Milanović, Igor

Link to this page

Authority KeyName Variants
dd0dc6c5-555c-4653-b8b5-ec9941c9abce
  • Milanović, Igor (4)
Projects

Author's Bibliography

The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time

Sekulić, Zorana; Grbović Novaković, Jasmina; Babić, Bojana; Prvulović, Milica; Milanović, Igor; Novaković, Nikola; Rajnović, Dragan; Filipović, Nenad; Asanović, Vanja

(2023)

TY  - JOUR
AU  - Sekulić, Zorana
AU  - Grbović Novaković, Jasmina
AU  - Babić, Bojana
AU  - Prvulović, Milica
AU  - Milanović, Igor
AU  - Novaković, Nikola
AU  - Rajnović, Dragan
AU  - Filipović, Nenad
AU  - Asanović, Vanja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15140
AB  - The effects of catalysis using vanadium as an additive (2 and 5 wt.%) in a high-energy ball mill on composite desorption properties were examined. The influence of microstructure on the dehydration temperature and hydrogen desorption kinetics was monitored. Morphological and microstructural studies of the synthesized sample were performed by X-ray diffraction (XRD), laser particle size distribution (PSD), and scanning electron microscopy (SEM) methods, while differential scanning calorimetry (DSC) determined thermal properties. To further access amorph species in the milling blend, the absorption spectra were obtained by FTIR-ATR analysis (Fourier transform infrared spectroscopy attenuated total reflection). The results show lower apparent activation energy (Eapp) and H2 desorption temperature are obtained for milling bland with 5 wt.% added vanadium. The best explanation of hydrogen desorption reaction shows the Avrami-Erofeev model for parameter n = 4. Since the obtained value of apparent activation energy is close to the Mg-H bond-breaking energy, one can conclude that breaking this bond would be the rate-limiting step of the process.
T2  - Materials
T1  - The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time
SP  - 5480
VL  - 16
IS  - 15
DO  - 10.3390/ma16155480
UR  - https://hdl.handle.net/21.15107/rcub_dais_15140
ER  - 
@article{
author = "Sekulić, Zorana and Grbović Novaković, Jasmina and Babić, Bojana and Prvulović, Milica and Milanović, Igor and Novaković, Nikola and Rajnović, Dragan and Filipović, Nenad and Asanović, Vanja",
year = "2023",
abstract = "The effects of catalysis using vanadium as an additive (2 and 5 wt.%) in a high-energy ball mill on composite desorption properties were examined. The influence of microstructure on the dehydration temperature and hydrogen desorption kinetics was monitored. Morphological and microstructural studies of the synthesized sample were performed by X-ray diffraction (XRD), laser particle size distribution (PSD), and scanning electron microscopy (SEM) methods, while differential scanning calorimetry (DSC) determined thermal properties. To further access amorph species in the milling blend, the absorption spectra were obtained by FTIR-ATR analysis (Fourier transform infrared spectroscopy attenuated total reflection). The results show lower apparent activation energy (Eapp) and H2 desorption temperature are obtained for milling bland with 5 wt.% added vanadium. The best explanation of hydrogen desorption reaction shows the Avrami-Erofeev model for parameter n = 4. Since the obtained value of apparent activation energy is close to the Mg-H bond-breaking energy, one can conclude that breaking this bond would be the rate-limiting step of the process.",
journal = "Materials",
title = "The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time",
pages = "5480",
volume = "16",
number = "15",
doi = "10.3390/ma16155480",
url = "https://hdl.handle.net/21.15107/rcub_dais_15140"
}
Sekulić, Z., Grbović Novaković, J., Babić, B., Prvulović, M., Milanović, I., Novaković, N., Rajnović, D., Filipović, N.,& Asanović, V.. (2023). The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time. in Materials, 16(15), 5480.
https://doi.org/10.3390/ma16155480
https://hdl.handle.net/21.15107/rcub_dais_15140
Sekulić Z, Grbović Novaković J, Babić B, Prvulović M, Milanović I, Novaković N, Rajnović D, Filipović N, Asanović V. The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time. in Materials. 2023;16(15):5480.
doi:10.3390/ma16155480
https://hdl.handle.net/21.15107/rcub_dais_15140 .
Sekulić, Zorana, Grbović Novaković, Jasmina, Babić, Bojana, Prvulović, Milica, Milanović, Igor, Novaković, Nikola, Rajnović, Dragan, Filipović, Nenad, Asanović, Vanja, "The Catalytic Effect of Vanadium on Sorption Properties of MgH2-Based Nanocomposites Obtained Using Low Milling Time" in Materials, 16, no. 15 (2023):5480,
https://doi.org/10.3390/ma16155480 .,
https://hdl.handle.net/21.15107/rcub_dais_15140 .

Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials

Biliškov, Nikola; Milanović, Igor; Milović, Miloš; Takats, Viktor; Erdelyi, Zoltan

(2023)

TY  - JOUR
AU  - Biliškov, Nikola
AU  - Milanović, Igor
AU  - Milović, Miloš
AU  - Takats, Viktor
AU  - Erdelyi, Zoltan
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14288
AB  - The maximization of the number of exposed edges of layered MoS2-type transition metal dichalcogenides of general formula MX2 (M = Mo, W; X = S, Se) is difficult yet meaningful way to improve their electrochemical and electrocatalytic performance. In this work, an all-solid ball milling method for simultaneous introduction of defects and their hybridization through binding of ammonia borane (NH3BH3) to defect sites of MX2 is demonstrated. The milling conditions leads to partial separation and nanosizing of MX2 layers, simultaneously extensively introducing defects (cracks, vacancies, strains, voids etc.), while the detailed analysis revealed the functionalization of the material by binding of NH3BH3 to defect sites, which results in highly improved electrocatalytic performance of thus obtained composites with respect to MX2 for hydrogen evolution reaction. The mechanochemical approach thus enables preparation of MoS2-type materials with improved, highly tunable activity, potentially relevant for energy conversion and storage.
T2  - Journal of Alloys and Compounds
T1  - Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials
SP  - 169293
VL  - 945
DO  - 10.1016/j.jallcom.2023.169293
UR  - https://hdl.handle.net/21.15107/rcub_dais_14288
ER  - 
@article{
author = "Biliškov, Nikola and Milanović, Igor and Milović, Miloš and Takats, Viktor and Erdelyi, Zoltan",
year = "2023",
abstract = "The maximization of the number of exposed edges of layered MoS2-type transition metal dichalcogenides of general formula MX2 (M = Mo, W; X = S, Se) is difficult yet meaningful way to improve their electrochemical and electrocatalytic performance. In this work, an all-solid ball milling method for simultaneous introduction of defects and their hybridization through binding of ammonia borane (NH3BH3) to defect sites of MX2 is demonstrated. The milling conditions leads to partial separation and nanosizing of MX2 layers, simultaneously extensively introducing defects (cracks, vacancies, strains, voids etc.), while the detailed analysis revealed the functionalization of the material by binding of NH3BH3 to defect sites, which results in highly improved electrocatalytic performance of thus obtained composites with respect to MX2 for hydrogen evolution reaction. The mechanochemical approach thus enables preparation of MoS2-type materials with improved, highly tunable activity, potentially relevant for energy conversion and storage.",
journal = "Journal of Alloys and Compounds",
title = "Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials",
pages = "169293",
volume = "945",
doi = "10.1016/j.jallcom.2023.169293",
url = "https://hdl.handle.net/21.15107/rcub_dais_14288"
}
Biliškov, N., Milanović, I., Milović, M., Takats, V.,& Erdelyi, Z.. (2023). Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials. in Journal of Alloys and Compounds, 945, 169293.
https://doi.org/10.1016/j.jallcom.2023.169293
https://hdl.handle.net/21.15107/rcub_dais_14288
Biliškov N, Milanović I, Milović M, Takats V, Erdelyi Z. Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials. in Journal of Alloys and Compounds. 2023;945:169293.
doi:10.1016/j.jallcom.2023.169293
https://hdl.handle.net/21.15107/rcub_dais_14288 .
Biliškov, Nikola, Milanović, Igor, Milović, Miloš, Takats, Viktor, Erdelyi, Zoltan, "Ammonia borane assisted mechanochemical boost of electrochemical performance of basal planes of MoS2-type materials" in Journal of Alloys and Compounds, 945 (2023):169293,
https://doi.org/10.1016/j.jallcom.2023.169293 .,
https://hdl.handle.net/21.15107/rcub_dais_14288 .

