Brković, Snežana

Link to this page

Authority KeyName Variants
96533683-5d48-4018-a419-e41289ad0257
  • Brković, Snežana (2)
Projects

Author's Bibliography

Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage

Zdolšek, Nikola; Perović, Ivana; Brković, Snežana; Tasić, Gvozden; Milović, Miloš; Vujković, Milica

(Basel : MDPI, 2022)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Perović, Ivana
AU  - Brković, Snežana
AU  - Tasić, Gvozden
AU  - Milović, Miloš
AU  - Vujković, Milica
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13693
AB  - The capacitance and operating voltage of supercapacitors as well as their energy density have been increased by development of different materials and electrolytes. In this paper, two strategies, for the first time, were used to improve energy density: Mn3O4- and N-dual doped carbon electrode and aqueous mixture of multivalent ions as electrolyte. Mn3O4- and N-dual doped carbon was prepared by a novel and cost-effective procedure using deep eutectic solvent. XRD, XPS, and FTIR confirmed presence of Mn3O4 and nitrogen, while SEM and EDS elemental mapping showed micrometer-sized nanosheets with uniform distribution of C, O, N, and Mn atoms. Charge storage behavior of carbon was tested in aqueous multivalent-based electrolytes and their mixture (Ca2+-Al3+). Regarding both specific capacitance and workable voltage, the Ca2+-Al3+ mixed electrolyte was found as the best optimal solution. The calcium addition to the Al-electrolyte allows the higher operating voltage than in the case of individual Al(NO3)3 electrolyte while the addition of Al3+ ion in the Ca(NO3)2 electrolyte improves the multivalent-ion charge storage ability of carbon. As a result, the specific energy density of two-electrode Mn3O4@N-doped carbon//Al(NO3)2+Ca(NO3)2//Mn3O4@N-doped carbon supercapacitor (34 Wh kg−1 at 0.1 A g−1) overpasses the reported values obtained for Mn-based carbon supercapacitors using conventional aqueous electrolytes.
PB  - Basel : MDPI
T2  - Materials
T1  - Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage
VL  - 15
IS  - 23
DO  - 10.3390/ma15238540
UR  - https://hdl.handle.net/21.15107/rcub_dais_13693
ER  - 
@article{
author = "Zdolšek, Nikola and Perović, Ivana and Brković, Snežana and Tasić, Gvozden and Milović, Miloš and Vujković, Milica",
year = "2022",
abstract = "The capacitance and operating voltage of supercapacitors as well as their energy density have been increased by development of different materials and electrolytes. In this paper, two strategies, for the first time, were used to improve energy density: Mn3O4- and N-dual doped carbon electrode and aqueous mixture of multivalent ions as electrolyte. Mn3O4- and N-dual doped carbon was prepared by a novel and cost-effective procedure using deep eutectic solvent. XRD, XPS, and FTIR confirmed presence of Mn3O4 and nitrogen, while SEM and EDS elemental mapping showed micrometer-sized nanosheets with uniform distribution of C, O, N, and Mn atoms. Charge storage behavior of carbon was tested in aqueous multivalent-based electrolytes and their mixture (Ca2+-Al3+). Regarding both specific capacitance and workable voltage, the Ca2+-Al3+ mixed electrolyte was found as the best optimal solution. The calcium addition to the Al-electrolyte allows the higher operating voltage than in the case of individual Al(NO3)3 electrolyte while the addition of Al3+ ion in the Ca(NO3)2 electrolyte improves the multivalent-ion charge storage ability of carbon. As a result, the specific energy density of two-electrode Mn3O4@N-doped carbon//Al(NO3)2+Ca(NO3)2//Mn3O4@N-doped carbon supercapacitor (34 Wh kg−1 at 0.1 A g−1) overpasses the reported values obtained for Mn-based carbon supercapacitors using conventional aqueous electrolytes.",
publisher = "Basel : MDPI",
journal = "Materials",
title = "Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage",
volume = "15",
number = "23",
doi = "10.3390/ma15238540",
url = "https://hdl.handle.net/21.15107/rcub_dais_13693"
}
Zdolšek, N., Perović, I., Brković, S., Tasić, G., Milović, M.,& Vujković, M.. (2022). Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage. in Materials
Basel : MDPI., 15(23).
https://doi.org/10.3390/ma15238540
https://hdl.handle.net/21.15107/rcub_dais_13693
Zdolšek N, Perović I, Brković S, Tasić G, Milović M, Vujković M. Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage. in Materials. 2022;15(23).
doi:10.3390/ma15238540
https://hdl.handle.net/21.15107/rcub_dais_13693 .
Zdolšek, Nikola, Perović, Ivana, Brković, Snežana, Tasić, Gvozden, Milović, Miloš, Vujković, Milica, "Deep Eutectic Solvent for Facile Synthesis of Mn3O4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage" in Materials, 15, no. 23 (2022),
https://doi.org/10.3390/ma15238540 .,
https://hdl.handle.net/21.15107/rcub_dais_13693 .
3
3

Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions

Zdolšek, Nikola; Janković, Bojan; Milović, Miloš; Brković, Snežana; Krstić, Jugoslav; Perović, Ivana; Vujković, Milica

(2022)

TY  - JOUR
AU  - Zdolšek, Nikola
AU  - Janković, Bojan
AU  - Milović, Miloš
AU  - Brković, Snežana
AU  - Krstić, Jugoslav
AU  - Perović, Ivana
AU  - Vujković, Milica
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13511
AB  - The development of carbon materials with desirable textures and new aqueous electrolytes is the key strategy to improve the performance of supercapacitors. Herein, a deep eutectic solvent (DES) was used for in situ templating of a carbon material. A carbon material was characterized (XRD, N2-physisorption, FTIR, SEM and EDS) and used as an electrode material for the first time in multivalent-based supercapacitors. In situ templating of carbon was performed using a novel DES, which serves as a precursor for carbon and for in situ generation of MgO. The generation of MgO and its roles in templating of carbon were discussed. Templating of carbon with MgO lead to an increase in surface area and a microporous texture. The obtained carbon was tested in multivalent-ion (Al3+ and Mg2+) electrolytes and compared with H2SO4. The charge-storage mechanism was investigated and elaborated. The highest specific capacitance was obtained for the Al(NO3)3 electrolyte, while the operating voltage follows the order: Mg(NO3)2 > Al(NO3)3 > H2SO4. Electrical double-layer capacitance (versus pseudocapacitance) was dominant in all investigated electrolytes. The larger operating voltage in multivalent electrolytes is a consequence of the lower fraction of free water, which suppresses hydrogen evolution (when compared with H2SO4). The GCD was experimentally performed on the Al(NO3)3 electrolyte, which showed good cyclic stability, with an energy density of 22.3 Wh kg−1 at 65 W kg−1.
T2  - Batteries
T1  - Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions
SP  - 284
VL  - 8
IS  - 12
DO  - 10.3390/batteries8120284
UR  - https://hdl.handle.net/21.15107/rcub_dais_13511
ER  - 
@article{
author = "Zdolšek, Nikola and Janković, Bojan and Milović, Miloš and Brković, Snežana and Krstić, Jugoslav and Perović, Ivana and Vujković, Milica",
year = "2022",
abstract = "The development of carbon materials with desirable textures and new aqueous electrolytes is the key strategy to improve the performance of supercapacitors. Herein, a deep eutectic solvent (DES) was used for in situ templating of a carbon material. A carbon material was characterized (XRD, N2-physisorption, FTIR, SEM and EDS) and used as an electrode material for the first time in multivalent-based supercapacitors. In situ templating of carbon was performed using a novel DES, which serves as a precursor for carbon and for in situ generation of MgO. The generation of MgO and its roles in templating of carbon were discussed. Templating of carbon with MgO lead to an increase in surface area and a microporous texture. The obtained carbon was tested in multivalent-ion (Al3+ and Mg2+) electrolytes and compared with H2SO4. The charge-storage mechanism was investigated and elaborated. The highest specific capacitance was obtained for the Al(NO3)3 electrolyte, while the operating voltage follows the order: Mg(NO3)2 > Al(NO3)3 > H2SO4. Electrical double-layer capacitance (versus pseudocapacitance) was dominant in all investigated electrolytes. The larger operating voltage in multivalent electrolytes is a consequence of the lower fraction of free water, which suppresses hydrogen evolution (when compared with H2SO4). The GCD was experimentally performed on the Al(NO3)3 electrolyte, which showed good cyclic stability, with an energy density of 22.3 Wh kg−1 at 65 W kg−1.",
journal = "Batteries",
title = "Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions",
pages = "284",
volume = "8",
number = "12",
doi = "10.3390/batteries8120284",
url = "https://hdl.handle.net/21.15107/rcub_dais_13511"
}
Zdolšek, N., Janković, B., Milović, M., Brković, S., Krstić, J., Perović, I.,& Vujković, M.. (2022). Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. in Batteries, 8(12), 284.
https://doi.org/10.3390/batteries8120284
https://hdl.handle.net/21.15107/rcub_dais_13511
Zdolšek N, Janković B, Milović M, Brković S, Krstić J, Perović I, Vujković M. Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions. in Batteries. 2022;8(12):284.
doi:10.3390/batteries8120284
https://hdl.handle.net/21.15107/rcub_dais_13511 .
Zdolšek, Nikola, Janković, Bojan, Milović, Miloš, Brković, Snežana, Krstić, Jugoslav, Perović, Ivana, Vujković, Milica, "Deep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ions" in Batteries, 8, no. 12 (2022):284,
https://doi.org/10.3390/batteries8120284 .,
https://hdl.handle.net/21.15107/rcub_dais_13511 .