in concrete composites in the scope of sustainable construction development in Serbia: investigation and environmental assessment of possible applications
Development and application of multifunctional materials using domestic raw materials in upgraded processing lines Development of new information and communication technologies, based on advanced mathematical methods, with applications in medicine, telecommunications, power systems, protection of national heritage and education
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Investigation of the relation in triad: Synthesis structure-properties for functional materials
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Osmotic dehydration of food - energy and ecological aspects of sustainable production
Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine Development, optimization and application of energy-harvesting sensors technology
Mechanochemistry treatment of low quality mineral raw materials National Science Foundation of North Carolina, USA
DLR (50WM1759) ESA (AO-099-022)
ESA project ThermoProp (AO-099-022) Federal Ministry for Economic Affairs and Energy (BMWi), Grant No. 50WM1759
https://doi.org/10.13039/501100001809 Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: significance for the formation of metallic and non-metallic mineral deposits
Serbian musical identities within local and global frameworks: traditions, changes, challenges Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200023 (Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200102 (Univeristy of Niš, Faculty of Electronic Engineering) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)
Virtual human osteoarticular system and its application in preclinical and clinical practice Improvement of the monitoring system and the assessment of a long-term population exposure to pollutant substances in the environment using neural networks
Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them
Functional, Functionalized and Advanced Nanomaterials Micro- Nanosystems and Sensors for Electric Power and Process Industry and Environmental Protection
Implementation of new technical, technological and environmental solutions in the mining and metallurgical operations RBB and RBM Development, realization, optimization and monitoring of a 5kWp grid-connected modular Sun-tracking photovoltaic system

Author's Bibliography

Comparison between crystal structure and dielectric properties Nd(Mg1/2Ti1/2)O3 (NMT) and Nd(Zn1/2Ti1/2)O3 (NZT)

Khamoushi, Kouros; Mitić, Vojislav V.; Manojlović, Jelena; Paunović, Vesna; Cvetković, Zlata; Lazović, Goran

(World Scientific Pub Co Pte Ltd, 2021)

TY  - JOUR
AU  - Khamoushi, Kouros
AU  - Mitić, Vojislav V.
AU  - Manojlović, Jelena
AU  - Paunović, Vesna
AU  - Cvetković, Zlata
AU  - Lazović, Goran
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12392
AB  - The dielectric properties of Neodymium zinc titanium oxide (NZT) and Neodymium magnesium titanium oxide (NMT) were investigated. The single-phase ceramic was synthesized at various temperatures below 1650∘  C.  The result shows that the value of temperature of resonant frequency (τf)  for NMT is higher than NZT.  Our findings also indicate that the rare earth materials produce high property dielectric materials, despite the fact some elements produce lower negative value of temperature of resonant frequency (τf) . By doping a compound such as CaTiO3 which has a very positive temperature of resonant frequency (τf=712 ppm/∘C) and a very high relative permittivity (εr=145), it is possible to tune NZT and MNT to achieve an excellent dielectric material. This work is under consideration. The results of this scientific research could be very important for modern advance applications in microelectronic miniaturization.
PB  - World Scientific Pub Co Pte Ltd
T2  - Modern Physics Letters B
T1  - Comparison between crystal structure and dielectric properties Nd(Mg1/2Ti1/2)O3 (NMT) and Nd(Zn1/2Ti1/2)O3 (NZT)
SP  - 2150370
VL  - 35
IS  - 21
DO  - 10.1142/S021798492150370X
UR  - https://hdl.handle.net/21.15107/rcub_dais_12392
ER  - 
@article{
author = "Khamoushi, Kouros and Mitić, Vojislav V. and Manojlović, Jelena and Paunović, Vesna and Cvetković, Zlata and Lazović, Goran",
year = "2021",
abstract = "The dielectric properties of Neodymium zinc titanium oxide (NZT) and Neodymium magnesium titanium oxide (NMT) were investigated. The single-phase ceramic was synthesized at various temperatures below 1650∘  C.  The result shows that the value of temperature of resonant frequency (τf)  for NMT is higher than NZT.  Our findings also indicate that the rare earth materials produce high property dielectric materials, despite the fact some elements produce lower negative value of temperature of resonant frequency (τf) . By doping a compound such as CaTiO3 which has a very positive temperature of resonant frequency (τf=712 ppm/∘C) and a very high relative permittivity (εr=145), it is possible to tune NZT and MNT to achieve an excellent dielectric material. This work is under consideration. The results of this scientific research could be very important for modern advance applications in microelectronic miniaturization.",
publisher = "World Scientific Pub Co Pte Ltd",
journal = "Modern Physics Letters B",
title = "Comparison between crystal structure and dielectric properties Nd(Mg1/2Ti1/2)O3 (NMT) and Nd(Zn1/2Ti1/2)O3 (NZT)",
pages = "2150370",
volume = "35",
number = "21",
doi = "10.1142/S021798492150370X",
url = "https://hdl.handle.net/21.15107/rcub_dais_12392"
}
Khamoushi, K., Mitić, V. V., Manojlović, J., Paunović, V., Cvetković, Z.,& Lazović, G.. (2021). Comparison between crystal structure and dielectric properties Nd(Mg1/2Ti1/2)O3 (NMT) and Nd(Zn1/2Ti1/2)O3 (NZT). in Modern Physics Letters B
World Scientific Pub Co Pte Ltd., 35(21), 2150370.
https://doi.org/10.1142/S021798492150370X
https://hdl.handle.net/21.15107/rcub_dais_12392
Khamoushi K, Mitić VV, Manojlović J, Paunović V, Cvetković Z, Lazović G. Comparison between crystal structure and dielectric properties Nd(Mg1/2Ti1/2)O3 (NMT) and Nd(Zn1/2Ti1/2)O3 (NZT). in Modern Physics Letters B. 2021;35(21):2150370.
doi:10.1142/S021798492150370X
https://hdl.handle.net/21.15107/rcub_dais_12392 .
Khamoushi, Kouros, Mitić, Vojislav V., Manojlović, Jelena, Paunović, Vesna, Cvetković, Zlata, Lazović, Goran, "Comparison between crystal structure and dielectric properties Nd(Mg1/2Ti1/2)O3 (NMT) and Nd(Zn1/2Ti1/2)O3 (NZT)" in Modern Physics Letters B, 35, no. 21 (2021):2150370,
https://doi.org/10.1142/S021798492150370X .,
https://hdl.handle.net/21.15107/rcub_dais_12392 .
2
2

Butler-Volmer current equation and fractal nature correction in electrochemical energy

Mitić, Vojislav V.; Lazović, Goran; Đorđević, Dragan; Stanković, Maja; Paunović, Vesna; Krstić, Nenad; Manojlović, Jelena

(Belgrade : Vinča Institute of Nuclear Sciences, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Đorđević, Dragan
AU  - Stanković, Maja
AU  - Paunović, Vesna
AU  - Krstić, Nenad
AU  - Manojlović, Jelena
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12391
AB  - The Global Energy Crisis necessitated improving research into new, renewable and alternative energy sources. Due to that, our focus is on the area of some phenomena and applications where different synthetic methods and micro-structure property optimization achieved significant improvement in the electro physical properties of output materials and components. This is especially important for higher energy efficiency and electricity production (batteries and battery systems, fuel cells, and hydrogen energy).The improvement of energy storage tank capacity is one of the most important development issues in the energy sphere too. It is because of this very promising research and application area that we are expanding the knowledge on these phenomena through fractal nature analysis. So, the results obtained in the field of electrochemical energy sources, especially in electrolyte development, are taken into account the analysis of fractal nature optimization. Based on the research field of fractal material science, particularly electronic materials, we conducted research in micro-structure fractal influence in the area of electrochemistry. We investigated the consolidation parameters of Fe2O3 redox processes. The influence of activation energy, fundamental thermodynamic parameters, and also the fractal correction of electrode surface area through complex fractal dimension with recognized grains and pores, and the Brownian motion of particles is introduced. Finally, the electrochemical Butler-Volmer equation fractalization is obtained. These results practically open new frontiers in electrochemical energy processes performed through the Arrhenius equation within electrolyte bulk and electrode relations and more complete and precise energy generation.
PB  - Belgrade : Vinča Institute of Nuclear Sciences
T2  - Thermal Science
T1  - Butler-Volmer current equation and fractal nature correction in electrochemical energy
SP  - 1837
EP  - 1848
VL  - 25
IS  - 3 Part A
DO  - 10.2298/TSCI200117232M
UR  - https://hdl.handle.net/21.15107/rcub_dais_12391
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Đorđević, Dragan and Stanković, Maja and Paunović, Vesna and Krstić, Nenad and Manojlović, Jelena",
year = "2021",
abstract = "The Global Energy Crisis necessitated improving research into new, renewable and alternative energy sources. Due to that, our focus is on the area of some phenomena and applications where different synthetic methods and micro-structure property optimization achieved significant improvement in the electro physical properties of output materials and components. This is especially important for higher energy efficiency and electricity production (batteries and battery systems, fuel cells, and hydrogen energy).The improvement of energy storage tank capacity is one of the most important development issues in the energy sphere too. It is because of this very promising research and application area that we are expanding the knowledge on these phenomena through fractal nature analysis. So, the results obtained in the field of electrochemical energy sources, especially in electrolyte development, are taken into account the analysis of fractal nature optimization. Based on the research field of fractal material science, particularly electronic materials, we conducted research in micro-structure fractal influence in the area of electrochemistry. We investigated the consolidation parameters of Fe2O3 redox processes. The influence of activation energy, fundamental thermodynamic parameters, and also the fractal correction of electrode surface area through complex fractal dimension with recognized grains and pores, and the Brownian motion of particles is introduced. Finally, the electrochemical Butler-Volmer equation fractalization is obtained. These results practically open new frontiers in electrochemical energy processes performed through the Arrhenius equation within electrolyte bulk and electrode relations and more complete and precise energy generation.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences",
journal = "Thermal Science",
title = "Butler-Volmer current equation and fractal nature correction in electrochemical energy",
pages = "1837-1848",
volume = "25",
number = "3 Part A",
doi = "10.2298/TSCI200117232M",
url = "https://hdl.handle.net/21.15107/rcub_dais_12391"
}
Mitić, V. V., Lazović, G., Đorđević, D., Stanković, M., Paunović, V., Krstić, N.,& Manojlović, J.. (2021). Butler-Volmer current equation and fractal nature correction in electrochemical energy. in Thermal Science
Belgrade : Vinča Institute of Nuclear Sciences., 25(3 Part A), 1837-1848.
https://doi.org/10.2298/TSCI200117232M
https://hdl.handle.net/21.15107/rcub_dais_12391
Mitić VV, Lazović G, Đorđević D, Stanković M, Paunović V, Krstić N, Manojlović J. Butler-Volmer current equation and fractal nature correction in electrochemical energy. in Thermal Science. 2021;25(3 Part A):1837-1848.
doi:10.2298/TSCI200117232M
https://hdl.handle.net/21.15107/rcub_dais_12391 .
Mitić, Vojislav V., Lazović, Goran, Đorđević, Dragan, Stanković, Maja, Paunović, Vesna, Krstić, Nenad, Manojlović, Jelena, "Butler-Volmer current equation and fractal nature correction in electrochemical energy" in Thermal Science, 25, no. 3 Part A (2021):1837-1848,
https://doi.org/10.2298/TSCI200117232M .,
https://hdl.handle.net/21.15107/rcub_dais_12391 .
5
4
4

Biomolecules and Brownian motion

Mitić, Vojislav V.; Marković, Bojana; Aleksić, Sanja; Milošević, Dušan; Ranđelović, Branislav; Ilić, Ivana; Manojlović, Jelena; Vlahović, Branislav

