Corlett, Cole

Link to this page

Authority KeyName Variants
ec8bb24b-d371-4a0d-9101-ba6a7bac85eb
  • Corlett, Cole (5)

Author's Bibliography

Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite

Filipović, Suzana; Obradović, Nina; Corlett, Cole; Fahrenholtz, William G.; Rosenschon, Martin; Füglein, Ekkehard; Dojčilović, Radovan; Tošić, Dragana; Petrović, Jovana; Đorđević, Antonije; Vlahović, Branislav; Pavlović, Vladimir B.

(Wiley, 2024)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Corlett, Cole
AU  - Fahrenholtz, William G.
AU  - Rosenschon, Martin
AU  - Füglein, Ekkehard
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Petrović, Jovana
AU  - Đorđević, Antonije
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - https://dais.sanu.ac.rs/123456789/16516
AB  - Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.
PB  - Wiley
T2  - Journal of Applied Polymer Science
T1  - Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite
SP  - e55040
VL  - 141
IS  - 10
DO  - 10.1002/app.55040
UR  - https://hdl.handle.net/21.15107/rcub_dais_16516
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Corlett, Cole and Fahrenholtz, William G. and Rosenschon, Martin and Füglein, Ekkehard and Dojčilović, Radovan and Tošić, Dragana and Petrović, Jovana and Đorđević, Antonije and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2024",
abstract = "Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.",
publisher = "Wiley",
journal = "Journal of Applied Polymer Science",
title = "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite",
pages = "e55040",
volume = "141",
number = "10",
doi = "10.1002/app.55040",
url = "https://hdl.handle.net/21.15107/rcub_dais_16516"
}
Filipović, S., Obradović, N., Corlett, C., Fahrenholtz, W. G., Rosenschon, M., Füglein, E., Dojčilović, R., Tošić, D., Petrović, J., Đorđević, A., Vlahović, B.,& Pavlović, V. B.. (2024). Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science
Wiley., 141(10), e55040.
https://doi.org/10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516
Filipović S, Obradović N, Corlett C, Fahrenholtz WG, Rosenschon M, Füglein E, Dojčilović R, Tošić D, Petrović J, Đorđević A, Vlahović B, Pavlović VB. Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science. 2024;141(10):e55040.
doi:10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516 .
Filipović, Suzana, Obradović, Nina, Corlett, Cole, Fahrenholtz, William G., Rosenschon, Martin, Füglein, Ekkehard, Dojčilović, Radovan, Tošić, Dragana, Petrović, Jovana, Đorđević, Antonije, Vlahović, Branislav, Pavlović, Vladimir B., "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite" in Journal of Applied Polymer Science, 141, no. 10 (2024):e55040,
https://doi.org/10.1002/app.55040 .,
https://hdl.handle.net/21.15107/rcub_dais_16516 .

Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite

Filipović, Suzana; Obradović, Nina; Corlett, Cole; Fahrenholtz, William G.; Rosenschon, Martin; Füglein, Ekkehard; Dojčilović, Radovan; Tošić, Dragana; Petrović, Jovana; Đorđević, Antonije; Vlahović, Branislav; Pavlović, Vladimir B.

(Wiley, 2024)

