Padovan, Sergio

Link to this page

Authority KeyName Variants
0c2959f1-e9aa-4a0a-a120-389c22c4d80c
  • Padovan, Sergio (4)
Projects

Author's Bibliography

Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging

Catanzaro, Valeria; Digilio, Giuseppe; Capuana, Federico; Padovan, Sergio; Cutrin, Juan C.; Carniato, Fabio; Porta, Stefano; Grange, Cristina; Filipović, Nenad; Stevanović, Magdalena

(Basel : MDPI, 2019)

TY  - DATA
AU  - Catanzaro, Valeria
AU  - Digilio, Giuseppe
AU  - Capuana, Federico
AU  - Padovan, Sergio
AU  - Cutrin, Juan C.
AU  - Carniato, Fabio
AU  - Porta, Stefano
AU  - Grange, Cristina
AU  - Filipović, Nenad
AU  - Stevanović, Magdalena
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7044
AB  - Table S1. List of the antibodies used in this study; Figure S1 Transmission electron micrographs of particle sections, showing electron dense Gd-NPs with diameter of 1-2 nm; Figure S2 Optical images at the inverted microscope, showing hMSCs after 3 days seeding with ILCSs. The arrows show hMSCs on the particle surface (A) or at the junction between particles (B, C, D); Figure S3 SEM micrographs of ILCSs seeded with hMSCs (after 10 days culture) at (A) 500x and (B) 200x magnification. Cells have been fixed with formalin for SEM. Cells appear mostly located at the junction between adjacent microparticles; Figure S4 Assessment of the multipotentiality of hMSCs after incubation up to 20 days with ILCS. A) Multipotentiality markers by flow cytometry analysis; B) Differentiation into adipocytes (middle, Oil Red staining) or osteocytes (right, Alizarin Red staining). The left panel is the control; Figure S5 Expansions of MR images around the ̶ hMSCs grafts (contralateral to the implants shown in Fig. 5, main text) in an immunocompromised NSG mouse (ad) and an immunocompetent FVB mouse (e-h). Similar to +hMSCs implants, activation of contrast enhancement in T1w-MR images is observed in the immunocompromised mouse on going from day-0 (b) to day-12 (d). Poor activation of contrast enhancement is observed for the immunocompetent mouse (f,h); Figure S6 Photograph of the Matrigel-based hydrogel embedding cell-loaded ILCSs (pink spots) excised from an immunocompromised mouse 20 days after implantation; Figure S7 Histology of -hMSC subcutaneous cell implants excised from a representative immunocompromised NSG mouse (a-c) and immunocompetent FVB mouse (df). (a,d) H&E stains; (b,e) Masson stains; (c,f) Sirius red stains. Arrows indicate microspheres delimited by an intense fibrotic reaction. Arrow-heads are pointing the vascular organization of the matrigel. Double arrows are indicating macrophage foamy cells. Scale bar: 50 μm for a,b,d,e; 25 μm for c,f; Figure S8 Schematics about the geometry of MRI slices across ILCS implants to measure the signal enhancement (see main text, Section 4.5.2.)
PB  - Basel : MDPI
T2  - Journal of Functional Biomaterials
T1  - Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging
VL  - 10
IS  - 3
UR  - https://hdl.handle.net/21.15107/rcub_dais_7044
ER  - 
@misc{
author = "Catanzaro, Valeria and Digilio, Giuseppe and Capuana, Federico and Padovan, Sergio and Cutrin, Juan C. and Carniato, Fabio and Porta, Stefano and Grange, Cristina and Filipović, Nenad and Stevanović, Magdalena",
year = "2019",