(Belgrade : Društvo za ETRAN, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Marković, Bojana
AU  - Aleksić, Sanja
AU  - Milošević, Dušan
AU  - Ranđelović, Branislav
AU  - Ilić, Ivana
AU  - Manojlović, Jelena
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://www.etran.rs/2021/wp-content/uploads/2021/08/PROGRAM_ETRAN_2021_final_b5_za_web.pdf
UR  - https://dais.sanu.ac.rs/123456789/12285
AB  - Structures and different life functions of microorganisms, like motion, are based on molecular biology processes, which comprise molecular and submolecular particles. It is very important to determine relation between molecular and microorganisms levels. The aim of our research is the analysis of Brownian motion as a general phenomenon and the consequence of structures hierarchy from molecular to microorganisms level. If we approach this idea from the aspect of biomimetic correlations at the level of the alive and nonalive matter system particles, the condensed matter particles could be considered as a part of micro, nano and molecular microorganisms structures. In this research we used the experimental results of bacterial motion influenced by different energy impulses. The important goal of this research paper is to obtain significant data regarding Brownian motion in the frame of fractal nature similarities, as an integrative property of living and nonliving systems particles processes. This opens new frontiers for submicroelectronics relations within the integrated supermicro biophysical systems. This is a potential new trend in nowadays advanced research, where we integrate the knowledges of complex relations between the electrons or other particles and their clusters as joint structures in alive and condensed matter, what could be a possible direction for new microelectronics complex biodevices and integrations.
PB  - Belgrade : Društvo za ETRAN
PB  - Beograd : Akademska misao
C3  - Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina
T1  - Biomolecules and Brownian motion
SP  - 404
EP  - 408
UR  - https://hdl.handle.net/21.15107/rcub_dais_12285
ER  - 
@conference{
author = "Mitić, Vojislav V. and Marković, Bojana and Aleksić, Sanja and Milošević, Dušan and Ranđelović, Branislav and Ilić, Ivana and Manojlović, Jelena and Vlahović, Branislav",
year = "2021",
abstract = "Structures and different life functions of microorganisms, like motion, are based on molecular biology processes, which comprise molecular and submolecular particles. It is very important to determine relation between molecular and microorganisms levels. The aim of our research is the analysis of Brownian motion as a general phenomenon and the consequence of structures hierarchy from molecular to microorganisms level. If we approach this idea from the aspect of biomimetic correlations at the level of the alive and nonalive matter system particles, the condensed matter particles could be considered as a part of micro, nano and molecular microorganisms structures. In this research we used the experimental results of bacterial motion influenced by different energy impulses. The important goal of this research paper is to obtain significant data regarding Brownian motion in the frame of fractal nature similarities, as an integrative property of living and nonliving systems particles processes. This opens new frontiers for submicroelectronics relations within the integrated supermicro biophysical systems. This is a potential new trend in nowadays advanced research, where we integrate the knowledges of complex relations between the electrons or other particles and their clusters as joint structures in alive and condensed matter, what could be a possible direction for new microelectronics complex biodevices and integrations.",
publisher = "Belgrade : Društvo za ETRAN, Beograd : Akademska misao",
journal = "Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina",
title = "Biomolecules and Brownian motion",
pages = "404-408",
url = "https://hdl.handle.net/21.15107/rcub_dais_12285"
}
Mitić, V. V., Marković, B., Aleksić, S., Milošević, D., Ranđelović, B., Ilić, I., Manojlović, J.,& Vlahović, B.. (2021). Biomolecules and Brownian motion. in Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina
Belgrade : Društvo za ETRAN., 404-408.
https://hdl.handle.net/21.15107/rcub_dais_12285
Mitić VV, Marković B, Aleksić S, Milošević D, Ranđelović B, Ilić I, Manojlović J, Vlahović B. Biomolecules and Brownian motion. in Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina. 2021;:404-408.
https://hdl.handle.net/21.15107/rcub_dais_12285 .
Mitić, Vojislav V., Marković, Bojana, Aleksić, Sanja, Milošević, Dušan, Ranđelović, Branislav, Ilić, Ivana, Manojlović, Jelena, Vlahović, Branislav, "Biomolecules and Brownian motion" in Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina (2021):404-408,
https://hdl.handle.net/21.15107/rcub_dais_12285 .

Biomolecules and Brownian motion

Mitić, Vojislav V.; Marković, Bojana; Aleksić, Sanja; Milošević, Dušan; Ranđelović, Branislav; Ilić, Ivana; Manojlović, Jelena; Vlahović, Branislav

(Belgrade : ETRAN, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Marković, Bojana
AU  - Aleksić, Sanja
AU  - Milošević, Dušan
AU  - Ranđelović, Branislav
AU  - Ilić, Ivana
AU  - Manojlović, Jelena
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://www.etran.rs/2021/wp-content/uploads/2021/08/PROGRAM_ETRAN_2021_final_b5_za_web.pdf
UR  - https://dais.sanu.ac.rs/123456789/11919
AB  - Structures and different life functions of microorganisms, like motion, are based on molecular biology processes, which comprise molecular and submolecular particles. It is very important to determine relation between molecular and microorganisms levels. The aim of our research is the analysis of Brownian motion as a general phenomenon and the consequence of structures hierarchy from molecular to microorganisms level. If we approach this idea from the aspect of biomimetic correlations at the level of the alive and nonalive matter system particles, the condensed matter particles could be considered as a part of micro, nano and molecular microorganisms structures. In this research we used the experimental results of bacterial motion influenced by different energy impulses. The important goal of this research paper is to obtain significant data regarding Brownian motion in the frame of fractal nature similarities, as an integrative property of living and nonliving systems particles processes. This opens new frontiers for submicroelectronics relations within the integrated supermicro biophysical systems. This is a potential new trend in nowadays advanced research, where we integrate the knowledges of complex relations between the electrons or other particles and their clusters as joint structures in alive and condensed matter, what could be a possible direction for new microelectronics complex biodevices and integrations.
PB  - Belgrade : ETRAN
C3  - Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina
T1  - Biomolecules and Brownian motion
SP  - 31
EP  - 31
UR  - https://hdl.handle.net/21.15107/rcub_dais_11919
ER  - 
@conference{
author = "Mitić, Vojislav V. and Marković, Bojana and Aleksić, Sanja and Milošević, Dušan and Ranđelović, Branislav and Ilić, Ivana and Manojlović, Jelena and Vlahović, Branislav",
year = "2021",
abstract = "Structures and different life functions of microorganisms, like motion, are based on molecular biology processes, which comprise molecular and submolecular particles. It is very important to determine relation between molecular and microorganisms levels. The aim of our research is the analysis of Brownian motion as a general phenomenon and the consequence of structures hierarchy from molecular to microorganisms level. If we approach this idea from the aspect of biomimetic correlations at the level of the alive and nonalive matter system particles, the condensed matter particles could be considered as a part of micro, nano and molecular microorganisms structures. In this research we used the experimental results of bacterial motion influenced by different energy impulses. The important goal of this research paper is to obtain significant data regarding Brownian motion in the frame of fractal nature similarities, as an integrative property of living and nonliving systems particles processes. This opens new frontiers for submicroelectronics relations within the integrated supermicro biophysical systems. This is a potential new trend in nowadays advanced research, where we integrate the knowledges of complex relations between the electrons or other particles and their clusters as joint structures in alive and condensed matter, what could be a possible direction for new microelectronics complex biodevices and integrations.",
publisher = "Belgrade : ETRAN",
journal = "Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina",
title = "Biomolecules and Brownian motion",
pages = "31-31",
url = "https://hdl.handle.net/21.15107/rcub_dais_11919"
}
Mitić, V. V., Marković, B., Aleksić, S., Milošević, D., Ranđelović, B., Ilić, I., Manojlović, J.,& Vlahović, B.. (2021). Biomolecules and Brownian motion. in Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina
Belgrade : ETRAN., 31-31.
https://hdl.handle.net/21.15107/rcub_dais_11919
Mitić VV, Marković B, Aleksić S, Milošević D, Ranđelović B, Ilić I, Manojlović J, Vlahović B. Biomolecules and Brownian motion. in Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina. 2021;:31-31.
https://hdl.handle.net/21.15107/rcub_dais_11919 .
Mitić, Vojislav V., Marković, Bojana, Aleksić, Sanja, Milošević, Dušan, Ranđelović, Branislav, Ilić, Ivana, Manojlović, Jelena, Vlahović, Branislav, "Biomolecules and Brownian motion" in Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina (2021):31-31,
https://hdl.handle.net/21.15107/rcub_dais_11919 .

Magnetic materials, Curie-Weiss law and fractal correction

Mitić, Vojislav V.; Serpa, Cristina; Stajčić, Aleksandar; Khamoushi, Kouros; Paunović, Vesna; Aleksić, Sanja; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Serpa, Cristina
AU  - Stajčić, Aleksandar
AU  - Khamoushi, Kouros
AU  - Paunović, Vesna
AU  - Aleksić, Sanja
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11907
AB  - Neodymium zinc titanate (NZT) is a very attractive perovskite due to its magnetic and dielectric properties. Considering the microstructure influence NZT stability and performance, it is of great importance to establish an approach for the analysis and prediction of grain boundary phenomena. The fractal nature analysis has already proved to be valuable for the reconstruction and prediction of ceramics intergranular electrical properties. However, no researches were performed on the fractal analysis applied on magnetic materials. This method could give an insight in magnetic properties change from the bulk to the grain interface level. In this study, fractal analysis was applied for the Curie-Weiss law correction, introducing fractal correction into magnetic materials for the first time. NZT powders used in this research for fractal analysis were obtained after sintering at different temperatures in the range from 1450°C to 1675°C.Connection between the microstructure fractal nature and the resulting magnetic permeability has been established, enabling the application on different magnetic materials in the future. This creates a foundation for new researches that will lead to further miniaturization of satellite and mobile devices.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Magnetic materials, Curie-Weiss law and fractal correction
SP  - 46
EP  - 46
UR  - https://hdl.handle.net/21.15107/rcub_dais_11907
ER  - 
@conference{
author = "Mitić, Vojislav V. and Serpa, Cristina and Stajčić, Aleksandar and Khamoushi, Kouros and Paunović, Vesna and Aleksić, Sanja and Vlahović, Branislav",
year = "2021",
abstract = "Neodymium zinc titanate (NZT) is a very attractive perovskite due to its magnetic and dielectric properties. Considering the microstructure influence NZT stability and performance, it is of great importance to establish an approach for the analysis and prediction of grain boundary phenomena. The fractal nature analysis has already proved to be valuable for the reconstruction and prediction of ceramics intergranular electrical properties. However, no researches were performed on the fractal analysis applied on magnetic materials. This method could give an insight in magnetic properties change from the bulk to the grain interface level. In this study, fractal analysis was applied for the Curie-Weiss law correction, introducing fractal correction into magnetic materials for the first time. NZT powders used in this research for fractal analysis were obtained after sintering at different temperatures in the range from 1450°C to 1675°C.Connection between the microstructure fractal nature and the resulting magnetic permeability has been established, enabling the application on different magnetic materials in the future. This creates a foundation for new researches that will lead to further miniaturization of satellite and mobile devices.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Magnetic materials, Curie-Weiss law and fractal correction",
pages = "46-46",
url = "https://hdl.handle.net/21.15107/rcub_dais_11907"
}
Mitić, V. V., Serpa, C., Stajčić, A., Khamoushi, K., Paunović, V., Aleksić, S.,& Vlahović, B.. (2021). Magnetic materials, Curie-Weiss law and fractal correction. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 46-46.
https://hdl.handle.net/21.15107/rcub_dais_11907
Mitić VV, Serpa C, Stajčić A, Khamoushi K, Paunović V, Aleksić S, Vlahović B. Magnetic materials, Curie-Weiss law and fractal correction. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:46-46.
https://hdl.handle.net/21.15107/rcub_dais_11907 .
Mitić, Vojislav V., Serpa, Cristina, Stajčić, Aleksandar, Khamoushi, Kouros, Paunović, Vesna, Aleksić, Sanja, Vlahović, Branislav, "Magnetic materials, Curie-Weiss law and fractal correction" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):46-46,
https://hdl.handle.net/21.15107/rcub_dais_11907 .