Hydrogen storage properties of MgH2-Ni system

Prvulović, Milica; Babić, Bojana; Filipović, Nenad; Mravik, Željko; Milošević Govedarović, Sanja; Sekulić, Zorana; Milanović, Igor

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Prvulović, Milica
AU  - Babić, Bojana
AU  - Filipović, Nenad
AU  - Mravik, Željko
AU  - Milošević Govedarović, Sanja
AU  - Sekulić, Zorana
AU  - Milanović, Igor
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15640
AB  - The effect of pure Ni addition (5 wt.%) in MgH2 powder was investigated mechanochemically for short milling times (15, 30, and 45 min). Obtained MgH2-Ni system was characterized by XRD, SEM-EDS, PSD, DSC, and TPD. Compared to pure MgH2, uniform distribution of nickel reduces the temperature of H2 desorption by more than 100 °C. It is shown that influence of two important processes, grinding and catalysis, may be followed separately. We can conclude that the catalysis of H2 desorption by Ni particles on MgH2 matrix is the dominant effect for the investigated short milling times.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia
T1  - Hydrogen storage properties of MgH2-Ni system
SP  - 39
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_dais_15640
ER  - 
@conference{
author = "Prvulović, Milica and Babić, Bojana and Filipović, Nenad and Mravik, Željko and Milošević Govedarović, Sanja and Sekulić, Zorana and Milanović, Igor",
year = "2023",
abstract = "The effect of pure Ni addition (5 wt.%) in MgH2 powder was investigated mechanochemically for short milling times (15, 30, and 45 min). Obtained MgH2-Ni system was characterized by XRD, SEM-EDS, PSD, DSC, and TPD. Compared to pure MgH2, uniform distribution of nickel reduces the temperature of H2 desorption by more than 100 °C. It is shown that influence of two important processes, grinding and catalysis, may be followed separately. We can conclude that the catalysis of H2 desorption by Ni particles on MgH2 matrix is the dominant effect for the investigated short milling times.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia",
title = "Hydrogen storage properties of MgH2-Ni system",
pages = "39-39",
url = "https://hdl.handle.net/21.15107/rcub_dais_15640"
}
Prvulović, M., Babić, B., Filipović, N., Mravik, Ž., Milošević Govedarović, S., Sekulić, Z.,& Milanović, I.. (2023). Hydrogen storage properties of MgH2-Ni system. in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 39-39.
https://hdl.handle.net/21.15107/rcub_dais_15640
Prvulović M, Babić B, Filipović N, Mravik Ž, Milošević Govedarović S, Sekulić Z, Milanović I. Hydrogen storage properties of MgH2-Ni system. in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia. 2023;:39-39.
https://hdl.handle.net/21.15107/rcub_dais_15640 .
Prvulović, Milica, Babić, Bojana, Filipović, Nenad, Mravik, Željko, Milošević Govedarović, Sanja, Sekulić, Zorana, Milanović, Igor, "Hydrogen storage properties of MgH2-Ni system" in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia (2023):39-39,
https://hdl.handle.net/21.15107/rcub_dais_15640 .

Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites

Milanović, Igor; Milošević-Govedarović, Sanja; Lukić, Miodrag; Jovanović, Zoran; Rmuš, Jelena; Mitrović-Rajić, Anđela; Grbović-Novaković, Jasmina; Kurko, Sandra V.

