Marković, Smilja

Link to this page

Authority KeyName Variants
orcid::0000-0002-9264-4406
  • Marković, Smilja (261)
  • Marković, Smilja B. (2)
Projects
Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)
Directed synthesis, structure and properties of multifunctional materials Sinteza funkcionalnih materijala sa kontrolisanom strukturom na molekularnom i nano nivou
Synthesis, processing and applications of nanostructured multifunctional materials with defined properties Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry) Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing
Lithium-ion batteries and fuel cells - research and development Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200003 (Institute for Medicinal Plant Research 'Dr. Josif Pančić ', Belgrade)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) United States National Institutes of Health (NIH) / National Institute of Dental and Craniofacial Research (NIDCR), Grant K99-DE021416
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200053 (University of Belgrade, Institute for Multidisciplinary Research) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200287 (Innovation Center of the Faculty of Technology and Metallurgy)
Ministry of Science of Montenegro, Project no. 01-2383/2 Ministry of Science of Montenegro, Project no. 01-460
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200288 (Innovation Center of the Faculty of Chemistry)
Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes Nanostructured multifunctional materials and nanocomposites
Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness Predefined functional properties polymer composite materials processes and equipment development
Serbian Academy of Sciences and Arts, Project F-141 Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES)
Electroconducting and redox-active polymers and oligomers: synthesis, structure, properties and applications Physics and Chemistry with Ion Beams
Ministry of Education, Youth and Sports (MEYS) of Czech Republic - CEITEC 2020 [LQ1601] Ministry of Health (Bando Ricerca Finalizzata 2016, no. GR-2016-02364704)
National Council for Technological and Scientific Development (CNPq) Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia “Nanostructured and mesoporous functional materials with enhanced solar light driven photocatalytic activity” for 2018–2019

Author's Bibliography

Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate

Veselinović, Ljiljana; Mitrić, Miodrag; Mančić, Lidija; Jardim, Paula M.; Škapin, Srečo Davor; Cvjetićanin, Nikola; Milović, Miloš D.; Marković, Smilja

(2022)