The ceramics materials density defined by artificial neural networks

Ribar, Srđan; Mitić, Vojislav V.; Ranđelović, Branislav; Milošević, Dušan; Paunović, Vesna; Fecht, Hans-Jörg; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Ribar, Srđan
AU  - Mitić, Vojislav V.
AU  - Ranđelović, Branislav
AU  - Milošević, Dušan
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11909
AB  - Predicting the ceramic materials properties and designing the desired microstructures characteristics are very important objectives in ceramic samples consolidating process. The goal of our research is to calculate the density within consolidated BaTiO3-ceramic samples for different consolidation parameters, like sintering temperature, using obtained experimental data from the material’s surface, by applying back propagation neural network (BP). This method, as a very powerful tool, provides the possibility to calculate the exact values of desired microelectronic parameter at the level of the grains’ coating layers. The artificial neural networks, which have biomimetic similarities with biological neural networks, propagate the input signal forward, unlike the output signal, designated as error, which is propagated backwards spreading throughout the whole network, from output to input neuron layers. Between these two neuron layers, there are usually one or more hidden layers, where the grains of the sintered material are represented by network neurons. Adjustable coefficients, called weights, are forward propagated, like input signals, but they modify the calculated output error, so the neural network training procedure is necessary for reducing the error. Different consolidated samples density values, measured on the bulk, substituted the errors, which are calculated as contribution of all network elements, thus enabling the density calculation of all constituents of ceramic structure presented by neural network. In our future research we plan to increase the number of neurons and hidden layers in order to improve this method to become even more accurate and precise.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - The ceramics materials density defined by artificial neural networks
SP  - 42
EP  - 42
UR  - https://hdl.handle.net/21.15107/rcub_dais_11909
ER  - 
@conference{
author = "Ribar, Srđan and Mitić, Vojislav V. and Ranđelović, Branislav and Milošević, Dušan and Paunović, Vesna and Fecht, Hans-Jörg and Vlahović, Branislav",
year = "2021",
abstract = "Predicting the ceramic materials properties and designing the desired microstructures characteristics are very important objectives in ceramic samples consolidating process. The goal of our research is to calculate the density within consolidated BaTiO3-ceramic samples for different consolidation parameters, like sintering temperature, using obtained experimental data from the material’s surface, by applying back propagation neural network (BP). This method, as a very powerful tool, provides the possibility to calculate the exact values of desired microelectronic parameter at the level of the grains’ coating layers. The artificial neural networks, which have biomimetic similarities with biological neural networks, propagate the input signal forward, unlike the output signal, designated as error, which is propagated backwards spreading throughout the whole network, from output to input neuron layers. Between these two neuron layers, there are usually one or more hidden layers, where the grains of the sintered material are represented by network neurons. Adjustable coefficients, called weights, are forward propagated, like input signals, but they modify the calculated output error, so the neural network training procedure is necessary for reducing the error. Different consolidated samples density values, measured on the bulk, substituted the errors, which are calculated as contribution of all network elements, thus enabling the density calculation of all constituents of ceramic structure presented by neural network. In our future research we plan to increase the number of neurons and hidden layers in order to improve this method to become even more accurate and precise.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "The ceramics materials density defined by artificial neural networks",
pages = "42-42",
url = "https://hdl.handle.net/21.15107/rcub_dais_11909"
}
Ribar, S., Mitić, V. V., Ranđelović, B., Milošević, D., Paunović, V., Fecht, H.,& Vlahović, B.. (2021). The ceramics materials density defined by artificial neural networks. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 42-42.
https://hdl.handle.net/21.15107/rcub_dais_11909
Ribar S, Mitić VV, Ranđelović B, Milošević D, Paunović V, Fecht H, Vlahović B. The ceramics materials density defined by artificial neural networks. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:42-42.
https://hdl.handle.net/21.15107/rcub_dais_11909 .
Ribar, Srđan, Mitić, Vojislav V., Ranđelović, Branislav, Milošević, Dušan, Paunović, Vesna, Fecht, Hans-Jörg, Vlahović, Branislav, "The ceramics materials density defined by artificial neural networks" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):42-42,
https://hdl.handle.net/21.15107/rcub_dais_11909 .

Graph theory applied to microelectronics intergranular relations

Mitić, Vojislav V.; Lazović, Goran; Ranđelović, Branislav; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(Taylor & Francis Group, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Ranđelović, Branislav
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12090
AB  - The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.
PB  - Taylor & Francis Group
T2  - Ferroelectrics
T1  - Graph theory applied to microelectronics intergranular relations
SP  - 145
EP  - 152
VL  - 570
IS  - 1
DO  - 10.1080/00150193.2020.1839265
UR  - https://hdl.handle.net/21.15107/rcub_dais_12090
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Ranđelović, Branislav and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2021",
abstract = "The focus of this study is on the control of layers between grains by applying graph theory. We performed modification of BaTiO3 nanoparticles with Y2O3. The results of capacitance change on submicron level are the part of the measured values on the bulk samples. The original idea is to develop the new approach to use graph theory for networking of electronic parameters between the neighboring grains in order to compare the values measured on the sample, and to present them through the edges in graph between corresponding vertices. Capacitance change with DC bias was measured on bulk samples, and the modified nanoparticles showed stability up to 90 V. After using graph theory with the different number of neighboring grains and on different voltages, it has been shown that capacitance change can be successfully calculated on the layers between grains. Original calculations presented as 1D cases were performed, confirming graph application as a tool with which measured bulk results can be downsized to an appropriate intergranular level, opening the new perspectives in the area of miniaturization and micropackaging.",
publisher = "Taylor & Francis Group",
journal = "Ferroelectrics",
title = "Graph theory applied to microelectronics intergranular relations",
pages = "145-152",
volume = "570",
number = "1",
doi = "10.1080/00150193.2020.1839265",
url = "https://hdl.handle.net/21.15107/rcub_dais_12090"
}
Mitić, V. V., Lazović, G., Ranđelović, B., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B.. (2021). Graph theory applied to microelectronics intergranular relations. in Ferroelectrics
Taylor & Francis Group., 570(1), 145-152.
https://doi.org/10.1080/00150193.2020.1839265
https://hdl.handle.net/21.15107/rcub_dais_12090
Mitić VV, Lazović G, Ranđelović B, Paunović V, Radović I, Stajčić A, Vlahović B. Graph theory applied to microelectronics intergranular relations. in Ferroelectrics. 2021;570(1):145-152.
doi:10.1080/00150193.2020.1839265
https://hdl.handle.net/21.15107/rcub_dais_12090 .
Mitić, Vojislav V., Lazović, Goran, Ranđelović, Branislav, Paunović, Vesna, Radović, Ivana, Stajčić, Aleksandar, Vlahović, Branislav, "Graph theory applied to microelectronics intergranular relations" in Ferroelectrics, 570, no. 1 (2021):145-152,
https://doi.org/10.1080/00150193.2020.1839265 .,
https://hdl.handle.net/21.15107/rcub_dais_12090 .
14
4
14

The fractal nature analysis by applying grain formations of SAC305/OSP Cu and SAC305-0.05Ni/OSP Cu solder joints for microelectronic packaging

Mitić, Vojislav V.; Fleshman, Collin; Duh, Jenq-Gong; Ilić, Ivana D.; Lazović, Goran

(World Scientific Pub Co Pte Ltd, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Fleshman, Collin
AU  - Duh, Jenq-Gong
AU  - Ilić, Ivana D.
AU  - Lazović, Goran
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12395
AB  - The electronic packaging and systems are very important topics as the limitation of miniaturization approaches in semiconductor industry. Regarding the optimal materials microstructure for these applications, we studied different alloys such as Sn-3.0Ag-0.5Cu (wt.%)/organic solderability preservative (SAC305/OSP) Cu and SAC305–0.05Ni/OSP Cu solder joints. We implemented the fractal dimension characterization and microstructure morphology reconstruction. This is the first time that we applied fractals on such alloys. The morphology reconstruction is important for predicting and designing the optimal microstructure for the advanced desirable properties these alloys. These analyzed parameters are important for the hand-held devices and systems especially for the exploitation. The fractal reconstruction was applied on the prepared microstructures with five different magnifications. The results confirmed successful application of fractals in this area of materials science considering the grains and shapes reconstructions.
PB  - World Scientific Pub Co Pte Ltd
T2  - Modern Physics Letters B
T1  - The fractal nature analysis by applying grain formations of SAC305/OSP Cu and SAC305-0.05Ni/OSP Cu solder joints for microelectronic packaging
VL  - 35
IS  - 33
DO  - 10.1142/S0217984921504273
UR  - https://hdl.handle.net/21.15107/rcub_dais_12395
ER  - 
@article{
author = "Mitić, Vojislav V. and Fleshman, Collin and Duh, Jenq-Gong and Ilić, Ivana D. and Lazović, Goran",
year = "2021",
abstract = "The electronic packaging and systems are very important topics as the limitation of miniaturization approaches in semiconductor industry. Regarding the optimal materials microstructure for these applications, we studied different alloys such as Sn-3.0Ag-0.5Cu (wt.%)/organic solderability preservative (SAC305/OSP) Cu and SAC305–0.05Ni/OSP Cu solder joints. We implemented the fractal dimension characterization and microstructure morphology reconstruction. This is the first time that we applied fractals on such alloys. The morphology reconstruction is important for predicting and designing the optimal microstructure for the advanced desirable properties these alloys. These analyzed parameters are important for the hand-held devices and systems especially for the exploitation. The fractal reconstruction was applied on the prepared microstructures with five different magnifications. The results confirmed successful application of fractals in this area of materials science considering the grains and shapes reconstructions.",
publisher = "World Scientific Pub Co Pte Ltd",
journal = "Modern Physics Letters B",
title = "The fractal nature analysis by applying grain formations of SAC305/OSP Cu and SAC305-0.05Ni/OSP Cu solder joints for microelectronic packaging",
volume = "35",
number = "33",
doi = "10.1142/S0217984921504273",
url = "https://hdl.handle.net/21.15107/rcub_dais_12395"
}
Mitić, V. V., Fleshman, C., Duh, J., Ilić, I. D.,& Lazović, G.. (2021). The fractal nature analysis by applying grain formations of SAC305/OSP Cu and SAC305-0.05Ni/OSP Cu solder joints for microelectronic packaging. in Modern Physics Letters B
World Scientific Pub Co Pte Ltd., 35(33).
https://doi.org/10.1142/S0217984921504273
https://hdl.handle.net/21.15107/rcub_dais_12395
Mitić VV, Fleshman C, Duh J, Ilić ID, Lazović G. The fractal nature analysis by applying grain formations of SAC305/OSP Cu and SAC305-0.05Ni/OSP Cu solder joints for microelectronic packaging. in Modern Physics Letters B. 2021;35(33).
doi:10.1142/S0217984921504273
https://hdl.handle.net/21.15107/rcub_dais_12395 .
Mitić, Vojislav V., Fleshman, Collin, Duh, Jenq-Gong, Ilić, Ivana D., Lazović, Goran, "The fractal nature analysis by applying grain formations of SAC305/OSP Cu and SAC305-0.05Ni/OSP Cu solder joints for microelectronic packaging" in Modern Physics Letters B, 35, no. 33 (2021),
https://doi.org/10.1142/S0217984921504273 .,
https://hdl.handle.net/21.15107/rcub_dais_12395 .
1
1

Fractal nature analysis in porous structured bio-ceramics

Mitić, Vojislav V.; Chen, Po-Yu; Chou, Yueh-Ying; Ilić, Ivana D.; Marković, Bojana; Lazović, Goran

(World Scientific Pub Co Pte Ltd, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Chen, Po-Yu
AU  - Chou, Yueh-Ying
AU  - Ilić, Ivana D.
AU  - Marković, Bojana
AU  - Lazović, Goran
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12394
AB  - Hydroxyapatite scaffold is a type of bio-ceramic. Its cellular design has similarities with the morphologies in nature. Therefore, it is very important to control the structure, especially the porosity, as one of the main features for bio-ceramics applications. According to some literature, freeze casting can form the shape of dendrites and remain a foam structure after ice sublimation. Ice nucleation became more heterogeneous with the aid of printing materials during freeze casting. This procedure can even improve the issue of crack formation. In this paper, we studied the mechanical properties of hydroxyapatite scaffold. We also analyzed the porosity by fractal nature characterization, and successfully reconstructed pore shape, which is important for predicting ceramic morphology. We applied SEM analysis on bio-ceramic samples, at four different magnifications for the same pore structure. This is important for fractal analysis and pores reconstruction. We calculated the fractal dimensions based on measurements. In this way, we completed the fractal characterization of porosity and confirmed possibilities for successful porous shapes reconstruction. In this paper, we confirmed, for the first time, that fractal nature can be successfully applied in the area of porous bio-ceramics.
PB  - World Scientific Pub Co Pte Ltd
T2  - Modern Physics Letters B
T1  - Fractal nature analysis in porous structured bio-ceramics
SP  - 2150318
VL  - 35
IS  - 12
DO  - 10.1142/S0217984921503188
UR  - https://hdl.handle.net/21.15107/rcub_dais_12394
ER  - 
@article{
author = "Mitić, Vojislav V. and Chen, Po-Yu and Chou, Yueh-Ying and Ilić, Ivana D. and Marković, Bojana and Lazović, Goran",
year = "2021",
abstract = "Hydroxyapatite scaffold is a type of bio-ceramic. Its cellular design has similarities with the morphologies in nature. Therefore, it is very important to control the structure, especially the porosity, as one of the main features for bio-ceramics applications. According to some literature, freeze casting can form the shape of dendrites and remain a foam structure after ice sublimation. Ice nucleation became more heterogeneous with the aid of printing materials during freeze casting. This procedure can even improve the issue of crack formation. In this paper, we studied the mechanical properties of hydroxyapatite scaffold. We also analyzed the porosity by fractal nature characterization, and successfully reconstructed pore shape, which is important for predicting ceramic morphology. We applied SEM analysis on bio-ceramic samples, at four different magnifications for the same pore structure. This is important for fractal analysis and pores reconstruction. We calculated the fractal dimensions based on measurements. In this way, we completed the fractal characterization of porosity and confirmed possibilities for successful porous shapes reconstruction. In this paper, we confirmed, for the first time, that fractal nature can be successfully applied in the area of porous bio-ceramics.",
publisher = "World Scientific Pub Co Pte Ltd",
journal = "Modern Physics Letters B",
title = "Fractal nature analysis in porous structured bio-ceramics",
pages = "2150318",
volume = "35",
number = "12",
doi = "10.1142/S0217984921503188",
url = "https://hdl.handle.net/21.15107/rcub_dais_12394"
}
Mitić, V. V., Chen, P., Chou, Y., Ilić, I. D., Marković, B.,& Lazović, G.. (2021). Fractal nature analysis in porous structured bio-ceramics. in Modern Physics Letters B
World Scientific Pub Co Pte Ltd., 35(12), 2150318.
https://doi.org/10.1142/S0217984921503188
https://hdl.handle.net/21.15107/rcub_dais_12394
Mitić VV, Chen P, Chou Y, Ilić ID, Marković B, Lazović G. Fractal nature analysis in porous structured bio-ceramics. in Modern Physics Letters B. 2021;35(12):2150318.
doi:10.1142/S0217984921503188
https://hdl.handle.net/21.15107/rcub_dais_12394 .
Mitić, Vojislav V., Chen, Po-Yu, Chou, Yueh-Ying, Ilić, Ivana D., Marković, Bojana, Lazović, Goran, "Fractal nature analysis in porous structured bio-ceramics" in Modern Physics Letters B, 35, no. 12 (2021):2150318,
https://doi.org/10.1142/S0217984921503188 .,
https://hdl.handle.net/21.15107/rcub_dais_12394 .
2
1
2