TY  - JOUR
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Corlett, Cole
AU  - Fahrenholtz, William G.
AU  - Rosenschon, Martin
AU  - Füglein, Ekkehard
AU  - Dojčilović, Radovan
AU  - Tošić, Dragana
AU  - Petrović, Jovana
AU  - Đorđević, Antonije
AU  - Vlahović, Branislav
AU  - Pavlović, Vladimir B.
PY  - 2024
UR  - https://dais.sanu.ac.rs/123456789/16243
AB  - Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.
PB  - Wiley
T2  - Journal of Applied Polymer Science
T1  - Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite
SP  - e55040
VL  - 141
IS  - 10
DO  - 10.1002/app.55040
UR  - https://hdl.handle.net/21.15107/rcub_dais_16516
ER  - 
@article{
author = "Filipović, Suzana and Obradović, Nina and Corlett, Cole and Fahrenholtz, William G. and Rosenschon, Martin and Füglein, Ekkehard and Dojčilović, Radovan and Tošić, Dragana and Petrović, Jovana and Đorđević, Antonije and Vlahović, Branislav and Pavlović, Vladimir B.",
year = "2024",
abstract = "Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3-Fe2O3 powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3-Fe2O3 core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured.",
publisher = "Wiley",
journal = "Journal of Applied Polymer Science",
title = "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite",
pages = "e55040",
volume = "141",
number = "10",
doi = "10.1002/app.55040",
url = "https://hdl.handle.net/21.15107/rcub_dais_16516"
}
Filipović, S., Obradović, N., Corlett, C., Fahrenholtz, W. G., Rosenschon, M., Füglein, E., Dojčilović, R., Tošić, D., Petrović, J., Đorđević, A., Vlahović, B.,& Pavlović, V. B.. (2024). Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science
Wiley., 141(10), e55040.
https://doi.org/10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516
Filipović S, Obradović N, Corlett C, Fahrenholtz WG, Rosenschon M, Füglein E, Dojčilović R, Tošić D, Petrović J, Đorđević A, Vlahović B, Pavlović VB. Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite. in Journal of Applied Polymer Science. 2024;141(10):e55040.
doi:10.1002/app.55040
https://hdl.handle.net/21.15107/rcub_dais_16516 .
Filipović, Suzana, Obradović, Nina, Corlett, Cole, Fahrenholtz, William G., Rosenschon, Martin, Füglein, Ekkehard, Dojčilović, Radovan, Tošić, Dragana, Petrović, Jovana, Đorđević, Antonije, Vlahović, Branislav, Pavlović, Vladimir B., "Effect of the filler morphology on the crystallization behavior and dielectric properties of the polyvinylidene fluoride‐based composite" in Journal of Applied Polymer Science, 141, no. 10 (2024):e55040,
https://doi.org/10.1002/app.55040 .,
https://hdl.handle.net/21.15107/rcub_dais_16516 .

Microstructural and Optical Properties of MgAl2O4 Spinel: Effects of Mechanical Activation, Y2O3 and Graphene Additions

Obradović, Nina; Fahrenholtz, William G.; Corlett, Cole; Filipović, Suzana; Nikolić, Marko; Marinković, Bojan A.; Failla, Simone; Sciti, Diletta; Di Rosa, Daniele; Sani, Elisa

(Basel : MDPI AG, 2021)