TY  - JOUR
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Mančić, Lidija
AU  - Jardim, Paula M.
AU  - Škapin, Srečo Davor
AU  - Cvjetićanin, Nikola
AU  - Milović, Miloš D.
AU  - Marković, Smilja
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13562
AB  - This paper reports a detailed study of crystal structure and dielectric properties of ruthenium-substituted calcium-copper titanates (CaCu3Ti4−xRuxO12, CCTRO). A series of three samples with different stoichiometry was prepared: CaCu3Ti4−xRuxO12, x = 0, 1 and 4, abbreviated as CCTO, CCT3RO and CCRO, respectively. A detailed structural analysis of CCTRO samples was done by the Rietveld refinement of XRPD data. The results show that, regardless of whether Ti4+ or Ru4+ ions are placed in B crystallographic position in AA’3B4O12 (CaCu3Ti4−xRuxO12) unit cell, the crystal structure remains cubic with Im3¯ symmetry. Slight increases in the unit cell parameters, cell volume and interatomic distances indicate that Ru4+ ions with larger ionic radii (0.62 Å) than Ti4+ (0.605 Å) are incorporated in the CaCu3Ti4−xRuxO12 crystal lattice. The structural investigations were confirmed using TEM, HRTEM and ADF/STEM analyses, including EDXS elemental mapping. The effect of Ru atoms share in CaCu3Ti4−xRuxO12 samples on their electrical properties was determined by impedance and dielectric measurements. Results of dielectric measurements indicate that one atom of ruthenium per CaCu3Ti4−xRuxO12 unit cell transforms dielectric CCTO into conductive CCT3RO while preserving cubic crystal structure. Our findings about CCTO and CCT3RO ceramics promote them as ideal tandem to overcome the problem of stress on dielectric-electrode interfaces in capacitors.
T2  - Materials
T1  - Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate
SP  - 8500
SP  - 8500
VL  - 15
IS  - 23
DO  - 10.3390/ma15238500
UR  - https://hdl.handle.net/21.15107/rcub_dais_13562
ER  - 
@article{
author = "Veselinović, Ljiljana and Mitrić, Miodrag and Mančić, Lidija and Jardim, Paula M. and Škapin, Srečo Davor and Cvjetićanin, Nikola and Milović, Miloš D. and Marković, Smilja",
year = "2022",
abstract = "This paper reports a detailed study of crystal structure and dielectric properties of ruthenium-substituted calcium-copper titanates (CaCu3Ti4−xRuxO12, CCTRO). A series of three samples with different stoichiometry was prepared: CaCu3Ti4−xRuxO12, x = 0, 1 and 4, abbreviated as CCTO, CCT3RO and CCRO, respectively. A detailed structural analysis of CCTRO samples was done by the Rietveld refinement of XRPD data. The results show that, regardless of whether Ti4+ or Ru4+ ions are placed in B crystallographic position in AA’3B4O12 (CaCu3Ti4−xRuxO12) unit cell, the crystal structure remains cubic with Im3¯ symmetry. Slight increases in the unit cell parameters, cell volume and interatomic distances indicate that Ru4+ ions with larger ionic radii (0.62 Å) than Ti4+ (0.605 Å) are incorporated in the CaCu3Ti4−xRuxO12 crystal lattice. The structural investigations were confirmed using TEM, HRTEM and ADF/STEM analyses, including EDXS elemental mapping. The effect of Ru atoms share in CaCu3Ti4−xRuxO12 samples on their electrical properties was determined by impedance and dielectric measurements. Results of dielectric measurements indicate that one atom of ruthenium per CaCu3Ti4−xRuxO12 unit cell transforms dielectric CCTO into conductive CCT3RO while preserving cubic crystal structure. Our findings about CCTO and CCT3RO ceramics promote them as ideal tandem to overcome the problem of stress on dielectric-electrode interfaces in capacitors.",
journal = "Materials",
title = "Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate",
pages = "8500-8500",
volume = "15",
number = "23",
doi = "10.3390/ma15238500",
url = "https://hdl.handle.net/21.15107/rcub_dais_13562"
}
Veselinović, L., Mitrić, M., Mančić, L., Jardim, P. M., Škapin, S. D., Cvjetićanin, N., Milović, M. D.,& Marković, S.. (2022). Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. in Materials, 15(23), 8500.
https://doi.org/10.3390/ma15238500
https://hdl.handle.net/21.15107/rcub_dais_13562
Veselinović L, Mitrić M, Mančić L, Jardim PM, Škapin SD, Cvjetićanin N, Milović MD, Marković S. Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate. in Materials. 2022;15(23):8500.
doi:10.3390/ma15238500
https://hdl.handle.net/21.15107/rcub_dais_13562 .
Veselinović, Ljiljana, Mitrić, Miodrag, Mančić, Lidija, Jardim, Paula M., Škapin, Srečo Davor, Cvjetićanin, Nikola, Milović, Miloš D., Marković, Smilja, "Crystal Structure and Electrical Properties of Ruthenium-Substituted Calcium Copper Titanate" in Materials, 15, no. 23 (2022):8500,
https://doi.org/10.3390/ma15238500 .,
https://hdl.handle.net/21.15107/rcub_dais_13562 .

Hydroxyapatite grafting with alanine amino acid - efficiency of different methods

Vuković, Marina; Dorm, Bruna Carolina; Trovatti, Eliane; Ignjatović, Nenad; Marković, Smilja; Škapin, Srečo Davor; Dinić, Ivana; Mančić, Lidija