The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics

Mitić, Vojislav V.; Ranđelović, Branislav; Ilić, Ivana; Ribar, Srđan; Chun, An-Lu; Stajčić, Aleksandar; Vlahović, Branislav

(World Scientific Publishing Co, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Ranđelović, Branislav
AU  - Ilić, Ivana
AU  - Ribar, Srđan
AU  - Chun, An-Lu
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4809
UR  - https://dais.sanu.ac.rs/123456789/11949
AB  - After pioneering attempts for the introduction of graph theory in the field of ceramics and microstructures, where 1D and 2D graphs were used, in this paper we applied 3D graphs for the breakdown voltage calculation in BaTiO3sample with some predefined constraints. We have described the relations between grains in the sample and established a mathematical approach for the calculation of breakdown voltage using experimental results. As a result, we introduced mapping between the property of sample and grain structure, then between the grain structure and mathematical graph, using various crystal structures. The main idea was to apply 3D graph theory for the distribution of electronic parameters between the neighboring grains. With this study, we successfully confirmed the possibilities for applications of graphs as a tool for the determination of properties even at the intergranular level.
PB  - World Scientific Publishing Co
T2  - International Journal of Modern Physics B
T1  - The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics
SP  - 2150103
VL  - 35
IS  - 7
DO  - 10.1142/S0217979221501034
UR  - https://hdl.handle.net/21.15107/rcub_dais_11949
ER  - 
@article{
author = "Mitić, Vojislav V. and Ranđelović, Branislav and Ilić, Ivana and Ribar, Srđan and Chun, An-Lu and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2021",
abstract = "After pioneering attempts for the introduction of graph theory in the field of ceramics and microstructures, where 1D and 2D graphs were used, in this paper we applied 3D graphs for the breakdown voltage calculation in BaTiO3sample with some predefined constraints. We have described the relations between grains in the sample and established a mathematical approach for the calculation of breakdown voltage using experimental results. As a result, we introduced mapping between the property of sample and grain structure, then between the grain structure and mathematical graph, using various crystal structures. The main idea was to apply 3D graph theory for the distribution of electronic parameters between the neighboring grains. With this study, we successfully confirmed the possibilities for applications of graphs as a tool for the determination of properties even at the intergranular level.",
publisher = "World Scientific Publishing Co",
journal = "International Journal of Modern Physics B",
title = "The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics",
pages = "2150103",
volume = "35",
number = "7",
doi = "10.1142/S0217979221501034",
url = "https://hdl.handle.net/21.15107/rcub_dais_11949"
}
Mitić, V. V., Ranđelović, B., Ilić, I., Ribar, S., Chun, A., Stajčić, A.,& Vlahović, B.. (2021). The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics. in International Journal of Modern Physics B
World Scientific Publishing Co., 35(7), 2150103.
https://doi.org/10.1142/S0217979221501034
https://hdl.handle.net/21.15107/rcub_dais_11949
Mitić VV, Ranđelović B, Ilić I, Ribar S, Chun A, Stajčić A, Vlahović B. The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics. in International Journal of Modern Physics B. 2021;35(7):2150103.
doi:10.1142/S0217979221501034
https://hdl.handle.net/21.15107/rcub_dais_11949 .
Mitić, Vojislav V., Ranđelović, Branislav, Ilić, Ivana, Ribar, Srđan, Chun, An-Lu, Stajčić, Aleksandar, Vlahović, Branislav, "The 3D graph approach for breakdown voltage calculation in BaTiO3ceramics" in International Journal of Modern Physics B, 35, no. 7 (2021):2150103,
https://doi.org/10.1142/S0217979221501034 .,
https://hdl.handle.net/21.15107/rcub_dais_11949 .
7
3
7

Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station

Mitić, Vojislav; Serpa, Cristina; Ilić, Ivana; Mohr, Marcus; Fecht, Hans-Jörg

(Basel : MDPI AG, 2021)

TY  - JOUR
AU  - Mitić, Vojislav
AU  - Serpa, Cristina
AU  - Ilić, Ivana
AU  - Mohr, Marcus
AU  - Fecht, Hans-Jörg
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11647
AB  - Materials science is highly significant in space program investigation, energy production and others. Therefore, designing, improving and predicting advanced material properties is a crucial necessity. The high temperature creep and corrosion resistance of Ni-based superalloys makes them important materials for turbine blades in aircraft engines and land-based power plants. The investment casting process of turbine blades is costly and time consuming, which makes process simulations a necessity. These simulations require fundamental models for the microstructure formation. In this paper, we present advanced analytical techniques in describing the microstructures obtained experimentally and analyzed on different sample’s cross-sectional images. The samples have been processed on board the International Space Station using the MSL-EML device based on electromagnetic levitation principles. We applied several aspects of fractal analysis and obtained important results regarding fractals and Hausdorff dimensions related to the surface and structural characteristics of CMSX-10 samples. Using scanning electron microscopy (SEM), Zeiss LEO 1550, we analyzed the microstructure of samples solidified in space and successfully performed the fractal reconstruction of the sample’s morphology. We extended the fractal analysis on the microscopic images based on samples solidified on earth and established new frontiers on the advanced structures prediction.
PB  - Basel : MDPI AG
T2  - Remote Sensing
T1  - Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station
SP  - 1724
VL  - 13
IS  - 9
DO  - 10.3390/rs13091724
UR  - https://hdl.handle.net/21.15107/rcub_dais_11647
ER  - 
@article{
author = "Mitić, Vojislav and Serpa, Cristina and Ilić, Ivana and Mohr, Marcus and Fecht, Hans-Jörg",
year = "2021",
abstract = "Materials science is highly significant in space program investigation, energy production and others. Therefore, designing, improving and predicting advanced material properties is a crucial necessity. The high temperature creep and corrosion resistance of Ni-based superalloys makes them important materials for turbine blades in aircraft engines and land-based power plants. The investment casting process of turbine blades is costly and time consuming, which makes process simulations a necessity. These simulations require fundamental models for the microstructure formation. In this paper, we present advanced analytical techniques in describing the microstructures obtained experimentally and analyzed on different sample’s cross-sectional images. The samples have been processed on board the International Space Station using the MSL-EML device based on electromagnetic levitation principles. We applied several aspects of fractal analysis and obtained important results regarding fractals and Hausdorff dimensions related to the surface and structural characteristics of CMSX-10 samples. Using scanning electron microscopy (SEM), Zeiss LEO 1550, we analyzed the microstructure of samples solidified in space and successfully performed the fractal reconstruction of the sample’s morphology. We extended the fractal analysis on the microscopic images based on samples solidified on earth and established new frontiers on the advanced structures prediction.",
publisher = "Basel : MDPI AG",
journal = "Remote Sensing",
title = "Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station",
pages = "1724",
volume = "13",
number = "9",
doi = "10.3390/rs13091724",
url = "https://hdl.handle.net/21.15107/rcub_dais_11647"
}
Mitić, V., Serpa, C., Ilić, I., Mohr, M.,& Fecht, H.. (2021). Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station. in Remote Sensing
Basel : MDPI AG., 13(9), 1724.
https://doi.org/10.3390/rs13091724
https://hdl.handle.net/21.15107/rcub_dais_11647
Mitić V, Serpa C, Ilić I, Mohr M, Fecht H. Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station. in Remote Sensing. 2021;13(9):1724.
doi:10.3390/rs13091724
https://hdl.handle.net/21.15107/rcub_dais_11647 .
Mitić, Vojislav, Serpa, Cristina, Ilić, Ivana, Mohr, Marcus, Fecht, Hans-Jörg, "Fractal Nature of Advanced Ni-Based Superalloys Solidified on Board the International Space Station" in Remote Sensing, 13, no. 9 (2021):1724,
https://doi.org/10.3390/rs13091724 .,
https://hdl.handle.net/21.15107/rcub_dais_11647 .
4
4

Forensic science and fractal nature analysis

Mitić, Vojislav V.; Lazović, Goran; Radosavljevic-Mihajlovic, Ana S.; Milosević, Dusan; Marković, Bojana; Simeunović, Dragan; Vlahović, Branislav

(World Scientific Pub Co Pte Ltd, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Radosavljevic-Mihajlovic, Ana S.
AU  - Milosević, Dusan
AU  - Marković, Bojana
AU  - Simeunović, Dragan
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12393
AB  - Forensic photography, also referred to as crime scene photography, is an activity that records the initial appearance of the crime scene and physical evidence in order to provide a permanent record for the court. Nowadays, we cannot imagine a crime scene investigation without photographic evidence. Crime or accident scene photographs can often be reanalyzed in cold cases or when the images need to be enlarged to show critical details. Fractals are rough or fragmented geometric shapes that can be subdivided into parts, each of which is a reduced copy of the whole. Fractal dimension (FD) is an important fractal geometry feature. There are many applications of fractals in various forensic fields, including image processing, image analysis, texture segmentation, shape classification, and identifying the image features such as roughness and smoothness of an image. Fractal analysis is applicable in forensic archeology and paleontology, as well. The damaged image can be reviewed, analyzed, and reconstructed by fractal nature analysis.
PB  - World Scientific Pub Co Pte Ltd
T2  - Modern Physics Letters B
T1  - Forensic science and fractal nature analysis
VL  - 35
IS  - 32
DO  - 10.1142/S0217984921504935
UR  - https://hdl.handle.net/21.15107/rcub_dais_12393
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Radosavljevic-Mihajlovic, Ana S. and Milosević, Dusan and Marković, Bojana and Simeunović, Dragan and Vlahović, Branislav",
year = "2021",
abstract = "Forensic photography, also referred to as crime scene photography, is an activity that records the initial appearance of the crime scene and physical evidence in order to provide a permanent record for the court. Nowadays, we cannot imagine a crime scene investigation without photographic evidence. Crime or accident scene photographs can often be reanalyzed in cold cases or when the images need to be enlarged to show critical details. Fractals are rough or fragmented geometric shapes that can be subdivided into parts, each of which is a reduced copy of the whole. Fractal dimension (FD) is an important fractal geometry feature. There are many applications of fractals in various forensic fields, including image processing, image analysis, texture segmentation, shape classification, and identifying the image features such as roughness and smoothness of an image. Fractal analysis is applicable in forensic archeology and paleontology, as well. The damaged image can be reviewed, analyzed, and reconstructed by fractal nature analysis.",
publisher = "World Scientific Pub Co Pte Ltd",
journal = "Modern Physics Letters B",
title = "Forensic science and fractal nature analysis",
volume = "35",
number = "32",
doi = "10.1142/S0217984921504935",
url = "https://hdl.handle.net/21.15107/rcub_dais_12393"
}
Mitić, V. V., Lazović, G., Radosavljevic-Mihajlovic, A. S., Milosević, D., Marković, B., Simeunović, D.,& Vlahović, B.. (2021). Forensic science and fractal nature analysis. in Modern Physics Letters B
World Scientific Pub Co Pte Ltd., 35(32).
https://doi.org/10.1142/S0217984921504935
https://hdl.handle.net/21.15107/rcub_dais_12393
Mitić VV, Lazović G, Radosavljevic-Mihajlovic AS, Milosević D, Marković B, Simeunović D, Vlahović B. Forensic science and fractal nature analysis. in Modern Physics Letters B. 2021;35(32).
doi:10.1142/S0217984921504935
https://hdl.handle.net/21.15107/rcub_dais_12393 .
Mitić, Vojislav V., Lazović, Goran, Radosavljevic-Mihajlovic, Ana S., Milosević, Dusan, Marković, Bojana, Simeunović, Dragan, Vlahović, Branislav, "Forensic science and fractal nature analysis" in Modern Physics Letters B, 35, no. 32 (2021),
https://doi.org/10.1142/S0217984921504935 .,
https://hdl.handle.net/21.15107/rcub_dais_12393 .
1