abstract = "Table S1. List of the antibodies used in this study; Figure S1 Transmission electron micrographs of particle sections, showing electron dense Gd-NPs with diameter of 1-2 nm; Figure S2 Optical images at the inverted microscope, showing hMSCs after 3 days seeding with ILCSs. The arrows show hMSCs on the particle surface (A) or at the junction between particles (B, C, D); Figure S3 SEM micrographs of ILCSs seeded with hMSCs (after 10 days culture) at (A) 500x and (B) 200x magnification. Cells have been fixed with formalin for SEM. Cells appear mostly located at the junction between adjacent microparticles; Figure S4 Assessment of the multipotentiality of hMSCs after incubation up to 20 days with ILCS. A) Multipotentiality markers by flow cytometry analysis; B) Differentiation into adipocytes (middle, Oil Red staining) or osteocytes (right, Alizarin Red staining). The left panel is the control; Figure S5 Expansions of MR images around the ̶ hMSCs grafts (contralateral to the implants shown in Fig. 5, main text) in an immunocompromised NSG mouse (ad) and an immunocompetent FVB mouse (e-h). Similar to +hMSCs implants, activation of contrast enhancement in T1w-MR images is observed in the immunocompromised mouse on going from day-0 (b) to day-12 (d). Poor activation of contrast enhancement is observed for the immunocompetent mouse (f,h); Figure S6 Photograph of the Matrigel-based hydrogel embedding cell-loaded ILCSs (pink spots) excised from an immunocompromised mouse 20 days after implantation; Figure S7 Histology of -hMSC subcutaneous cell implants excised from a representative immunocompromised NSG mouse (a-c) and immunocompetent FVB mouse (df). (a,d) H&E stains; (b,e) Masson stains; (c,f) Sirius red stains. Arrows indicate microspheres delimited by an intense fibrotic reaction. Arrow-heads are pointing the vascular organization of the matrigel. Double arrows are indicating macrophage foamy cells. Scale bar: 50 μm for a,b,d,e; 25 μm for c,f; Figure S8 Schematics about the geometry of MRI slices across ILCS implants to measure the signal enhancement (see main text, Section 4.5.2.)",
publisher = "Basel : MDPI",
journal = "Journal of Functional Biomaterials",
title = "Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging",
volume = "10",
number = "3",
url = "https://hdl.handle.net/21.15107/rcub_dais_7044"
}
Catanzaro, V., Digilio, G., Capuana, F., Padovan, S., Cutrin, J. C., Carniato, F., Porta, S., Grange, C., Filipović, N.,& Stevanović, M.. (2019). Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging. in Journal of Functional Biomaterials
Basel : MDPI., 10(3).
https://hdl.handle.net/21.15107/rcub_dais_7044
Catanzaro V, Digilio G, Capuana F, Padovan S, Cutrin JC, Carniato F, Porta S, Grange C, Filipović N, Stevanović M. Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging. in Journal of Functional Biomaterials. 2019;10(3).
https://hdl.handle.net/21.15107/rcub_dais_7044 .
Catanzaro, Valeria, Digilio, Giuseppe, Capuana, Federico, Padovan, Sergio, Cutrin, Juan C., Carniato, Fabio, Porta, Stefano, Grange, Cristina, Filipović, Nenad, Stevanović, Magdalena, "Supporting information: Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging" in Journal of Functional Biomaterials, 10, no. 3 (2019),
https://hdl.handle.net/21.15107/rcub_dais_7044 .

Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging

Catanzaro, Valeria; Digilio, Giuseppe; Capuana, Federico; Padovan, Sergio; Cutrin, Juan C.; Carniato, Fabio; Porta, Stefano; Grange, Cristina; Filipović, Nenad; Stevanović, Magdalena

(Basel : MDPI, 2019)

TY  - JOUR
AU  - Catanzaro, Valeria
AU  - Digilio, Giuseppe
AU  - Capuana, Federico
AU  - Padovan, Sergio
AU  - Cutrin, Juan C.
AU  - Carniato, Fabio
AU  - Porta, Stefano
AU  - Grange, Cristina
AU  - Filipović, Nenad
AU  - Stevanović, Magdalena
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6689
AB  - Cell scaffolds are often used in cell transplantation as they provide a solid structural support to implanted cells and can be bioengineered to mimic the native extracellular matrix. Gadolinium fluoride nanoparticles (Gd-NPs) as a contrast agent for Magnetic Resonance Imaging (MRI) were incorporated into poly(lactide-co-glycolide)/chitosan scaffolds to obtain Imaging Labelled Cell Scaffolds (ILCSs), having the shape of hollow spherical/ellipsoidal particles (200–600 µm diameter and 50–80 µm shell thickness). While Gd-NPs incorporated into microparticles do not provide any contrast enhancement in T1-weighted (T1w) MR images, ILCSs can release Gd-NPs in a controlled manner, thus activating MRI contrast. ILCSs seeded with human mesenchymal stromal cells (hMSCs) were xenografted subcutaneously into either immunocompromised and immunocompetent mice without any immunosuppressant treatments, and the transplants were followed-up in vivo by MRI for 18 days. Immunocompromised mice showed a progressive activation of MRI contrast within the implants due to the release of Gd-NPs in the extracellular matrix. Instead, immunocompetent mice showed poor activation of MRI contrast due to the encapsulation of ILCSs within fibrotic capsules and to the scavenging of released Gd-NPs by phagocytic cells. In conclusion, the MRI follow-up of cell xenografts can report the host cell response to the xenograft. However, it does not strictly report on the viability of transplanted hMSCs. © 2019 by the authors.
PB  - Basel : MDPI
T2  - Journal of Functional Biomaterials
T1  - Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging
SP  - 28
VL  - 10
IS  - 3
DO  - 10.3390/jfb10030028
UR  - https://hdl.handle.net/21.15107/rcub_dais_6689
ER  - 
@article{
author = "Catanzaro, Valeria and Digilio, Giuseppe and Capuana, Federico and Padovan, Sergio and Cutrin, Juan C. and Carniato, Fabio and Porta, Stefano and Grange, Cristina and Filipović, Nenad and Stevanović, Magdalena",
year = "2019",
abstract = "Cell scaffolds are often used in cell transplantation as they provide a solid structural support to implanted cells and can be bioengineered to mimic the native extracellular matrix. Gadolinium fluoride nanoparticles (Gd-NPs) as a contrast agent for Magnetic Resonance Imaging (MRI) were incorporated into poly(lactide-co-glycolide)/chitosan scaffolds to obtain Imaging Labelled Cell Scaffolds (ILCSs), having the shape of hollow spherical/ellipsoidal particles (200–600 µm diameter and 50–80 µm shell thickness). While Gd-NPs incorporated into microparticles do not provide any contrast enhancement in T1-weighted (T1w) MR images, ILCSs can release Gd-NPs in a controlled manner, thus activating MRI contrast. ILCSs seeded with human mesenchymal stromal cells (hMSCs) were xenografted subcutaneously into either immunocompromised and immunocompetent mice without any immunosuppressant treatments, and the transplants were followed-up in vivo by MRI for 18 days. Immunocompromised mice showed a progressive activation of MRI contrast within the implants due to the release of Gd-NPs in the extracellular matrix. Instead, immunocompetent mice showed poor activation of MRI contrast due to the encapsulation of ILCSs within fibrotic capsules and to the scavenging of released Gd-NPs by phagocytic cells. In conclusion, the MRI follow-up of cell xenografts can report the host cell response to the xenograft. However, it does not strictly report on the viability of transplanted hMSCs. © 2019 by the authors.",
publisher = "Basel : MDPI",
journal = "Journal of Functional Biomaterials",
title = "Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging",
pages = "28",
volume = "10",
number = "3",
doi = "10.3390/jfb10030028",
url = "https://hdl.handle.net/21.15107/rcub_dais_6689"
}
Catanzaro, V., Digilio, G., Capuana, F., Padovan, S., Cutrin, J. C., Carniato, F., Porta, S., Grange, C., Filipović, N.,& Stevanović, M.. (2019). Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging. in Journal of Functional Biomaterials
Basel : MDPI., 10(3), 28.
https://doi.org/10.3390/jfb10030028
https://hdl.handle.net/21.15107/rcub_dais_6689
Catanzaro V, Digilio G, Capuana F, Padovan S, Cutrin JC, Carniato F, Porta S, Grange C, Filipović N, Stevanović M. Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging. in Journal of Functional Biomaterials. 2019;10(3):28.
doi:10.3390/jfb10030028
https://hdl.handle.net/21.15107/rcub_dais_6689 .
Catanzaro, Valeria, Digilio, Giuseppe, Capuana, Federico, Padovan, Sergio, Cutrin, Juan C., Carniato, Fabio, Porta, Stefano, Grange, Cristina, Filipović, Nenad, Stevanović, Magdalena, "Gadolinium-labelled cell scaffolds to follow-up cell transplantation by magnetic resonance imaging" in Journal of Functional Biomaterials, 10, no. 3 (2019):28,
https://doi.org/10.3390/jfb10030028 .,
https://hdl.handle.net/21.15107/rcub_dais_6689 .
6
3
6