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Vuković, Marina
AU  - Dorm, Bruna Carolina
AU  - Trovatti, Eliane
AU  - Ignjatović, Nenad
AU  - Marković, Smilja
AU  - Škapin, Srečo Davor
AU  - Dinić, Ivana
AU  - Mančić, Lidija
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13630
AB  - Hydroxyapatite (HAp) attracts great attention due to application in reconstructive medicine for hard tissues, mostly bones and teeth, where it is declared to be highly biocompatible material. Its grafting with amino acids further increases biocompatibility and has crucial importance for acceptance of body implants. In this work different methods of grafting were investigated: simple mixing, thermal treatment induction and in situ synthesis/grafting reactions. Two amino acid precursors were separately tested in grafting procedures: pure alanine and alanine methyl ester hydrochloride. The efficiency of grafting was determined based on X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermal analyses (DSC, TG/DTA) of obtained powders, while complementary UV-VIS spectroscopy of supernatants was additionally performed for quantitative determination of non-grafted nitrogen using ninhydrin standardized procedure.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - Hydroxyapatite grafting with alanine amino acid - efficiency of different methods
SP  - 58
EP  - 59
UR  - https://hdl.handle.net/21.15107/rcub_dais_13630
ER  - 
@conference{
author = "Vuković, Marina and Dorm, Bruna Carolina and Trovatti, Eliane and Ignjatović, Nenad and Marković, Smilja and Škapin, Srečo Davor and Dinić, Ivana and Mančić, Lidija",
year = "2022",
abstract = "Hydroxyapatite (HAp) attracts great attention due to application in reconstructive medicine for hard tissues, mostly bones and teeth, where it is declared to be highly biocompatible material. Its grafting with amino acids further increases biocompatibility and has crucial importance for acceptance of body implants. In this work different methods of grafting were investigated: simple mixing, thermal treatment induction and in situ synthesis/grafting reactions. Two amino acid precursors were separately tested in grafting procedures: pure alanine and alanine methyl ester hydrochloride. The efficiency of grafting was determined based on X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermal analyses (DSC, TG/DTA) of obtained powders, while complementary UV-VIS spectroscopy of supernatants was additionally performed for quantitative determination of non-grafted nitrogen using ninhydrin standardized procedure.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "Hydroxyapatite grafting with alanine amino acid - efficiency of different methods",
pages = "58-59",
url = "https://hdl.handle.net/21.15107/rcub_dais_13630"
}
Vuković, M., Dorm, B. C., Trovatti, E., Ignjatović, N., Marković, S., Škapin, S. D., Dinić, I.,& Mančić, L.. (2022). Hydroxyapatite grafting with alanine amino acid - efficiency of different methods. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 58-59.
https://hdl.handle.net/21.15107/rcub_dais_13630
Vuković M, Dorm BC, Trovatti E, Ignjatović N, Marković S, Škapin SD, Dinić I, Mančić L. Hydroxyapatite grafting with alanine amino acid - efficiency of different methods. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:58-59.
https://hdl.handle.net/21.15107/rcub_dais_13630 .
Vuković, Marina, Dorm, Bruna Carolina, Trovatti, Eliane, Ignjatović, Nenad, Marković, Smilja, Škapin, Srečo Davor, Dinić, Ivana, Mančić, Lidija, "Hydroxyapatite grafting with alanine amino acid - efficiency of different methods" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):58-59,
https://hdl.handle.net/21.15107/rcub_dais_13630 .

ZnO-based composite materials with improved photo(electro) catalytic properties

Stanković, Ana; Filipović, Suzana; Veselinović, Ljiljana; Aleksić, Katarina; Stojković Simatović, Ivana; Škapin, Srečo Davor; Marković, Smilja