Brownian fractal nature coronavirus motion

Mitić, Vojislav V.; Lazović, Goran; Milošević, Dušan; Ristanović, Elizabeta; Simeunović, Dragan; Tsay, Shwu-Chen; Milošević, Mimica; Vlahović, Branislav

(World Scientific Pub Co Pte Ltd, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Milošević, Dušan
AU  - Ristanović, Elizabeta
AU  - Simeunović, Dragan
AU  - Tsay, Shwu-Chen
AU  - Milošević, Mimica
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12390
AB  - The goal of our research is to establish the direction of coronavirus chaotic motion to control corona dynamic by fractal nature analysis. These microorganisms attaching the different cells and organs in the human body getting very dangerous because we don’t have corona antivirus prevention and protection but also the unpredictable these viruses motion directions what resulting in very important distractions. Our idea is to develop the method and procedure to control the virus motion direction with the intention to prognose on which cells and organs could attach. We combined very rear coronavirus motion sub-microstructures images from worldwide experimental microstructure analysis. The problem of the recording this motion is from one point of view magnification, but the other side in resolution, because the virus size is minimum 10 times less than bacterizes. But all these images have been good data to resolve by time interval method and fractals, the points on the motion trajectory. We successfully defined the diagrams on the way to establish control over Brownian chaotic motion as a bridge between chaotic disorder to control disorder. This opens a very new perspective to future research to get complete control of coronavirus cases.
PB  - World Scientific Pub Co Pte Ltd
T2  - Modern Physics Letters B
T1  - Brownian fractal nature coronavirus motion
SP  - 2150076
VL  - 35
IS  - 04
DO  - 10.1142/S0217984921500767
UR  - https://hdl.handle.net/21.15107/rcub_dais_12390
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Milošević, Dušan and Ristanović, Elizabeta and Simeunović, Dragan and Tsay, Shwu-Chen and Milošević, Mimica and Vlahović, Branislav",
year = "2021",
abstract = "The goal of our research is to establish the direction of coronavirus chaotic motion to control corona dynamic by fractal nature analysis. These microorganisms attaching the different cells and organs in the human body getting very dangerous because we don’t have corona antivirus prevention and protection but also the unpredictable these viruses motion directions what resulting in very important distractions. Our idea is to develop the method and procedure to control the virus motion direction with the intention to prognose on which cells and organs could attach. We combined very rear coronavirus motion sub-microstructures images from worldwide experimental microstructure analysis. The problem of the recording this motion is from one point of view magnification, but the other side in resolution, because the virus size is minimum 10 times less than bacterizes. But all these images have been good data to resolve by time interval method and fractals, the points on the motion trajectory. We successfully defined the diagrams on the way to establish control over Brownian chaotic motion as a bridge between chaotic disorder to control disorder. This opens a very new perspective to future research to get complete control of coronavirus cases.",
publisher = "World Scientific Pub Co Pte Ltd",
journal = "Modern Physics Letters B",
title = "Brownian fractal nature coronavirus motion",
pages = "2150076",
volume = "35",
number = "04",
doi = "10.1142/S0217984921500767",
url = "https://hdl.handle.net/21.15107/rcub_dais_12390"
}
Mitić, V. V., Lazović, G., Milošević, D., Ristanović, E., Simeunović, D., Tsay, S., Milošević, M.,& Vlahović, B.. (2021). Brownian fractal nature coronavirus motion. in Modern Physics Letters B
World Scientific Pub Co Pte Ltd., 35(04), 2150076.
https://doi.org/10.1142/S0217984921500767
https://hdl.handle.net/21.15107/rcub_dais_12390
Mitić VV, Lazović G, Milošević D, Ristanović E, Simeunović D, Tsay S, Milošević M, Vlahović B. Brownian fractal nature coronavirus motion. in Modern Physics Letters B. 2021;35(04):2150076.
doi:10.1142/S0217984921500767
https://hdl.handle.net/21.15107/rcub_dais_12390 .
Mitić, Vojislav V., Lazović, Goran, Milošević, Dušan, Ristanović, Elizabeta, Simeunović, Dragan, Tsay, Shwu-Chen, Milošević, Mimica, Vlahović, Branislav, "Brownian fractal nature coronavirus motion" in Modern Physics Letters B, 35, no. 04 (2021):2150076,
https://doi.org/10.1142/S0217984921500767 .,
https://hdl.handle.net/21.15107/rcub_dais_12390 .
1
9
2
7

A new neural network approach to density calculation on ceramic materials

Mitić, Vojislav V.; Ribar, Srđan; Ranđelović, Branislav M.; Aleksić, Dejan; Fecht, Hans; Vlahovic, Branislav

(World Scientific Pub Co Pte Ltd, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Ribar, Srđan
AU  - Ranđelović, Branislav M.
AU  - Aleksić, Dejan
AU  - Fecht, Hans
AU  - Vlahovic, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12389
AB  - The materials’ consolidation, especially ceramics, is very important in advanced research development and industrial technologies. Science of sintering with all incoming novelties is the base of all these processes. A very important question in all of this is how to get the more precise structure parameters within the morphology of different ceramic materials. In that sense, the advanced procedure in collecting precise data in submicro-processes is also in direction of advanced miniaturization. Our research, based on different electrophysical parameters, like relative capacitance, breakdown voltage, and tgδ, has been used in neural networks and graph theory successful applications. We extended furthermore our neural network back propagation (BP) on sintering parameters’ data. Prognosed mapping we can succeed if we use the coefficients, implemented by the training procedure. In this paper, we continue to apply the novelty from the previous research, where the error is calculated as a difference between the designed and actual network output. So, the weight coefficients contribute in error generation. We used the experimental data of sintered materials’ density, measured and calculated in the bulk, and developed possibility to calculate the materials’ density inside of consolidated structures. The BP procedure here is like a tool to come down between the layers, with much more precise materials’ density, in the points on morphology, which are interesting for different microstructure developments and applications. We practically replaced the errors’ network by density values, from ceramic consolidation. Our neural networks’ application novelty is successfully applied within the experimental ceramic material density ρ=5.4×103 [kg/m3], confirming the direction way to implement this procedure in other density cases. There are many different mathematical tools or tools from the field of artificial intelligence that can be used in such or similar applications. We choose to use artificial neural networks because of their simplicity and their self-improvement process, through BP error control. All of this contributes to the great improvement in the whole research and science of sintering technology, which is important for collecting more efficient and faster results.
PB  - World Scientific Pub Co Pte Ltd
T2  - Modern Physics Letters B
T1  - A new neural network approach to density calculation on ceramic materials
DO  - 10.1142/S0217984921505497
UR  - https://hdl.handle.net/21.15107/rcub_dais_12389
ER  - 
@article{
author = "Mitić, Vojislav V. and Ribar, Srđan and Ranđelović, Branislav M. and Aleksić, Dejan and Fecht, Hans and Vlahovic, Branislav",
year = "2021",
abstract = "The materials’ consolidation, especially ceramics, is very important in advanced research development and industrial technologies. Science of sintering with all incoming novelties is the base of all these processes. A very important question in all of this is how to get the more precise structure parameters within the morphology of different ceramic materials. In that sense, the advanced procedure in collecting precise data in submicro-processes is also in direction of advanced miniaturization. Our research, based on different electrophysical parameters, like relative capacitance, breakdown voltage, and tgδ, has been used in neural networks and graph theory successful applications. We extended furthermore our neural network back propagation (BP) on sintering parameters’ data. Prognosed mapping we can succeed if we use the coefficients, implemented by the training procedure. In this paper, we continue to apply the novelty from the previous research, where the error is calculated as a difference between the designed and actual network output. So, the weight coefficients contribute in error generation. We used the experimental data of sintered materials’ density, measured and calculated in the bulk, and developed possibility to calculate the materials’ density inside of consolidated structures. The BP procedure here is like a tool to come down between the layers, with much more precise materials’ density, in the points on morphology, which are interesting for different microstructure developments and applications. We practically replaced the errors’ network by density values, from ceramic consolidation. Our neural networks’ application novelty is successfully applied within the experimental ceramic material density ρ=5.4×103 [kg/m3], confirming the direction way to implement this procedure in other density cases. There are many different mathematical tools or tools from the field of artificial intelligence that can be used in such or similar applications. We choose to use artificial neural networks because of their simplicity and their self-improvement process, through BP error control. All of this contributes to the great improvement in the whole research and science of sintering technology, which is important for collecting more efficient and faster results.",
publisher = "World Scientific Pub Co Pte Ltd",
journal = "Modern Physics Letters B",
title = "A new neural network approach to density calculation on ceramic materials",
doi = "10.1142/S0217984921505497",
url = "https://hdl.handle.net/21.15107/rcub_dais_12389"
}
Mitić, V. V., Ribar, S., Ranđelović, B. M., Aleksić, D., Fecht, H.,& Vlahovic, B.. (2021). A new neural network approach to density calculation on ceramic materials. in Modern Physics Letters B
World Scientific Pub Co Pte Ltd..
https://doi.org/10.1142/S0217984921505497
https://hdl.handle.net/21.15107/rcub_dais_12389
Mitić VV, Ribar S, Ranđelović BM, Aleksić D, Fecht H, Vlahovic B. A new neural network approach to density calculation on ceramic materials. in Modern Physics Letters B. 2021;.
doi:10.1142/S0217984921505497
https://hdl.handle.net/21.15107/rcub_dais_12389 .
Mitić, Vojislav V., Ribar, Srđan, Ranđelović, Branislav M., Aleksić, Dejan, Fecht, Hans, Vlahovic, Branislav, "A new neural network approach to density calculation on ceramic materials" in Modern Physics Letters B (2021),
https://doi.org/10.1142/S0217984921505497 .,
https://hdl.handle.net/21.15107/rcub_dais_12389 .
1
1

Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion

Aleksić, Sanja; Marković, Bojana; Mitić, Vojislav V.; Milošević, Dušan; Milošević, Mimica; Soković, Marina; Vlahović, Branislav

(World Scientific Publishing Company, 2021)

TY  - JOUR
AU  - Aleksić, Sanja
AU  - Marković, Bojana
AU  - Mitić, Vojislav V.
AU  - Milošević, Dušan
AU  - Milošević, Mimica
AU  - Soković, Marina
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://www.worldscientific.com/doi/abs/10.1142/S0218126622500748
UR  - https://dais.sanu.ac.rs/123456789/12388
AB  - Biophysical and condensed matter systems connection is of great importance nowadays due to the need for a new approach in microelectronic biodevices, biocomputers or biochips advanced development. Considering that the living and nonliving systems’ submicroparticles are identical, we can establish the biunivocally correspondent relation between these two particle systems, as a biomimetic correlation based on Brownian motion fractal nature similarities, as the integrative property. In our research, we used the experimental results of bacterial motion under the influence of energetic impulses, like music, and also some biomolecule motion data. Our goal is to define the relation between biophysical and physical particle systems, by introducing mathematical analytical forms and applying Brownian motion fractal nature characterization and fractal interpolation. This work is an advanced research in the field of new solutions for high-level microelectronic integrations, which include submicrobiosystems like part of even organic microelectronic considerations, together with some physical systems of particles in solid-state solutions as a nonorganic part. Our research is based on Brownian motion minimal joint properties within the integrated biophysical systems in the wholeness of nature.
PB  - World Scientific Publishing Company
T2  - Journal of Circuits, Systems and Computers
T1  - Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion
DO  - 10.1142/s0218126622500748
UR  - https://hdl.handle.net/21.15107/rcub_dais_12388
ER  - 
@article{
author = "Aleksić, Sanja and Marković, Bojana and Mitić, Vojislav V. and Milošević, Dušan and Milošević, Mimica and Soković, Marina and Vlahović, Branislav",
year = "2021",
abstract = "Biophysical and condensed matter systems connection is of great importance nowadays due to the need for a new approach in microelectronic biodevices, biocomputers or biochips advanced development. Considering that the living and nonliving systems’ submicroparticles are identical, we can establish the biunivocally correspondent relation between these two particle systems, as a biomimetic correlation based on Brownian motion fractal nature similarities, as the integrative property. In our research, we used the experimental results of bacterial motion under the influence of energetic impulses, like music, and also some biomolecule motion data. Our goal is to define the relation between biophysical and physical particle systems, by introducing mathematical analytical forms and applying Brownian motion fractal nature characterization and fractal interpolation. This work is an advanced research in the field of new solutions for high-level microelectronic integrations, which include submicrobiosystems like part of even organic microelectronic considerations, together with some physical systems of particles in solid-state solutions as a nonorganic part. Our research is based on Brownian motion minimal joint properties within the integrated biophysical systems in the wholeness of nature.",
publisher = "World Scientific Publishing Company",
journal = "Journal of Circuits, Systems and Computers",
title = "Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion",
doi = "10.1142/s0218126622500748",
url = "https://hdl.handle.net/21.15107/rcub_dais_12388"
}
Aleksić, S., Marković, B., Mitić, V. V., Milošević, D., Milošević, M., Soković, M.,& Vlahović, B.. (2021). Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion. in Journal of Circuits, Systems and Computers
World Scientific Publishing Company..
https://doi.org/10.1142/s0218126622500748
https://hdl.handle.net/21.15107/rcub_dais_12388
Aleksić S, Marković B, Mitić VV, Milošević D, Milošević M, Soković M, Vlahović B. Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion. in Journal of Circuits, Systems and Computers. 2021;.
doi:10.1142/s0218126622500748
https://hdl.handle.net/21.15107/rcub_dais_12388 .
Aleksić, Sanja, Marković, Bojana, Mitić, Vojislav V., Milošević, Dušan, Milošević, Mimica, Soković, Marina, Vlahović, Branislav, "Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion" in Journal of Circuits, Systems and Computers (2021),
https://doi.org/10.1142/s0218126622500748 .,
https://hdl.handle.net/21.15107/rcub_dais_12388 .
2
2