Redox-responsive MRI probes to follow-up hypoxia within cell-embedding hydrogels

Padovan, Sergio; Catanzaro, Valeria; Capuana, Federico; Grange, Cristina; Koni, Malvina; Carrera, Carla; Filipović, Nenad; Stevanović, Magdalena

(2019)

TY  - CONF
AU  - Padovan, Sergio
AU  - Catanzaro, Valeria
AU  - Capuana, Federico
AU  - Grange, Cristina
AU  - Koni, Malvina
AU  - Carrera, Carla
AU  - Filipović, Nenad
AU  - Stevanović, Magdalena
PY  - 2019
UR  - https://eventclass.org/contxt_emim2019/online-program/session?s=PS+22#e83
UR  - https://dais.sanu.ac.rs/123456789/5251
AB  - *Introduction*In regenerative medicine, biocompatible hydrogels are increasingly used to encapsulate therapeutic cells prior to transplantation into the host to enhance their long term survival. Cell embedding within bioengineered hydrogels can shield cells from immune response and provide an optimal life-sustaining microenvironment to therapeutic cells. In addition, cell embedding offers the outstanding opportunity to insert microenvironment-responsive imaging labels within the hydrogel, paving the way for non-invasive monitoring of the extracellular microenvironment within the hydrogel. We have inserted redox-responsive MRI labels within cell-embedding hydrogels to follow-up the microenvironment redox state.*Methods*High molecular weight chitosan polymers were chemically conjugated with a Gd-HPDO3A-chelate through a disulfide bond, and interspersed within alginate-based hydrogel capsules. Human mesenchymal stem cells (hMSCs) as model therapeutic cells were embedded into such imaging labelled hydrogel. Embedded cells were incubated under simulated hypoxiaconditions, while being followed-up by T1-weighted MRI at 7T.*Results*Under reducing conditions, reductive cleavage of the disulfide bond in the Gd-chitosan probe yields a low molecular weight Gd-chelate that eventually diffuses out of the hydrogel capsule. The resulting change of MRI contrast enhancement along time is very sensitive to the oxygenation level within cell capsules. The kinetics of clearance of contrast enhancement is an indirect indicator of the survival of encapsulated cells.*Conclusions*The Gd-chitosan probe we developed is promising to follow-up non-invasively the redox microenvironment within cellembedding hydrogels. This approach will find useful application to monitor whether transplanted cells succeed to restore normal tissue oxygenation levels, especially in regenerative medicine approaches to ischemic diseases.
C3  - European Molecular Imaging Meeting - EMIM 2019, March 19-22, 2019, Scottish Event Campus - SEC, Glasgow, UK: Online Program
T1  - Redox-responsive MRI probes to follow-up hypoxia within cell-embedding hydrogels
UR  - https://hdl.handle.net/21.15107/rcub_dais_5251
ER  - 
@conference{
author = "Padovan, Sergio and Catanzaro, Valeria and Capuana, Federico and Grange, Cristina and Koni, Malvina and Carrera, Carla and Filipović, Nenad and Stevanović, Magdalena",
year = "2019",
abstract = "*Introduction*In regenerative medicine, biocompatible hydrogels are increasingly used to encapsulate therapeutic cells prior to transplantation into the host to enhance their long term survival. Cell embedding within bioengineered hydrogels can shield cells from immune response and provide an optimal life-sustaining microenvironment to therapeutic cells. In addition, cell embedding offers the outstanding opportunity to insert microenvironment-responsive imaging labels within the hydrogel, paving the way for non-invasive monitoring of the extracellular microenvironment within the hydrogel. We have inserted redox-responsive MRI labels within cell-embedding hydrogels to follow-up the microenvironment redox state.*Methods*High molecular weight chitosan polymers were chemically conjugated with a Gd-HPDO3A-chelate through a disulfide bond, and interspersed within alginate-based hydrogel capsules. Human mesenchymal stem cells (hMSCs) as model therapeutic cells were embedded into such imaging labelled hydrogel. Embedded cells were incubated under simulated hypoxiaconditions, while being followed-up by T1-weighted MRI at 7T.*Results*Under reducing conditions, reductive cleavage of the disulfide bond in the Gd-chitosan probe yields a low molecular weight Gd-chelate that eventually diffuses out of the hydrogel capsule. The resulting change of MRI contrast enhancement along time is very sensitive to the oxygenation level within cell capsules. The kinetics of clearance of contrast enhancement is an indirect indicator of the survival of encapsulated cells.*Conclusions*The Gd-chitosan probe we developed is promising to follow-up non-invasively the redox microenvironment within cellembedding hydrogels. This approach will find useful application to monitor whether transplanted cells succeed to restore normal tissue oxygenation levels, especially in regenerative medicine approaches to ischemic diseases.",
journal = "European Molecular Imaging Meeting - EMIM 2019, March 19-22, 2019, Scottish Event Campus - SEC, Glasgow, UK: Online Program",
title = "Redox-responsive MRI probes to follow-up hypoxia within cell-embedding hydrogels",
url = "https://hdl.handle.net/21.15107/rcub_dais_5251"
}
Padovan, S., Catanzaro, V., Capuana, F., Grange, C., Koni, M., Carrera, C., Filipović, N.,& Stevanović, M.. (2019). Redox-responsive MRI probes to follow-up hypoxia within cell-embedding hydrogels. in European Molecular Imaging Meeting - EMIM 2019, March 19-22, 2019, Scottish Event Campus - SEC, Glasgow, UK: Online Program.
https://hdl.handle.net/21.15107/rcub_dais_5251
Padovan S, Catanzaro V, Capuana F, Grange C, Koni M, Carrera C, Filipović N, Stevanović M. Redox-responsive MRI probes to follow-up hypoxia within cell-embedding hydrogels. in European Molecular Imaging Meeting - EMIM 2019, March 19-22, 2019, Scottish Event Campus - SEC, Glasgow, UK: Online Program. 2019;.
https://hdl.handle.net/21.15107/rcub_dais_5251 .
Padovan, Sergio, Catanzaro, Valeria, Capuana, Federico, Grange, Cristina, Koni, Malvina, Carrera, Carla, Filipović, Nenad, Stevanović, Magdalena, "Redox-responsive MRI probes to follow-up hypoxia within cell-embedding hydrogels" in European Molecular Imaging Meeting - EMIM 2019, March 19-22, 2019, Scottish Event Campus - SEC, Glasgow, UK: Online Program (2019),
https://hdl.handle.net/21.15107/rcub_dais_5251 .

Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants

Capuana, Federico; Padovan, Sergio; Grange, Cristina; Catanzaro, Valeria; Cutrin, J. C.; Stevanović, Magdalena; Filipović, Nenad; Digilio, G.

(European Society for Molecular Imaging, 2018)

TY  - CONF
AU  - Capuana, Federico
AU  - Padovan, Sergio
AU  - Grange, Cristina
AU  - Catanzaro, Valeria
AU  - Cutrin, J. C.
AU  - Stevanović, Magdalena
AU  - Filipović, Nenad
AU  - Digilio, G.
PY  - 2018
UR  - http://eventclass.org/contxt_emim2018/online-program/session?s=101#153
UR  - https://dais.sanu.ac.rs/123456789/4667
AB  - Introduction: Cell encapsulation by hydrogels is intended to shield transplanted cells from the host hostile environment by preventing the infiltration of host immune cells. Cell scaffolding by solid biocompatible microparticles is intended to provide a structural support to implanted cells and to mimic the extracellular matrix, allowing cells to proliferate and/or differentiate in the desired way. We present strategies to label scaffolding biomaterials with microenvironment responsive MRI probes, for applications in the follow-up of cell transplants.

Methods: Microparticles (MPs) based on PLGA/chitosan were incorporated with gadolinium fluoride nanoparticles (GdNPs), as the MRI T1-contrast agent. The system is designed such to release Gd-NPs in the extracellular matrix (ECM), thus activating MRI contrast, unless MPs are attacked by the immune system (Foreign Body Response, FBR). To proof the concept, PLGA-based MPs were seeded with hMSCs and implanted into either immunocompetent or immunocompromised mice, and the transplants were followed-up by MRI for three weeks. Ex-vivo histologic assessment was carried out at the end of the follow-up.