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Stanković, Ana
AU  - Filipović, Suzana
AU  - Veselinović, Ljiljana
AU  - Aleksić, Katarina
AU  - Stojković Simatović, Ivana
AU  - Škapin, Srečo Davor
AU  - Marković, Smilja
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13628
AB  - Conversion of solar energy into hydrogen energy via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can be generated in a clean and sustainable manner. Zinc oxide (ZnO) represents one of the most investigated photocatalyst. Its ability to overcome the limitations of pristine ZnO through enhanced visible light absorption and reduced recombination of photogenerated charge carriers have gathered the attention of the many research groups. Numerous studies enabled understanding its greater activities and most studies reveal that reactive oxygen species (ROS), oxygen vacancies (Ov) and zinc interstitials (Zni) are responsible for the enhanced photoactivity. In fact, different factors like defect concentration, defect location, valence and conduction band levels play a key role in the working mechanisms of ZnO material. Materials with the perovskite crystal structure such as BaTiO3 (BT) and BaTi1–XSnXO3 (BTS) found application in the construction of the active layer of the solar cell, in which the photogenerative electrons are generated. The environmental instability of perovskite solar cells caused by the ultraviolet photocatalytic effect of metal oxide layers is a critical issue that must be solved. Possible solution with improved environmental stability can be synthesis of ZnO composite heterojunction perovskite solar cells. In this study photo(electro) catalytic properties of: BT and BTS were compared with those of ZnO@BT and ZnO@BTS, respectively. In both cases the ZnO@BT and ZnO@BTS composite materials revealed enhanced photo(electro) catalytic activity as compared to the pristine BT and BTS materials. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE SEM), UV-Vis diffuse reflectance spectroscopy and linear voltammetry process.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - ZnO-based composite materials with improved photo(electro) catalytic properties
SP  - 85
EP  - 86
UR  - https://hdl.handle.net/21.15107/rcub_dais_13628
ER  - 
@conference{
author = "Stanković, Ana and Filipović, Suzana and Veselinović, Ljiljana and Aleksić, Katarina and Stojković Simatović, Ivana and Škapin, Srečo Davor and Marković, Smilja",
year = "2022",
abstract = "Conversion of solar energy into hydrogen energy via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can be generated in a clean and sustainable manner. Zinc oxide (ZnO) represents one of the most investigated photocatalyst. Its ability to overcome the limitations of pristine ZnO through enhanced visible light absorption and reduced recombination of photogenerated charge carriers have gathered the attention of the many research groups. Numerous studies enabled understanding its greater activities and most studies reveal that reactive oxygen species (ROS), oxygen vacancies (Ov) and zinc interstitials (Zni) are responsible for the enhanced photoactivity. In fact, different factors like defect concentration, defect location, valence and conduction band levels play a key role in the working mechanisms of ZnO material. Materials with the perovskite crystal structure such as BaTiO3 (BT) and BaTi1–XSnXO3 (BTS) found application in the construction of the active layer of the solar cell, in which the photogenerative electrons are generated. The environmental instability of perovskite solar cells caused by the ultraviolet photocatalytic effect of metal oxide layers is a critical issue that must be solved. Possible solution with improved environmental stability can be synthesis of ZnO composite heterojunction perovskite solar cells. In this study photo(electro) catalytic properties of: BT and BTS were compared with those of ZnO@BT and ZnO@BTS, respectively. In both cases the ZnO@BT and ZnO@BTS composite materials revealed enhanced photo(electro) catalytic activity as compared to the pristine BT and BTS materials. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE SEM), UV-Vis diffuse reflectance spectroscopy and linear voltammetry process.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "ZnO-based composite materials with improved photo(electro) catalytic properties",
pages = "85-86",
url = "https://hdl.handle.net/21.15107/rcub_dais_13628"
}
Stanković, A., Filipović, S., Veselinović, L., Aleksić, K., Stojković Simatović, I., Škapin, S. D.,& Marković, S.. (2022). ZnO-based composite materials with improved photo(electro) catalytic properties. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 85-86.
https://hdl.handle.net/21.15107/rcub_dais_13628
Stanković A, Filipović S, Veselinović L, Aleksić K, Stojković Simatović I, Škapin SD, Marković S. ZnO-based composite materials with improved photo(electro) catalytic properties. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:85-86.
https://hdl.handle.net/21.15107/rcub_dais_13628 .
Stanković, Ana, Filipović, Suzana, Veselinović, Ljiljana, Aleksić, Katarina, Stojković Simatović, Ivana, Škapin, Srečo Davor, Marković, Smilja, "ZnO-based composite materials with improved photo(electro) catalytic properties" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):85-86,
https://hdl.handle.net/21.15107/rcub_dais_13628 .

Management of waste biomass from food industry: Potential application of peach shells for waste water treatment

Marković, Smilja; Tomašević, Vladimir

(2022)