Thermally induced phase transformation of Mn-LTA and Mn-FAU zeolite to anorthite phases

Radosavljević-Mihajlović, Ana; Mitić, Vojislav V.; Šaponjić, Aleksandra; Kasić, Vladan

(2021)

TY  - JOUR
AU  - Radosavljević-Mihajlović, Ana
AU  - Mitić, Vojislav V.
AU  - Šaponjić, Aleksandra
AU  - Kasić, Vladan
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12387
AB  - Data on thermally induced transformations of Mn exchanged zeolites LTA and FAU topology are presented in this paper. Thermally induced phase transformation of Mn-exchange zeolites are followed in the range from 700 to 1300oC. Both frameworks collapse into amorphous intermediate products after heating between 600 and 650oC. Prolonged heating of the intermediate product above 1100 °C results directly in formation of a disorder Mn-anorthiteLTA and Mn-anorthiteFAU. The parameter of unit cell of Mn-anorthiteLTA and Mn-anorthiteFAU, in temperature range between 700 and 1300oC, was observed in space group C-1. The phase conversions in the temperature range investigated were followed by thermal, X-ray powder diffraction and FT-IR analyses.
T2  - Science of Sintering
T1  - Thermally induced phase transformation of Mn-LTA and Mn-FAU zeolite to anorthite phases
SP  - 397
EP  - 406
VL  - 53
IS  - 3
DO  - 10.2298/SOS2103397R
UR  - https://hdl.handle.net/21.15107/rcub_dais_12387
ER  - 
@article{
author = "Radosavljević-Mihajlović, Ana and Mitić, Vojislav V. and Šaponjić, Aleksandra and Kasić, Vladan",
year = "2021",
abstract = "Data on thermally induced transformations of Mn exchanged zeolites LTA and FAU topology are presented in this paper. Thermally induced phase transformation of Mn-exchange zeolites are followed in the range from 700 to 1300oC. Both frameworks collapse into amorphous intermediate products after heating between 600 and 650oC. Prolonged heating of the intermediate product above 1100 °C results directly in formation of a disorder Mn-anorthiteLTA and Mn-anorthiteFAU. The parameter of unit cell of Mn-anorthiteLTA and Mn-anorthiteFAU, in temperature range between 700 and 1300oC, was observed in space group C-1. The phase conversions in the temperature range investigated were followed by thermal, X-ray powder diffraction and FT-IR analyses.",
journal = "Science of Sintering",
title = "Thermally induced phase transformation of Mn-LTA and Mn-FAU zeolite to anorthite phases",
pages = "397-406",
volume = "53",
number = "3",
doi = "10.2298/SOS2103397R",
url = "https://hdl.handle.net/21.15107/rcub_dais_12387"
}
Radosavljević-Mihajlović, A., Mitić, V. V., Šaponjić, A.,& Kasić, V.. (2021). Thermally induced phase transformation of Mn-LTA and Mn-FAU zeolite to anorthite phases. in Science of Sintering, 53(3), 397-406.
https://doi.org/10.2298/SOS2103397R
https://hdl.handle.net/21.15107/rcub_dais_12387
Radosavljević-Mihajlović A, Mitić VV, Šaponjić A, Kasić V. Thermally induced phase transformation of Mn-LTA and Mn-FAU zeolite to anorthite phases. in Science of Sintering. 2021;53(3):397-406.
doi:10.2298/SOS2103397R
https://hdl.handle.net/21.15107/rcub_dais_12387 .
Radosavljević-Mihajlović, Ana, Mitić, Vojislav V., Šaponjić, Aleksandra, Kasić, Vladan, "Thermally induced phase transformation of Mn-LTA and Mn-FAU zeolite to anorthite phases" in Science of Sintering, 53, no. 3 (2021):397-406,
https://doi.org/10.2298/SOS2103397R .,
https://hdl.handle.net/21.15107/rcub_dais_12387 .
1
1

Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure

Radović, Ivan M.; Stajčić, Aleksandar; Mitić, Vojislav V.; Serpa, C.; Paunović, V.; Ranđelović, Branislav

(Institute of Electrical and Electronics Engineers Inc., 2021)

TY  - CONF
AU  - Radović, Ivan M.
AU  - Stajčić, Aleksandar
AU  - Mitić, Vojislav V.
AU  - Serpa, C.
AU  - Paunović, V.
AU  - Ranđelović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12361
AB  - In the past century, the use of polymers and composites with a polymer matrix has expanded to such a level that today it is impossible to imagine life without these materials. Epoxy resin and epoxy-based composites are widely used as construction materials, due to their excellent adhesion, thermal and chemical stability. Fractal nature analysis can provide insight in morphological changes at fiber-matrix interface level, which could give direction for the processing of composites. This mathematical technique can be performed on field emission scanning electron microscopy (FESEM) images, by identifying fiber phase and pores shapes and boundaries, as well as fiber-matrix bonding at the interface. In this study, fiberglass mat was used for the reinforcement of epoxy. FESEM image of enlarged fiber after the composite fracture was used for the reconstruction of data. With the use of affine fractal regression model, software Fractal Real Finder was employed for the reconstruction of fiber shape and the determination of Hausdorff dimension.
PB  - Institute of Electrical and Electronics Engineers Inc.
C3  - 32nd IEEE International Conference on Microelectronics, MIEL 2021
T1  - Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure
SP  - 203
EP  - 206
DO  - 10.1109/MIEL52794.2021.9569054
UR  - https://hdl.handle.net/21.15107/rcub_dais_12361
ER  - 
@conference{
author = "Radović, Ivan M. and Stajčić, Aleksandar and Mitić, Vojislav V. and Serpa, C. and Paunović, V. and Ranđelović, Branislav",
year = "2021",
abstract = "In the past century, the use of polymers and composites with a polymer matrix has expanded to such a level that today it is impossible to imagine life without these materials. Epoxy resin and epoxy-based composites are widely used as construction materials, due to their excellent adhesion, thermal and chemical stability. Fractal nature analysis can provide insight in morphological changes at fiber-matrix interface level, which could give direction for the processing of composites. This mathematical technique can be performed on field emission scanning electron microscopy (FESEM) images, by identifying fiber phase and pores shapes and boundaries, as well as fiber-matrix bonding at the interface. In this study, fiberglass mat was used for the reinforcement of epoxy. FESEM image of enlarged fiber after the composite fracture was used for the reconstruction of data. With the use of affine fractal regression model, software Fractal Real Finder was employed for the reconstruction of fiber shape and the determination of Hausdorff dimension.",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
journal = "32nd IEEE International Conference on Microelectronics, MIEL 2021",
title = "Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure",
pages = "203-206",
doi = "10.1109/MIEL52794.2021.9569054",
url = "https://hdl.handle.net/21.15107/rcub_dais_12361"
}
Radović, I. M., Stajčić, A., Mitić, V. V., Serpa, C., Paunović, V.,& Ranđelović, B.. (2021). Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure. in 32nd IEEE International Conference on Microelectronics, MIEL 2021
Institute of Electrical and Electronics Engineers Inc.., 203-206.
https://doi.org/10.1109/MIEL52794.2021.9569054
https://hdl.handle.net/21.15107/rcub_dais_12361
Radović IM, Stajčić A, Mitić VV, Serpa C, Paunović V, Ranđelović B. Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure. in 32nd IEEE International Conference on Microelectronics, MIEL 2021. 2021;:203-206.
doi:10.1109/MIEL52794.2021.9569054
https://hdl.handle.net/21.15107/rcub_dais_12361 .
Radović, Ivan M., Stajčić, Aleksandar, Mitić, Vojislav V., Serpa, C., Paunović, V., Ranđelović, Branislav, "Fractal Reconstruction of Fiber-reinforced Epoxy Microstructure" in 32nd IEEE International Conference on Microelectronics, MIEL 2021 (2021):203-206,
https://doi.org/10.1109/MIEL52794.2021.9569054 .,
https://hdl.handle.net/21.15107/rcub_dais_12361 .
2
2

Reconstruction of fiber reinforcement in epoxy-based composite

Stajčić, Aleksandar; Mitić, Vojislav V.; Serpa, Cristina; Veljković, Filip; Ranđelović, Branislav; Radović, Ivana

(Belgrade : ETRAN, 2021)

TY  - CONF
AU  - Stajčić, Aleksandar
AU  - Mitić, Vojislav V.
AU  - Serpa, Cristina
AU  - Veljković, Filip
AU  - Ranđelović, Branislav
AU  - Radović, Ivana
PY  - 2021
UR  - https://www.etran.rs/2021/wp-content/uploads/2021/11/Zbornik_Proceedings_2021_web.pdf
UR  - https://dais.sanu.ac.rs/123456789/12284
AB  - Polymer matrix composites (PMCs) are very attractive materials due to a possibility to achieve versatile properties by combining with ceramic or metal reinforcement in different shapes and sizes. As a result, PMCs have found application in nearly every field, from household appliances to aerospace industry. Modern microelectronic devices contain conductive polymers with fillers that enhance their electrical properties. In addition, PMCs are being used as insulators and adhesives, contributing to the long life of electronic devices. Epoxy resins are the most commonly used insulators and adhesives. In order to improve their fracture toughness, glass fibers can be used as an efficient reinforcement. However, with the purpose of designing a composite with good mechanical properties and durability, deep knowledge of microstructure is required. In addition, microstructural analysis can be used to connect shape and size of pores or reinforcement with various physical properties. Fractal nature analysis is a valuable mathematical tool that can be employed for different shapes and forms rendering. In this manner, successful design and prediction of composite’s properties could be obtained. In this research, field emission scanning electron microscopy (FESEM) images were used for fractal analysis of glass fibers, with the aim of reconstructing the shape.
PB  - Belgrade : ETRAN
C3  - Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina
T1  - Reconstruction of fiber reinforcement in epoxy-based composite
SP  - 409
EP  - 412
UR  - https://hdl.handle.net/21.15107/rcub_dais_12284
ER  - 
@conference{
author = "Stajčić, Aleksandar and Mitić, Vojislav V. and Serpa, Cristina and Veljković, Filip and Ranđelović, Branislav and Radović, Ivana",
year = "2021",
abstract = "Polymer matrix composites (PMCs) are very attractive materials due to a possibility to achieve versatile properties by combining with ceramic or metal reinforcement in different shapes and sizes. As a result, PMCs have found application in nearly every field, from household appliances to aerospace industry. Modern microelectronic devices contain conductive polymers with fillers that enhance their electrical properties. In addition, PMCs are being used as insulators and adhesives, contributing to the long life of electronic devices. Epoxy resins are the most commonly used insulators and adhesives. In order to improve their fracture toughness, glass fibers can be used as an efficient reinforcement. However, with the purpose of designing a composite with good mechanical properties and durability, deep knowledge of microstructure is required. In addition, microstructural analysis can be used to connect shape and size of pores or reinforcement with various physical properties. Fractal nature analysis is a valuable mathematical tool that can be employed for different shapes and forms rendering. In this manner, successful design and prediction of composite’s properties could be obtained. In this research, field emission scanning electron microscopy (FESEM) images were used for fractal analysis of glass fibers, with the aim of reconstructing the shape.",
publisher = "Belgrade : ETRAN",
journal = "Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina",
title = "Reconstruction of fiber reinforcement in epoxy-based composite",
pages = "409-412",
url = "https://hdl.handle.net/21.15107/rcub_dais_12284"
}
Stajčić, A., Mitić, V. V., Serpa, C., Veljković, F., Ranđelović, B.,& Radović, I.. (2021). Reconstruction of fiber reinforcement in epoxy-based composite. in Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina
Belgrade : ETRAN., 409-412.
https://hdl.handle.net/21.15107/rcub_dais_12284
Stajčić A, Mitić VV, Serpa C, Veljković F, Ranđelović B, Radović I. Reconstruction of fiber reinforcement in epoxy-based composite. in Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina. 2021;:409-412.
https://hdl.handle.net/21.15107/rcub_dais_12284 .
Stajčić, Aleksandar, Mitić, Vojislav V., Serpa, Cristina, Veljković, Filip, Ranđelović, Branislav, Radović, Ivana, "Reconstruction of fiber reinforcement in epoxy-based composite" in Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina (2021):409-412,
https://hdl.handle.net/21.15107/rcub_dais_12284 .