TY  - JOUR
AU  - Obradović, Nina
AU  - Fahrenholtz, William G.
AU  - Corlett, Cole
AU  - Filipović, Suzana
AU  - Nikolić, Marko
AU  - Marinković, Bojan A.
AU  - Failla, Simone
AU  - Sciti, Diletta
AU  - Di Rosa, Daniele
AU  - Sani, Elisa
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12431
AB  - Magnesium aluminate and other alumina-based spinels attract attention due to their high hardness, high mechanical strength, and low dielectric constant. MgAl2O4 was produced by a solid-state reaction between MgO and α-Al2O3 powders. Mechanical activation for 30 min in a planetary ball mill was used to increase the reactivity of powders. Yttrium oxide and graphene were added to prevent abnormal grain growth during sintering. Samples were sintered by hot pressing under vacuum at 1450 °C. Phase composition and microstructure of sintered specimens were characterized by X-ray powder diffraction and scanning electron microscopy. Rietveld analysis revealed 100% pure spinel phase in all sintered specimens, and a decrease in crystallite size with the addition of yttria or graphene. Density measurements indicated that the mechanically activated specimen reached 99.6% relative density. Furthermore, the highest solar absorbance and highest spectral selectivity as a function of temperature were detected for the mechanically activated specimen with graphene addition. Mechanical activation is an efficient method to improve densification of MgAl2O4 prepared from mixed oxide powders, while additives improve microstructure and optical properties.
PB  - Basel : MDPI AG
T2  - Materials
T1  - Microstructural and Optical Properties of MgAl2O4 Spinel: Effects of Mechanical Activation, Y2O3 and Graphene Additions
SP  - 7674
VL  - 14
IS  - 24
DO  - 10.3390/ma14247674
UR  - https://hdl.handle.net/21.15107/rcub_dais_12431
ER  - 
@article{
author = "Obradović, Nina and Fahrenholtz, William G. and Corlett, Cole and Filipović, Suzana and Nikolić, Marko and Marinković, Bojan A. and Failla, Simone and Sciti, Diletta and Di Rosa, Daniele and Sani, Elisa",
year = "2021",
abstract = "Magnesium aluminate and other alumina-based spinels attract attention due to their high hardness, high mechanical strength, and low dielectric constant. MgAl2O4 was produced by a solid-state reaction between MgO and α-Al2O3 powders. Mechanical activation for 30 min in a planetary ball mill was used to increase the reactivity of powders. Yttrium oxide and graphene were added to prevent abnormal grain growth during sintering. Samples were sintered by hot pressing under vacuum at 1450 °C. Phase composition and microstructure of sintered specimens were characterized by X-ray powder diffraction and scanning electron microscopy. Rietveld analysis revealed 100% pure spinel phase in all sintered specimens, and a decrease in crystallite size with the addition of yttria or graphene. Density measurements indicated that the mechanically activated specimen reached 99.6% relative density. Furthermore, the highest solar absorbance and highest spectral selectivity as a function of temperature were detected for the mechanically activated specimen with graphene addition. Mechanical activation is an efficient method to improve densification of MgAl2O4 prepared from mixed oxide powders, while additives improve microstructure and optical properties.",
publisher = "Basel : MDPI AG",
journal = "Materials",
title = "Microstructural and Optical Properties of MgAl2O4 Spinel: Effects of Mechanical Activation, Y2O3 and Graphene Additions",
pages = "7674",
volume = "14",
number = "24",
doi = "10.3390/ma14247674",
url = "https://hdl.handle.net/21.15107/rcub_dais_12431"
}
Obradović, N., Fahrenholtz, W. G., Corlett, C., Filipović, S., Nikolić, M., Marinković, B. A., Failla, S., Sciti, D., Di Rosa, D.,& Sani, E.. (2021). Microstructural and Optical Properties of MgAl2O4 Spinel: Effects of Mechanical Activation, Y2O3 and Graphene Additions. in Materials
Basel : MDPI AG., 14(24), 7674.
https://doi.org/10.3390/ma14247674
https://hdl.handle.net/21.15107/rcub_dais_12431
Obradović N, Fahrenholtz WG, Corlett C, Filipović S, Nikolić M, Marinković BA, Failla S, Sciti D, Di Rosa D, Sani E. Microstructural and Optical Properties of MgAl2O4 Spinel: Effects of Mechanical Activation, Y2O3 and Graphene Additions. in Materials. 2021;14(24):7674.
doi:10.3390/ma14247674
https://hdl.handle.net/21.15107/rcub_dais_12431 .
Obradović, Nina, Fahrenholtz, William G., Corlett, Cole, Filipović, Suzana, Nikolić, Marko, Marinković, Bojan A., Failla, Simone, Sciti, Diletta, Di Rosa, Daniele, Sani, Elisa, "Microstructural and Optical Properties of MgAl2O4 Spinel: Effects of Mechanical Activation, Y2O3 and Graphene Additions" in Materials, 14, no. 24 (2021):7674,
https://doi.org/10.3390/ma14247674 .,
https://hdl.handle.net/21.15107/rcub_dais_12431 .
2
2
2

Microstructural and optical properties of MgAl2O4 Spinel: Effect of Mechanical Activation, Yttrium and Graphene addition

Obradović, Nina; Fahrenholtz, William G.; Corlett, Cole; Filipović, Suzana; Nikolić, Marko G.; Marinković, Bojan A.; Failla, Simone; Sciti, Diletta; Sani, Elisa