TY  - JOUR
AU  - Marković, Smilja
AU  - Tomašević, Vladimir
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13633
AB  - As available at lowor zero-cost, agricultural and food industry waste biomass has great potential to be used for wastewater treatment. It has been shown that, with minimum of chemical or mechanical pre-treatment, waste biomass has great adsorption capacity for different heavy metals, organic and biological pollutants from both drinking and wastewater. Since biomass is a renewable resource that is generated daily as waste and requires storage, its inclusion in sustainable development and the circular economy would have multiple benefits for society as a whole. The use of waste biomass for wastewater treatment would have a positive environmental, energy and economic impact on a country's welfare, especially developing ones.
T2  - Serbian Journal of Engineering Management
T1  - Management of waste biomass from food industry: Potential application of peach shells for waste water treatment
SP  - 13
EP  - 21
VL  - 7
IS  - 1
DO  - 10.5937/SJEM2201013M
UR  - https://hdl.handle.net/21.15107/rcub_dais_13633
ER  - 
@article{
author = "Marković, Smilja and Tomašević, Vladimir",
year = "2022",
abstract = "As available at lowor zero-cost, agricultural and food industry waste biomass has great potential to be used for wastewater treatment. It has been shown that, with minimum of chemical or mechanical pre-treatment, waste biomass has great adsorption capacity for different heavy metals, organic and biological pollutants from both drinking and wastewater. Since biomass is a renewable resource that is generated daily as waste and requires storage, its inclusion in sustainable development and the circular economy would have multiple benefits for society as a whole. The use of waste biomass for wastewater treatment would have a positive environmental, energy and economic impact on a country's welfare, especially developing ones.",
journal = "Serbian Journal of Engineering Management",
title = "Management of waste biomass from food industry: Potential application of peach shells for waste water treatment",
pages = "13-21",
volume = "7",
number = "1",
doi = "10.5937/SJEM2201013M",
url = "https://hdl.handle.net/21.15107/rcub_dais_13633"
}
Marković, S.,& Tomašević, V.. (2022). Management of waste biomass from food industry: Potential application of peach shells for waste water treatment. in Serbian Journal of Engineering Management, 7(1), 13-21.
https://doi.org/10.5937/SJEM2201013M
https://hdl.handle.net/21.15107/rcub_dais_13633
Marković S, Tomašević V. Management of waste biomass from food industry: Potential application of peach shells for waste water treatment. in Serbian Journal of Engineering Management. 2022;7(1):13-21.
doi:10.5937/SJEM2201013M
https://hdl.handle.net/21.15107/rcub_dais_13633 .
Marković, Smilja, Tomašević, Vladimir, "Management of waste biomass from food industry: Potential application of peach shells for waste water treatment" in Serbian Journal of Engineering Management, 7, no. 1 (2022):13-21,
https://doi.org/10.5937/SJEM2201013M .,
https://hdl.handle.net/21.15107/rcub_dais_13633 .

Alkali activated slag based on steelmaking slag: application and properties

Nikolić, Irena; Radmilović, Vuk V.; Marković, Smilja; Veselinović, Ljiljana; Janković-Častvan, Ivona; Radmilović, Velimir R.

(Belgrade : Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Nikolić, Irena
AU  - Radmilović, Vuk V.
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Janković-Častvan, Ivona
AU  - Radmilović, Velimir R.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13638