Reconstruction of fiber reinforcement in epoxy-based composite

Stajčić, Aleksandar; Mitić, Vojislav V.; Serpa, Cristina; Veljković, Filip; Ranđelović, Branislav; Radović, Ivana

(Belgrade : ETRAN, 2021)

TY  - CONF
AU  - Stajčić, Aleksandar
AU  - Mitić, Vojislav V.
AU  - Serpa, Cristina
AU  - Veljković, Filip
AU  - Ranđelović, Branislav
AU  - Radović, Ivana
PY  - 2021
UR  - https://www.etran.rs/2021/wp-content/uploads/2021/08/PROGRAM_ETRAN_2021_final_b5_za_web.pdf
UR  - https://dais.sanu.ac.rs/123456789/11920
AB  - Polymer matrix composites (PMCs) are very attractive materials due to a possibility to achieve versatile properties by combining with ceramic or metal reinforcement in different shapes and sizes. As a result, PMCs have found application in nearly every field, from household appliances to aerospace industry. Modern microelectronic devices contain conductive polymers with fillers that enhance their electrical properties. In addition, PMCs are being used as insulators and adhesives, contributing to the long life of electronic devices. Epoxy resins are the most commonly used insulators and adhesives. In order to improve their fracture toughness, glass fibers can be used as an efficient reinforcement. However, with the purpose of designing a composite with good mechanical properties and durability, deep knowledge of microstructure is required. In addition, microstructural analysis can be used to connect shape and size of pores or reinforcement with various physical properties. Fractal nature analysis is a valuable mathematical tool that can be employed for different shapes and forms rendering. In this manner, successful design and prediction of composite’s properties could be obtained. In this research, field emission scanning electron microscopy (FESEM) images were used for fractal analysis of glass fibers, with the aim of reconstructing the shape.
PB  - Belgrade : ETRAN
C3  - Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina
T1  - Reconstruction of fiber reinforcement in epoxy-based composite
SP  - 31
EP  - 31
UR  - https://hdl.handle.net/21.15107/rcub_dais_11920
ER  - 
@conference{
author = "Stajčić, Aleksandar and Mitić, Vojislav V. and Serpa, Cristina and Veljković, Filip and Ranđelović, Branislav and Radović, Ivana",
year = "2021",
abstract = "Polymer matrix composites (PMCs) are very attractive materials due to a possibility to achieve versatile properties by combining with ceramic or metal reinforcement in different shapes and sizes. As a result, PMCs have found application in nearly every field, from household appliances to aerospace industry. Modern microelectronic devices contain conductive polymers with fillers that enhance their electrical properties. In addition, PMCs are being used as insulators and adhesives, contributing to the long life of electronic devices. Epoxy resins are the most commonly used insulators and adhesives. In order to improve their fracture toughness, glass fibers can be used as an efficient reinforcement. However, with the purpose of designing a composite with good mechanical properties and durability, deep knowledge of microstructure is required. In addition, microstructural analysis can be used to connect shape and size of pores or reinforcement with various physical properties. Fractal nature analysis is a valuable mathematical tool that can be employed for different shapes and forms rendering. In this manner, successful design and prediction of composite’s properties could be obtained. In this research, field emission scanning electron microscopy (FESEM) images were used for fractal analysis of glass fibers, with the aim of reconstructing the shape.",
publisher = "Belgrade : ETRAN",
journal = "Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina",
title = "Reconstruction of fiber reinforcement in epoxy-based composite",
pages = "31-31",
url = "https://hdl.handle.net/21.15107/rcub_dais_11920"
}
Stajčić, A., Mitić, V. V., Serpa, C., Veljković, F., Ranđelović, B.,& Radović, I.. (2021). Reconstruction of fiber reinforcement in epoxy-based composite. in Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina
Belgrade : ETRAN., 31-31.
https://hdl.handle.net/21.15107/rcub_dais_11920
Stajčić A, Mitić VV, Serpa C, Veljković F, Ranđelović B, Radović I. Reconstruction of fiber reinforcement in epoxy-based composite. in Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina. 2021;:31-31.
https://hdl.handle.net/21.15107/rcub_dais_11920 .
Stajčić, Aleksandar, Mitić, Vojislav V., Serpa, Cristina, Veljković, Filip, Ranđelović, Branislav, Radović, Ivana, "Reconstruction of fiber reinforcement in epoxy-based composite" in Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina (2021):31-31,
https://hdl.handle.net/21.15107/rcub_dais_11920 .

Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods

Mitić, Vojislav V.; Ranđelović, Branislav; Ribar, Srđan; Milošević, Dušan; Soković, Marina; Marković, Bojana; Fecht, Hans-Jörg; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Ranđelović, Branislav
AU  - Ribar, Srđan
AU  - Milošević, Dušan
AU  - Soković, Marina
AU  - Marković, Bojana
AU  - Fecht, Hans-Jörg
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11908
AB  - There are a lot of recently published research papers regarding representing nanostructures and biomimetic materials, using simple but powerful mathematical methods. In most of them, fractal theory, graph theory and neural networks are used. Having in mind variety of those methods, but in the same time complementarity and compatibility, they became very useful tool, and we named it “Holly Trinity” of mathematical approach in nanostructures. In this research we give an overview on interesting results in modelling nanostructures and their electrochemical and magnetic parameters, using those very actual and “easy to use” methods: fractal theory, graph theory and neural networks. We also compare them, in order to conclude about areas of their most useful applications.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods
SP  - 43
EP  - 43
UR  - https://hdl.handle.net/21.15107/rcub_dais_11908
ER  - 
@conference{
author = "Mitić, Vojislav V. and Ranđelović, Branislav and Ribar, Srđan and Milošević, Dušan and Soković, Marina and Marković, Bojana and Fecht, Hans-Jörg and Vlahović, Branislav",
year = "2021",
abstract = "There are a lot of recently published research papers regarding representing nanostructures and biomimetic materials, using simple but powerful mathematical methods. In most of them, fractal theory, graph theory and neural networks are used. Having in mind variety of those methods, but in the same time complementarity and compatibility, they became very useful tool, and we named it “Holly Trinity” of mathematical approach in nanostructures. In this research we give an overview on interesting results in modelling nanostructures and their electrochemical and magnetic parameters, using those very actual and “easy to use” methods: fractal theory, graph theory and neural networks. We also compare them, in order to conclude about areas of their most useful applications.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods",
pages = "43-43",
url = "https://hdl.handle.net/21.15107/rcub_dais_11908"
}
Mitić, V. V., Ranđelović, B., Ribar, S., Milošević, D., Soković, M., Marković, B., Fecht, H.,& Vlahović, B.. (2021). Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 43-43.
https://hdl.handle.net/21.15107/rcub_dais_11908
Mitić VV, Ranđelović B, Ribar S, Milošević D, Soković M, Marković B, Fecht H, Vlahović B. Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:43-43.
https://hdl.handle.net/21.15107/rcub_dais_11908 .
Mitić, Vojislav V., Ranđelović, Branislav, Ribar, Srđan, Milošević, Dušan, Soković, Marina, Marković, Bojana, Fecht, Hans-Jörg, Vlahović, Branislav, "Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):43-43,
https://hdl.handle.net/21.15107/rcub_dais_11908 .

Fractal reconstruction of fiber-reinforced polymer composites

Radović, Ivana; Mitić, Vojislav V.; Stajčić, Aleksandar; Serpa, Cristina; Ribar, Srđan; Ranđelović, Branislav; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Radović, Ivana
AU  - Mitić, Vojislav V.
AU  - Stajčić, Aleksandar
AU  - Serpa, Cristina
AU  - Ribar, Srđan
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11906
AB  - Polymers offer the possibility of different reinforcement incorporation due to a broad range of chemical structures. Along with this feature, their light weight and processing ease made them a class of materials that have been applied in construction parts, drug delivery agents or electronic devices. Epoxy-based composites have used as insulators in microelectronic devices due to its chemical resistance, good adhesion properties and endurance. As epoxies have low fracture resistance, they are often reinforced with different kinds of fibers. With thorough knowledge of the structure, physical properties can be predicted and included in the processing of future composites, especially that electronic materials minituarization brought micro- and nanoscale level properties at spotlight. Fractal nature analysis is a mathematical method that has proved to be efficient in grain interface properties applied on perovskite ceramic materials. In our study, fiber shape reconstruction and determination of Hausdorff dimension have been achieved with the application of fractal regression model employed in software Fractal Real Finder opening a new path for the prediction of reinforcement shape and size, all with the aim of processing composite materials with desired properties
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Fractal reconstruction of fiber-reinforced polymer composites
SP  - 49
EP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_dais_11906
ER  - 
@conference{
author = "Radović, Ivana and Mitić, Vojislav V. and Stajčić, Aleksandar and Serpa, Cristina and Ribar, Srđan and Ranđelović, Branislav and Vlahović, Branislav",
year = "2021",
abstract = "Polymers offer the possibility of different reinforcement incorporation due to a broad range of chemical structures. Along with this feature, their light weight and processing ease made them a class of materials that have been applied in construction parts, drug delivery agents or electronic devices. Epoxy-based composites have used as insulators in microelectronic devices due to its chemical resistance, good adhesion properties and endurance. As epoxies have low fracture resistance, they are often reinforced with different kinds of fibers. With thorough knowledge of the structure, physical properties can be predicted and included in the processing of future composites, especially that electronic materials minituarization brought micro- and nanoscale level properties at spotlight. Fractal nature analysis is a mathematical method that has proved to be efficient in grain interface properties applied on perovskite ceramic materials. In our study, fiber shape reconstruction and determination of Hausdorff dimension have been achieved with the application of fractal regression model employed in software Fractal Real Finder opening a new path for the prediction of reinforcement shape and size, all with the aim of processing composite materials with desired properties",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Fractal reconstruction of fiber-reinforced polymer composites",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_dais_11906"
}
Radović, I., Mitić, V. V., Stajčić, A., Serpa, C., Ribar, S., Ranđelović, B.,& Vlahović, B.. (2021). Fractal reconstruction of fiber-reinforced polymer composites. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 49-49.
https://hdl.handle.net/21.15107/rcub_dais_11906
Radović I, Mitić VV, Stajčić A, Serpa C, Ribar S, Ranđelović B, Vlahović B. Fractal reconstruction of fiber-reinforced polymer composites. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:49-49.
https://hdl.handle.net/21.15107/rcub_dais_11906 .
Radović, Ivana, Mitić, Vojislav V., Stajčić, Aleksandar, Serpa, Cristina, Ribar, Srđan, Ranđelović, Branislav, Vlahović, Branislav, "Fractal reconstruction of fiber-reinforced polymer composites" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):49-49,
https://hdl.handle.net/21.15107/rcub_dais_11906 .

Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks

Mitić, Vojislav V.; Ranđelović, Branislav; Ribar, Srđan; Milošević, Dušan; Vlahović, Branislav; Fecht, Hans-Jörg; Mohr, Marcus

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Ranđelović, Branislav
AU  - Ribar, Srđan
AU  - Milošević, Dušan
AU  - Vlahović, Branislav
AU  - Fecht, Hans-Jörg
AU  - Mohr, Marcus
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11900
AB  - Various interesting results have been achieved in calculation of electrochemical parameters in nanomaterials, using neural networks. There appear some error, during those calculations, and it varies depending on number of neurons in layers. In this research we deal with errors, calculated for neural networks with n=1,2…10, neurons in first or second layer. We applied mean square approximation method, in order to get explicite formula for predicton of error,
for other cases.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks
SP  - 61
EP  - 61
UR  - https://hdl.handle.net/21.15107/rcub_dais_11900
ER  - 
@conference{
author = "Mitić, Vojislav V. and Ranđelović, Branislav and Ribar, Srđan and Milošević, Dušan and Vlahović, Branislav and Fecht, Hans-Jörg and Mohr, Marcus",
year = "2021",
abstract = "Various interesting results have been achieved in calculation of electrochemical parameters in nanomaterials, using neural networks. There appear some error, during those calculations, and it varies depending on number of neurons in layers. In this research we deal with errors, calculated for neural networks with n=1,2…10, neurons in first or second layer. We applied mean square approximation method, in order to get explicite formula for predicton of error,
for other cases.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks",
pages = "61-61",
url = "https://hdl.handle.net/21.15107/rcub_dais_11900"
}
Mitić, V. V., Ranđelović, B., Ribar, S., Milošević, D., Vlahović, B., Fecht, H.,& Mohr, M.. (2021). Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 61-61.
https://hdl.handle.net/21.15107/rcub_dais_11900
Mitić VV, Ranđelović B, Ribar S, Milošević D, Vlahović B, Fecht H, Mohr M. Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:61-61.
https://hdl.handle.net/21.15107/rcub_dais_11900 .
Mitić, Vojislav V., Ranđelović, Branislav, Ribar, Srđan, Milošević, Dušan, Vlahović, Branislav, Fecht, Hans-Jörg, Mohr, Marcus, "Approximation and Error Prediction in Electrochemical Parameters Calculation Using Neural Networks" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):61-61,
https://hdl.handle.net/21.15107/rcub_dais_11900 .