Results/Discussion: Immunocompetent mice showed poor activation, if any, of MRI contrast within the cell graft. Immunocompromised mice, on the other hand, showed a progressive activation of MRI contrast. Ex-vivo histology showed extensive FBR directed against microparticles in immunocompetent mice, with some surviving hMSCs in the ECM but not on the scaffold surface. No significant FBR was detected in immunocompromised mice, and hMSCs were still adhering to the scaffolds.

Conclusions: The proposed system is able to assess whether or not cell grafts are subjected to innate immune response, an event that is likely correlated to the loss of transplanted cells.
PB  - European Society for Molecular Imaging
C3  - European Molecular Imaging Meeting - EMIM 2018, March 20-23, Kursaal San Sebastian, Spain : Online Program
T1  - Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants
UR  - https://hdl.handle.net/21.15107/rcub_dais_4667
ER  - 
@conference{
author = "Capuana, Federico and Padovan, Sergio and Grange, Cristina and Catanzaro, Valeria and Cutrin, J. C. and Stevanović, Magdalena and Filipović, Nenad and Digilio, G.",
year = "2018",
abstract = "Introduction: Cell encapsulation by hydrogels is intended to shield transplanted cells from the host hostile environment by preventing the infiltration of host immune cells. Cell scaffolding by solid biocompatible microparticles is intended to provide a structural support to implanted cells and to mimic the extracellular matrix, allowing cells to proliferate and/or differentiate in the desired way. We present strategies to label scaffolding biomaterials with microenvironment responsive MRI probes, for applications in the follow-up of cell transplants.

Methods: Microparticles (MPs) based on PLGA/chitosan were incorporated with gadolinium fluoride nanoparticles (GdNPs), as the MRI T1-contrast agent. The system is designed such to release Gd-NPs in the extracellular matrix (ECM), thus activating MRI contrast, unless MPs are attacked by the immune system (Foreign Body Response, FBR). To proof the concept, PLGA-based MPs were seeded with hMSCs and implanted into either immunocompetent or immunocompromised mice, and the transplants were followed-up by MRI for three weeks. Ex-vivo histologic assessment was carried out at the end of the follow-up.

Results/Discussion: Immunocompetent mice showed poor activation, if any, of MRI contrast within the cell graft. Immunocompromised mice, on the other hand, showed a progressive activation of MRI contrast. Ex-vivo histology showed extensive FBR directed against microparticles in immunocompetent mice, with some surviving hMSCs in the ECM but not on the scaffold surface. No significant FBR was detected in immunocompromised mice, and hMSCs were still adhering to the scaffolds.

Conclusions: The proposed system is able to assess whether or not cell grafts are subjected to innate immune response, an event that is likely correlated to the loss of transplanted cells.",
publisher = "European Society for Molecular Imaging",
journal = "European Molecular Imaging Meeting - EMIM 2018, March 20-23, Kursaal San Sebastian, Spain : Online Program",
title = "Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants",
url = "https://hdl.handle.net/21.15107/rcub_dais_4667"
}
Capuana, F., Padovan, S., Grange, C., Catanzaro, V., Cutrin, J. C., Stevanović, M., Filipović, N.,& Digilio, G.. (2018). Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants. in European Molecular Imaging Meeting - EMIM 2018, March 20-23, Kursaal San Sebastian, Spain : Online Program
European Society for Molecular Imaging..
https://hdl.handle.net/21.15107/rcub_dais_4667
Capuana F, Padovan S, Grange C, Catanzaro V, Cutrin JC, Stevanović M, Filipović N, Digilio G. Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants. in European Molecular Imaging Meeting - EMIM 2018, March 20-23, Kursaal San Sebastian, Spain : Online Program. 2018;.
https://hdl.handle.net/21.15107/rcub_dais_4667 .
Capuana, Federico, Padovan, Sergio, Grange, Cristina, Catanzaro, Valeria, Cutrin, J. C., Stevanović, Magdalena, Filipović, Nenad, Digilio, G., "Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants" in European Molecular Imaging Meeting - EMIM 2018, March 20-23, Kursaal San Sebastian, Spain : Online Program (2018),
https://hdl.handle.net/21.15107/rcub_dais_4667 .