AB  - Alkali activated slag (AAS) is an environmentally friendly material which were extensively investigated in a pass two decade. Currently, these materials are considering as an effective alternative for cement binder. Process of slag alkali activation involves a chemical reaction between solid calcium aluminosilicate materials and a highly alkaline activator. The alkali activation mechanism of slag consists of the slag dissolution in a highly alkaline which is followed by the condensation and hardening processes yielding formation of calcium (alumina) silicate hydrate C– (A)–S–H gel as a reaction product of slag alkali activation. Properties of these materials primarily depends on the choice of solid row materials. Primarily, granulated blast furnace slag, by product of iron production) is considering as a precursor for AAS synthesis. However, an important shift towards the use of steelmaking slag is also observed. Although electric arc furnace slag has already found its application mainly in civil engineering, this investigation has aimed to investigate properties of AAS prepared using the electric arc furnace slag (EAFS) with an emphasize with different possibilities of its application. Characterization of AAS involved XRDP, SEM/EDS and pore size analysis with the aim to build up a detailed illustration of AAS from the stand point of different application.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
T1  - Alkali activated slag based on steelmaking slag: application and properties
SP  - 92
EP  - 93
UR  - https://hdl.handle.net/21.15107/rcub_dais_13638
ER  - 
@conference{
author = "Nikolić, Irena and Radmilović, Vuk V. and Marković, Smilja and Veselinović, Ljiljana and Janković-Častvan, Ivona and Radmilović, Velimir R.",
year = "2022",
abstract = "Alkali activated slag (AAS) is an environmentally friendly material which were extensively investigated in a pass two decade. Currently, these materials are considering as an effective alternative for cement binder. Process of slag alkali activation involves a chemical reaction between solid calcium aluminosilicate materials and a highly alkaline activator. The alkali activation mechanism of slag consists of the slag dissolution in a highly alkaline which is followed by the condensation and hardening processes yielding formation of calcium (alumina) silicate hydrate C– (A)–S–H gel as a reaction product of slag alkali activation. Properties of these materials primarily depends on the choice of solid row materials. Primarily, granulated blast furnace slag, by product of iron production) is considering as a precursor for AAS synthesis. However, an important shift towards the use of steelmaking slag is also observed. Although electric arc furnace slag has already found its application mainly in civil engineering, this investigation has aimed to investigate properties of AAS prepared using the electric arc furnace slag (EAFS) with an emphasize with different possibilities of its application. Characterization of AAS involved XRDP, SEM/EDS and pore size analysis with the aim to build up a detailed illustration of AAS from the stand point of different application.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022",
title = "Alkali activated slag based on steelmaking slag: application and properties",
pages = "92-93",
url = "https://hdl.handle.net/21.15107/rcub_dais_13638"
}
Nikolić, I., Radmilović, V. V., Marković, S., Veselinović, L., Janković-Častvan, I.,& Radmilović, V. R.. (2022). Alkali activated slag based on steelmaking slag: application and properties. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
Belgrade : Serbian Academy of Sciences and Arts., 92-93.
https://hdl.handle.net/21.15107/rcub_dais_13638
Nikolić I, Radmilović VV, Marković S, Veselinović L, Janković-Častvan I, Radmilović VR. Alkali activated slag based on steelmaking slag: application and properties. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022. 2022;:92-93.
https://hdl.handle.net/21.15107/rcub_dais_13638 .
Nikolić, Irena, Radmilović, Vuk V., Marković, Smilja, Veselinović, Ljiljana, Janković-Častvan, Ivona, Radmilović, Velimir R., "Alkali activated slag based on steelmaking slag: application and properties" in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022 (2022):92-93,
https://hdl.handle.net/21.15107/rcub_dais_13638 .