The clay minerals from greda deposit

Radosavljević-Mihajlović, A.; Mihajlović, K.; Kosić, I.; Arsenijević, D.; Mitić, Vojislav V.

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Radosavljević-Mihajlović, A.
AU  - Mihajlović, K.
AU  - Kosić, I.
AU  - Arsenijević, D.
AU  - Mitić, Vojislav V.
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11897
AB  - The term "clay" refers to natural materials composed of fine minerals, which in their composition contain water molecules, which give it the property of plasticity, which is lost by drying processes. The basic physical and chemical characteristics of clay are low permeability, the possibility of cation exchange, thermal structural stability, swelling processes. These characteristic properties appear as a consequence of the crystal structure, in which the layers of SiO4, tetrahedra, extend infinitely in two dimensions. In this paper are presented the basic structural and crystallochemical properties of clay from Greda deposit.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - The clay minerals from greda deposit
SP  - 81
EP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_dais_11897
ER  - 
@conference{
author = "Radosavljević-Mihajlović, A. and Mihajlović, K. and Kosić, I. and Arsenijević, D. and Mitić, Vojislav V.",
year = "2021",
abstract = "The term "clay" refers to natural materials composed of fine minerals, which in their composition contain water molecules, which give it the property of plasticity, which is lost by drying processes. The basic physical and chemical characteristics of clay are low permeability, the possibility of cation exchange, thermal structural stability, swelling processes. These characteristic properties appear as a consequence of the crystal structure, in which the layers of SiO4, tetrahedra, extend infinitely in two dimensions. In this paper are presented the basic structural and crystallochemical properties of clay from Greda deposit.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "The clay minerals from greda deposit",
pages = "81-81",
url = "https://hdl.handle.net/21.15107/rcub_dais_11897"
}
Radosavljević-Mihajlović, A., Mihajlović, K., Kosić, I., Arsenijević, D.,& Mitić, V. V.. (2021). The clay minerals from greda deposit. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 81-81.
https://hdl.handle.net/21.15107/rcub_dais_11897
Radosavljević-Mihajlović A, Mihajlović K, Kosić I, Arsenijević D, Mitić VV. The clay minerals from greda deposit. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:81-81.
https://hdl.handle.net/21.15107/rcub_dais_11897 .
Radosavljević-Mihajlović, A., Mihajlović, K., Kosić, I., Arsenijević, D., Mitić, Vojislav V., "The clay minerals from greda deposit" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):81-81,
https://hdl.handle.net/21.15107/rcub_dais_11897 .

Bamboo‐Membrane Inspired Multilevel Ultrafast Interlayer Ion Transport for Superior Volumetric Energy Storage

Mei, Jun; Peng, Xiaomin; Zhang, Qian; Zhang, Xiaoqi; Liao, Ting; Mitić, Vojislav V.; Sun, Ziqi

(Wiley, 2021)

TY  - JOUR
AU  - Mei, Jun
AU  - Peng, Xiaomin
AU  - Zhang, Qian
AU  - Zhang, Xiaoqi
AU  - Liao, Ting
AU  - Mitić, Vojislav V.
AU  - Sun, Ziqi
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11801
AB  - Interlayer transport of charges and carriers of 2D nanomaterials is a critical parameter that governs the material and device performance in energy storage applications. Inspired by multilevel natural bamboo-membrane with ultrafast water and electrolyte transport properties to support its super-rapid growth rate, 2D–2D multilevel heterostructured graphene-based membranes with tailored gradient interlayer channels are rationally designed for achieving ultrafast interlayer ion transport. The bioinspired heterostructured membranes possess multilevel interlayer spacing distributions, where the closely packed layers with sub-nanosized interlayer space provide ultrafast confined interlayer ion transport, while the loosely stacked outer layers consisting of open channels with large distances up to few micrometres are favorable for rapid wetting and penetration of liquid electrolytes. The combination of advantages of large-size open channels and nanosized confined channels offers ultrafast electrolyte wetting and permeation and interlayer ion transport and provide the devices with superior volumetric capacity as free-standing electrodes for rechargeable batteries.
PB  - Wiley
T2  - Advanced Functional Materials
T1  - Bamboo‐Membrane Inspired Multilevel Ultrafast Interlayer Ion Transport for Superior Volumetric Energy Storage
SP  - 2100299
VL  - 31
IS  - 31
DO  - 10.1002/adfm.202100299
UR  - https://hdl.handle.net/21.15107/rcub_dais_11801
ER  - 
@article{
author = "Mei, Jun and Peng, Xiaomin and Zhang, Qian and Zhang, Xiaoqi and Liao, Ting and Mitić, Vojislav V. and Sun, Ziqi",
year = "2021",
abstract = "Interlayer transport of charges and carriers of 2D nanomaterials is a critical parameter that governs the material and device performance in energy storage applications. Inspired by multilevel natural bamboo-membrane with ultrafast water and electrolyte transport properties to support its super-rapid growth rate, 2D–2D multilevel heterostructured graphene-based membranes with tailored gradient interlayer channels are rationally designed for achieving ultrafast interlayer ion transport. The bioinspired heterostructured membranes possess multilevel interlayer spacing distributions, where the closely packed layers with sub-nanosized interlayer space provide ultrafast confined interlayer ion transport, while the loosely stacked outer layers consisting of open channels with large distances up to few micrometres are favorable for rapid wetting and penetration of liquid electrolytes. The combination of advantages of large-size open channels and nanosized confined channels offers ultrafast electrolyte wetting and permeation and interlayer ion transport and provide the devices with superior volumetric capacity as free-standing electrodes for rechargeable batteries.",
publisher = "Wiley",
journal = "Advanced Functional Materials",
title = "Bamboo‐Membrane Inspired Multilevel Ultrafast Interlayer Ion Transport for Superior Volumetric Energy Storage",
pages = "2100299",
volume = "31",
number = "31",
doi = "10.1002/adfm.202100299",
url = "https://hdl.handle.net/21.15107/rcub_dais_11801"
}
Mei, J., Peng, X., Zhang, Q., Zhang, X., Liao, T., Mitić, V. V.,& Sun, Z.. (2021). Bamboo‐Membrane Inspired Multilevel Ultrafast Interlayer Ion Transport for Superior Volumetric Energy Storage. in Advanced Functional Materials
Wiley., 31(31), 2100299.
https://doi.org/10.1002/adfm.202100299
https://hdl.handle.net/21.15107/rcub_dais_11801
Mei J, Peng X, Zhang Q, Zhang X, Liao T, Mitić VV, Sun Z. Bamboo‐Membrane Inspired Multilevel Ultrafast Interlayer Ion Transport for Superior Volumetric Energy Storage. in Advanced Functional Materials. 2021;31(31):2100299.
doi:10.1002/adfm.202100299
https://hdl.handle.net/21.15107/rcub_dais_11801 .
Mei, Jun, Peng, Xiaomin, Zhang, Qian, Zhang, Xiaoqi, Liao, Ting, Mitić, Vojislav V., Sun, Ziqi, "Bamboo‐Membrane Inspired Multilevel Ultrafast Interlayer Ion Transport for Superior Volumetric Energy Storage" in Advanced Functional Materials, 31, no. 31 (2021):2100299,
https://doi.org/10.1002/adfm.202100299 .,
https://hdl.handle.net/21.15107/rcub_dais_11801 .
56
27
4
26

The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination

Mitić, Vojislav V.; Lazović, Goran; Ribar, Srđan; Lu, Chun-An; Radović, Ivana; Stajčić, Aleksandar; Fecht, Hans; Vlahović, Branislav

(Taylor & Francis, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Ribar, Srđan
AU  - Lu, Chun-An
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Fecht, Hans
AU  - Vlahović, Branislav
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/9542
AB  - This paper is based on fundamental research to develop the interface structure around the grains and to control the layers between two grains, as a prospective media for high-level electronic parameters integrations. We performed the experiments based on nano-BaTiO3 powders with Y additives. All results on dielectric parameters on submicron level are the part of global values the same measured characteristics at the bulk samples. The original idea is to develop the new computing ways to network electronic parameters in thin layers between the grains on the way to get and to compare the values on the samples. Artificial neural networks are computing tools that map input-output data and could be applied on ceramic electronic parameters. These are developed in the manner signals are processed in biological neural networks. The signals are processed by using elements which represent artificial neurons, which have a simple function to process input signal, as well as adjustable parameter which has an influence to change output signal. The total network output presents the sum of a large number neurons outputs. This important research idea is to connect analysis results and neural networks. There is a great interest to connect all of these microcapacitances by neural network with the goal to compare the results in the standard bulk samples measurements frame and microelectronics parameters. The final result of the study was functional relation definition between consolidation parameters, voltage (U) and relative capacitance change, from the level of the bulk sample down to the grains boundaries.
PB  - Taylor & Francis
T2  - Integrated Ferroelectrics
T1  - The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination
SP  - 135
EP  - 146
VL  - 212
IS  - 1
DO  - 10.1080/10584587.2020.1819042
UR  - https://hdl.handle.net/21.15107/rcub_dais_9542
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Ribar, Srđan and Lu, Chun-An and Radović, Ivana and Stajčić, Aleksandar and Fecht, Hans and Vlahović, Branislav",
year = "2020",
abstract = "This paper is based on fundamental research to develop the interface structure around the grains and to control the layers between two grains, as a prospective media for high-level electronic parameters integrations. We performed the experiments based on nano-BaTiO3 powders with Y additives. All results on dielectric parameters on submicron level are the part of global values the same measured characteristics at the bulk samples. The original idea is to develop the new computing ways to network electronic parameters in thin layers between the grains on the way to get and to compare the values on the samples. Artificial neural networks are computing tools that map input-output data and could be applied on ceramic electronic parameters. These are developed in the manner signals are processed in biological neural networks. The signals are processed by using elements which represent artificial neurons, which have a simple function to process input signal, as well as adjustable parameter which has an influence to change output signal. The total network output presents the sum of a large number neurons outputs. This important research idea is to connect analysis results and neural networks. There is a great interest to connect all of these microcapacitances by neural network with the goal to compare the results in the standard bulk samples measurements frame and microelectronics parameters. The final result of the study was functional relation definition between consolidation parameters, voltage (U) and relative capacitance change, from the level of the bulk sample down to the grains boundaries.",
publisher = "Taylor & Francis",
journal = "Integrated Ferroelectrics",
title = "The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination",
pages = "135-146",
volume = "212",
number = "1",
doi = "10.1080/10584587.2020.1819042",
url = "https://hdl.handle.net/21.15107/rcub_dais_9542"
}
Mitić, V. V., Lazović, G., Ribar, S., Lu, C., Radović, I., Stajčić, A., Fecht, H.,& Vlahović, B.. (2020). The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination. in Integrated Ferroelectrics
Taylor & Francis., 212(1), 135-146.
https://doi.org/10.1080/10584587.2020.1819042
https://hdl.handle.net/21.15107/rcub_dais_9542
Mitić VV, Lazović G, Ribar S, Lu C, Radović I, Stajčić A, Fecht H, Vlahović B. The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination. in Integrated Ferroelectrics. 2020;212(1):135-146.
doi:10.1080/10584587.2020.1819042
https://hdl.handle.net/21.15107/rcub_dais_9542 .
Mitić, Vojislav V., Lazović, Goran, Ribar, Srđan, Lu, Chun-An, Radović, Ivana, Stajčić, Aleksandar, Fecht, Hans, Vlahović, Branislav, "The Artificial Neural Networks Applied for Microelectronics Intergranular Relations Determination" in Integrated Ferroelectrics, 212, no. 1 (2020):135-146,
https://doi.org/10.1080/10584587.2020.1819042 .,
https://hdl.handle.net/21.15107/rcub_dais_9542 .
11
4
10