(2022)

TY  - JOUR
AU  - Milanović, Igor
AU  - Milošević-Govedarović, Sanja
AU  - Lukić, Miodrag
AU  - Jovanović, Zoran
AU  - Rmuš, Jelena
AU  - Mitrović-Rajić, Anđela
AU  - Grbović-Novaković, Jasmina
AU  - Kurko, Sandra V.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13492
AB  - LiAlH4 was modified by mechanical milling and with the addition of 5 wt.% Fe2O3 in order to improve its hydrogen desorption properties. The composite was milled for 1, 3, 5, 7 or 15min, and depending on the milling time, various phenomena took place. Up to a milling time of 5min, the particle size of the composite decreases. Further milling leads to the particles agglomeration reaching the size of the starting material after 15min. Moreover, the mechanical milling process leads to the transformation of AlH - 4 to AlH 3 - 6 structure as a result of partial hydrogen desorption. Hydrogen desorption during the milling is the most pronounced in the sample milled for 15min, so this sample has only one hydrogen desorption peak in the temperature-programmed desorption measurements.Mechanical milling with the addition of Fe2O3 for up to 15min improves LiAlH4 hydrogen desorption properties as hydrogen desorption temperature and apparent activation energies decrease.
T2  - Processing and Application of Ceramics
T1  - Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites
SP  - 259
EP  - 266
VL  - 16
IS  - 3
DO  - 10.2298/PAC2203259M
UR  - https://hdl.handle.net/21.15107/rcub_dais_13492
ER  - 
@article{
author = "Milanović, Igor and Milošević-Govedarović, Sanja and Lukić, Miodrag and Jovanović, Zoran and Rmuš, Jelena and Mitrović-Rajić, Anđela and Grbović-Novaković, Jasmina and Kurko, Sandra V.",
year = "2022",
abstract = "LiAlH4 was modified by mechanical milling and with the addition of 5 wt.% Fe2O3 in order to improve its hydrogen desorption properties. The composite was milled for 1, 3, 5, 7 or 15min, and depending on the milling time, various phenomena took place. Up to a milling time of 5min, the particle size of the composite decreases. Further milling leads to the particles agglomeration reaching the size of the starting material after 15min. Moreover, the mechanical milling process leads to the transformation of AlH - 4 to AlH 3 - 6 structure as a result of partial hydrogen desorption. Hydrogen desorption during the milling is the most pronounced in the sample milled for 15min, so this sample has only one hydrogen desorption peak in the temperature-programmed desorption measurements.Mechanical milling with the addition of Fe2O3 for up to 15min improves LiAlH4 hydrogen desorption properties as hydrogen desorption temperature and apparent activation energies decrease.",
journal = "Processing and Application of Ceramics",
title = "Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites",
pages = "259-266",
volume = "16",
number = "3",
doi = "10.2298/PAC2203259M",
url = "https://hdl.handle.net/21.15107/rcub_dais_13492"
}
Milanović, I., Milošević-Govedarović, S., Lukić, M., Jovanović, Z., Rmuš, J., Mitrović-Rajić, A., Grbović-Novaković, J.,& Kurko, S. V.. (2022). Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites. in Processing and Application of Ceramics, 16(3), 259-266.
https://doi.org/10.2298/PAC2203259M
https://hdl.handle.net/21.15107/rcub_dais_13492
Milanović I, Milošević-Govedarović S, Lukić M, Jovanović Z, Rmuš J, Mitrović-Rajić A, Grbović-Novaković J, Kurko SV. Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites. in Processing and Application of Ceramics. 2022;16(3):259-266.
doi:10.2298/PAC2203259M
https://hdl.handle.net/21.15107/rcub_dais_13492 .
Milanović, Igor, Milošević-Govedarović, Sanja, Lukić, Miodrag, Jovanović, Zoran, Rmuš, Jelena, Mitrović-Rajić, Anđela, Grbović-Novaković, Jasmina, Kurko, Sandra V., "Study of milling time impact on hydrogen desorption from LiAlH4-Fe2O3 composites" in Processing and Application of Ceramics, 16, no. 3 (2022):259-266,
https://doi.org/10.2298/PAC2203259M .,
https://hdl.handle.net/21.15107/rcub_dais_13492 .
1
1