Structural Properties of CaCu3Ti3RuO12

Marković, Smilja; Veselinović, Ljiljana; Mančić, Lidija; Jardim, Paula M.

(Belgrade : Serbian Academy of Sciences and Arts, 2022)

TY  - CONF
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Mančić, Lidija
AU  - Jardim, Paula M.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13640
AB  - Due to a very large dielectric permittivity (≥ 105), thermal stability over a wide temperature range (from 100 to 400 K) and frequency independence in the frequency range of 1 kHz–1 MHz, calcium coper titanate (CaCu3Ti4O12, CCTO) ceramics have been recognized as promising materials for applications in microelectronics industry and microwave devices [1–5]. Although a high permittivity value of CCTO-based materials allows fabrication of capacitors with improved capacitive performance for portable electronics devices, the nature of ceramics-metal electrode interface can deteriorate dielectric properties. Actually, significant differences in the crystal structure and electrical properties of the CaCu3Ti4O12 as a dielectric material and a metallic electrode, can cause an energy barrier and the occurrence of stress on the ceramic-electrode interface which reduce the dielectric permittivity. Therefore, to avoid occurrence of an energy barrier and stress on the ceramic electrode interface it is necessary to use dielectric ceramic and electrode with similar both crystal structure and unit cell parameters. The reduction of the stress on the ceramic-electrode interface can be achieved by using commercially available materials as an interlayer having lattice parameters match with both dielectric and electrode. It was noticed that incorporation of Ru4+ ions into the CCTO crystal structure significantly increases conductivity of these materials. It has been shown that CaCu3Ru4O12 (CCRO) material is isostructural with CaCu3Ti4O12 material, it has cubic 𝐼���𝑚���3 space group and shows metallic character [6]. Thus, since CCTO and CCRO have the same crystal structure and similar unit cell parameters, with CCRO layer as an interface between ceramic and electrode it can be possible to overcome problem of an energy barrier on the ceramic-electrode interface.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
T1  - Structural Properties of CaCu3Ti3RuO12
SP  - 198
EP  - 199
UR  - https://hdl.handle.net/21.15107/rcub_dais_13640
ER  - 
@conference{
author = "Marković, Smilja and Veselinović, Ljiljana and Mančić, Lidija and Jardim, Paula M.",
year = "2022",
abstract = "Due to a very large dielectric permittivity (≥ 105), thermal stability over a wide temperature range (from 100 to 400 K) and frequency independence in the frequency range of 1 kHz–1 MHz, calcium coper titanate (CaCu3Ti4O12, CCTO) ceramics have been recognized as promising materials for applications in microelectronics industry and microwave devices [1–5]. Although a high permittivity value of CCTO-based materials allows fabrication of capacitors with improved capacitive performance for portable electronics devices, the nature of ceramics-metal electrode interface can deteriorate dielectric properties. Actually, significant differences in the crystal structure and electrical properties of the CaCu3Ti4O12 as a dielectric material and a metallic electrode, can cause an energy barrier and the occurrence of stress on the ceramic-electrode interface which reduce the dielectric permittivity. Therefore, to avoid occurrence of an energy barrier and stress on the ceramic electrode interface it is necessary to use dielectric ceramic and electrode with similar both crystal structure and unit cell parameters. The reduction of the stress on the ceramic-electrode interface can be achieved by using commercially available materials as an interlayer having lattice parameters match with both dielectric and electrode. It was noticed that incorporation of Ru4+ ions into the CCTO crystal structure significantly increases conductivity of these materials. It has been shown that CaCu3Ru4O12 (CCRO) material is isostructural with CaCu3Ti4O12 material, it has cubic 𝐼���𝑚���3 space group and shows metallic character [6]. Thus, since CCTO and CCRO have the same crystal structure and similar unit cell parameters, with CCRO layer as an interface between ceramic and electrode it can be possible to overcome problem of an energy barrier on the ceramic-electrode interface.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022",
title = "Structural Properties of CaCu3Ti3RuO12",
pages = "198-199",
url = "https://hdl.handle.net/21.15107/rcub_dais_13640"
}
Marković, S., Veselinović, L., Mančić, L.,& Jardim, P. M.. (2022). Structural Properties of CaCu3Ti3RuO12. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022
Belgrade : Serbian Academy of Sciences and Arts., 198-199.
https://hdl.handle.net/21.15107/rcub_dais_13640
Marković S, Veselinović L, Mančić L, Jardim PM. Structural Properties of CaCu3Ti3RuO12. in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022. 2022;:198-199.
https://hdl.handle.net/21.15107/rcub_dais_13640 .
Marković, Smilja, Veselinović, Ljiljana, Mančić, Lidija, Jardim, Paula M., "Structural Properties of CaCu3Ti3RuO12" in Program & Book of Abstracts / Second International Conference ELMINA 2022, Belgrade, Serbia, August 22nd-26th, 2022 (2022):198-199,
https://hdl.handle.net/21.15107/rcub_dais_13640 .