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Obradović, Nina
AU  - Fahrenholtz, William G.
AU  - Corlett, Cole
AU  - Filipović, Suzana
AU  - Nikolić, Marko G.
AU  - Marinković, Bojan A.
AU  - Failla, Simone
AU  - Sciti, Diletta
AU  - Sani, Elisa
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11895
AB  - Magnesium aluminate and other alumina-based spinels attract attention due to their high hardness, high mechanical strength, and low dielectric constant. MgAl2O4 was produced by solid-state reaction between MgO and α-Al2O3 powders. Mechanical activation of 30 minutes in a planetary ball mill was used to increase the reactivity of powders. Yttrium oxide and graphene were added to prevent abnormal grain growth during sintering. Samples were sintered by hot-pressing under vacuum at 1450 °C. Phase composition and microstructure of sintered specimens were characterized by X-ray diffraction analysis and scanning electron microscopy. Rietveld analysis revealed 100 % pure spinel phase in all sintered specimens, and decrease in crystallite size with the addition of yttria or graphene. Density measurements indicated that the mechanically activated specimen reached 99.6 % relative density, while other specimens were above 96.5 % relative density. Furthermore, the highest solar absorbance and highest spectral selectivity as a function of temperature were detected for the mechanically activated specimen with graphene addition. Mechanical activation is an efficient method to improve the densification behaviour of MgAl2O4 produced from mixed oxide powders, while additives improve microstructure and optical properties.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Microstructural and optical properties of MgAl2O4 Spinel: Effect of Mechanical Activation, Yttrium and Graphene addition
SP  - 92
EP  - 92
UR  - https://hdl.handle.net/21.15107/rcub_dais_11895
ER  - 
@conference{
author = "Obradović, Nina and Fahrenholtz, William G. and Corlett, Cole and Filipović, Suzana and Nikolić, Marko G. and Marinković, Bojan A. and Failla, Simone and Sciti, Diletta and Sani, Elisa",
year = "2021",
abstract = "Magnesium aluminate and other alumina-based spinels attract attention due to their high hardness, high mechanical strength, and low dielectric constant. MgAl2O4 was produced by solid-state reaction between MgO and α-Al2O3 powders. Mechanical activation of 30 minutes in a planetary ball mill was used to increase the reactivity of powders. Yttrium oxide and graphene were added to prevent abnormal grain growth during sintering. Samples were sintered by hot-pressing under vacuum at 1450 °C. Phase composition and microstructure of sintered specimens were characterized by X-ray diffraction analysis and scanning electron microscopy. Rietveld analysis revealed 100 % pure spinel phase in all sintered specimens, and decrease in crystallite size with the addition of yttria or graphene. Density measurements indicated that the mechanically activated specimen reached 99.6 % relative density, while other specimens were above 96.5 % relative density. Furthermore, the highest solar absorbance and highest spectral selectivity as a function of temperature were detected for the mechanically activated specimen with graphene addition. Mechanical activation is an efficient method to improve the densification behaviour of MgAl2O4 produced from mixed oxide powders, while additives improve microstructure and optical properties.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Microstructural and optical properties of MgAl2O4 Spinel: Effect of Mechanical Activation, Yttrium and Graphene addition",
pages = "92-92",
url = "https://hdl.handle.net/21.15107/rcub_dais_11895"
}
Obradović, N., Fahrenholtz, W. G., Corlett, C., Filipović, S., Nikolić, M. G., Marinković, B. A., Failla, S., Sciti, D.,& Sani, E.. (2021). Microstructural and optical properties of MgAl2O4 Spinel: Effect of Mechanical Activation, Yttrium and Graphene addition. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 92-92.
https://hdl.handle.net/21.15107/rcub_dais_11895
Obradović N, Fahrenholtz WG, Corlett C, Filipović S, Nikolić MG, Marinković BA, Failla S, Sciti D, Sani E. Microstructural and optical properties of MgAl2O4 Spinel: Effect of Mechanical Activation, Yttrium and Graphene addition. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:92-92.
https://hdl.handle.net/21.15107/rcub_dais_11895 .
Obradović, Nina, Fahrenholtz, William G., Corlett, Cole, Filipović, Suzana, Nikolić, Marko G., Marinković, Bojan A., Failla, Simone, Sciti, Diletta, Sani, Elisa, "Microstructural and optical properties of MgAl2O4 Spinel: Effect of Mechanical Activation, Yttrium and Graphene addition" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):92-92,
https://hdl.handle.net/21.15107/rcub_dais_11895 .

Characterization of MgAl2O4 sintered ceramics

Obradović, Nina; Fahrenholtz, William G.; Filipović, Suzana; Corlett, Cole; Đorđević, Pavle; Rogan, Jelena; Vulić, Predrag J.; Buljak, Vladimir; Pavlović, Vladimir B.

(ETRAN, 2019)

TY  - JOUR
AU  - Obradović, Nina
AU  - Fahrenholtz, William G.
AU  - Filipović, Suzana
AU  - Corlett, Cole
AU  - Đorđević, Pavle
AU  - Rogan, Jelena
AU  - Vulić, Predrag J.
AU  - Buljak, Vladimir
AU  - Pavlović, Vladimir B.
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6949
AB  - Single phase MgAl2O4 was made from a one-to-one molar ratio of MgO and Al2O3 powders mixed using ball-milling. Mixtures of MgO and Al2O3 were subsequently treated in planetary ball mill for 30, 60, 90 and 120 minutes in air. The aim of this study was to examine phase composition, microstructure, and densification behavior of sintered specimens. After sintering in dilatometer at 1500 °C, the powder was converted to single phase MgAl2O4. The results show that mechanical activation improved the densification behavior of MgAl2O4 sintered specimens, and it reduced the onset temperature for sintering by approx. 100 oC. Based on dilatometer data, powders were subsequently densified at 1450 oC by hot pressing. Almost аll specimens exhibited full density, while sample activated for 30 minutes showed the fastest densification rate.
PB  - ETRAN
T2  - Science of Sintering
T1  - Characterization of MgAl2O4 sintered ceramics
SP  - 363
EP  - 376
VL  - 51
IS  - 4
DO  - 10.2298/SOS1904363O
UR  - https://hdl.handle.net/21.15107/rcub_dais_6949
ER  - 
@article{
author = "Obradović, Nina and Fahrenholtz, William G. and Filipović, Suzana and Corlett, Cole and Đorđević, Pavle and Rogan, Jelena and Vulić, Predrag J. and Buljak, Vladimir and Pavlović, Vladimir B.",
year = "2019",
abstract = "Single phase MgAl2O4 was made from a one-to-one molar ratio of MgO and Al2O3 powders mixed using ball-milling. Mixtures of MgO and Al2O3 were subsequently treated in planetary ball mill for 30, 60, 90 and 120 minutes in air. The aim of this study was to examine phase composition, microstructure, and densification behavior of sintered specimens. After sintering in dilatometer at 1500 °C, the powder was converted to single phase MgAl2O4. The results show that mechanical activation improved the densification behavior of MgAl2O4 sintered specimens, and it reduced the onset temperature for sintering by approx. 100 oC. Based on dilatometer data, powders were subsequently densified at 1450 oC by hot pressing. Almost аll specimens exhibited full density, while sample activated for 30 minutes showed the fastest densification rate.",
publisher = "ETRAN",
journal = "Science of Sintering",
title = "Characterization of MgAl2O4 sintered ceramics",
pages = "363-376",
volume = "51",
number = "4",
doi = "10.2298/SOS1904363O",
url = "https://hdl.handle.net/21.15107/rcub_dais_6949"
}
Obradović, N., Fahrenholtz, W. G., Filipović, S., Corlett, C., Đorđević, P., Rogan, J., Vulić, P. J., Buljak, V.,& Pavlović, V. B.. (2019). Characterization of MgAl2O4 sintered ceramics. in Science of Sintering
ETRAN., 51(4), 363-376.
https://doi.org/10.2298/SOS1904363O
https://hdl.handle.net/21.15107/rcub_dais_6949
Obradović N, Fahrenholtz WG, Filipović S, Corlett C, Đorđević P, Rogan J, Vulić PJ, Buljak V, Pavlović VB. Characterization of MgAl2O4 sintered ceramics. in Science of Sintering. 2019;51(4):363-376.
doi:10.2298/SOS1904363O
https://hdl.handle.net/21.15107/rcub_dais_6949 .
Obradović, Nina, Fahrenholtz, William G., Filipović, Suzana, Corlett, Cole, Đorđević, Pavle, Rogan, Jelena, Vulić, Predrag J., Buljak, Vladimir, Pavlović, Vladimir B., "Characterization of MgAl2O4 sintered ceramics" in Science of Sintering, 51, no. 4 (2019):363-376,
https://doi.org/10.2298/SOS1904363O .,
https://hdl.handle.net/21.15107/rcub_dais_6949 .
15
7
15