Sintering and Phase Transition of the ZnTiO3 Nano Powder Dilatometric Data Deconvolution

Labus, Nebojša; Marković, Smilja; Nikolić, Maria Vesna; Rosić, Milena; Matijašević, Srđan

(Belgrade : ETRAN Society, 2022)

TY  - CONF
AU  - Labus, Nebojša
AU  - Marković, Smilja
AU  - Nikolić, Maria Vesna
AU  - Rosić, Milena
AU  - Matijašević, Srđan
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13641
AB  - Sintering and phase transition are often superimposed at dimensional change diagram recorded during heating. Phase transition kinetic is thus hard to deconvolute due to the superposition of the sintering and phase transition dimensional change phenomena. Metastabile perovskite phase ZnTiO3has transition to stabile spinel Zn2TiO4which occurs at 945oC with high kinetic rate. Nano powder with 40 nm particle diameter was pressed uniaxially at 200 MPa pressure without binder to form compact that will be consequently sintered. Dimensional change during heating was monitored using dilatometric thermo-mechanical analyzer TMA model SETSYS Evolution. Lever`s rule was used to calculate amount of the emerging phase during phase transition. The compacted specimens were treated on the nonisothermal schedule up to 1050oC.Sintering phenomenon of the ZnTiO3 nanopowder compact was also recorded up to 900oCwith isothermal holding of 25 minutes where phase transition was avoided due to lower temperature and isothermal holding. Second run heating of the obtained sintered specimens were recorded with the heating schedule of non-isothermal heating up to 1050oC. Kinetic of the phase transition was obtained from dilatograms recorded during sintering and from bulk on the second run heating. Furthermore, phase transition kinetics was obtained by subsequent data subtraction of the sintering curves without phase transition from the dilatation sintering curves containing phase transition. In such a manner complex kinetics of phenomena such as sintering, linear expansion and phase transition recorded as dimensional change during heating brings the recognition of their mutual interconnected relations. Also application of these mathematical operations on dilatometric data leads to the established procedure for the sintering and phase transition data treatment.
PB  - Belgrade : ETRAN Society
PB  - Belgrade : Academic Mind
C3  - Зборник радова / IX међународне конференције ИцЕТРАН и LXVI конференције ЕТРАН, Нови Пазар 6-9. јуна 2022. године = Proceedings / IX International Conference IcETRAN and LXVI ETRAN Conference, Novi Pazar, Serbia, 6-9, June, 2022
T1  - Sintering and Phase Transition of the ZnTiO3 Nano Powder Dilatometric Data Deconvolution
SP  - 479
EP  - 486
UR  - https://hdl.handle.net/21.15107/rcub_dais_13641
ER  - 
@conference{
author = "Labus, Nebojša and Marković, Smilja and Nikolić, Maria Vesna and Rosić, Milena and Matijašević, Srđan",
year = "2022",
abstract = "Sintering and phase transition are often superimposed at dimensional change diagram recorded during heating. Phase transition kinetic is thus hard to deconvolute due to the superposition of the sintering and phase transition dimensional change phenomena. Metastabile perovskite phase ZnTiO3has transition to stabile spinel Zn2TiO4which occurs at 945oC with high kinetic rate. Nano powder with 40 nm particle diameter was pressed uniaxially at 200 MPa pressure without binder to form compact that will be consequently sintered. Dimensional change during heating was monitored using dilatometric thermo-mechanical analyzer TMA model SETSYS Evolution. Lever`s rule was used to calculate amount of the emerging phase during phase transition. The compacted specimens were treated on the nonisothermal schedule up to 1050oC.Sintering phenomenon of the ZnTiO3 nanopowder compact was also recorded up to 900oCwith isothermal holding of 25 minutes where phase transition was avoided due to lower temperature and isothermal holding. Second run heating of the obtained sintered specimens were recorded with the heating schedule of non-isothermal heating up to 1050oC. Kinetic of the phase transition was obtained from dilatograms recorded during sintering and from bulk on the second run heating. Furthermore, phase transition kinetics was obtained by subsequent data subtraction of the sintering curves without phase transition from the dilatation sintering curves containing phase transition. In such a manner complex kinetics of phenomena such as sintering, linear expansion and phase transition recorded as dimensional change during heating brings the recognition of their mutual interconnected relations. Also application of these mathematical operations on dilatometric data leads to the established procedure for the sintering and phase transition data treatment.",
publisher = "Belgrade : ETRAN Society, Belgrade : Academic Mind",
journal = "Зборник радова / IX међународне конференције ИцЕТРАН и LXVI конференције ЕТРАН, Нови Пазар 6-9. јуна 2022. године = Proceedings / IX International Conference IcETRAN and LXVI ETRAN Conference, Novi Pazar, Serbia, 6-9, June, 2022",
title = "Sintering and Phase Transition of the ZnTiO3 Nano Powder Dilatometric Data Deconvolution",
pages = "479-486",
url = "https://hdl.handle.net/21.15107/rcub_dais_13641"
}
Labus, N., Marković, S., Nikolić, M. V., Rosić, M.,& Matijašević, S.. (2022). Sintering and Phase Transition of the ZnTiO3 Nano Powder Dilatometric Data Deconvolution. in Зборник радова / IX међународне конференције ИцЕТРАН и LXVI конференције ЕТРАН, Нови Пазар 6-9. јуна 2022. године = Proceedings / IX International Conference IcETRAN and LXVI ETRAN Conference, Novi Pazar, Serbia, 6-9, June, 2022
Belgrade : ETRAN Society., 479-486.
https://hdl.handle.net/21.15107/rcub_dais_13641
Labus N, Marković S, Nikolić MV, Rosić M, Matijašević S. Sintering and Phase Transition of the ZnTiO3 Nano Powder Dilatometric Data Deconvolution. in Зборник радова / IX међународне конференције ИцЕТРАН и LXVI конференције ЕТРАН, Нови Пазар 6-9. јуна 2022. године = Proceedings / IX International Conference IcETRAN and LXVI ETRAN Conference, Novi Pazar, Serbia, 6-9, June, 2022. 2022;:479-486.
https://hdl.handle.net/21.15107/rcub_dais_13641 .
Labus, Nebojša, Marković, Smilja, Nikolić, Maria Vesna, Rosić, Milena, Matijašević, Srđan, "Sintering and Phase Transition of the ZnTiO3 Nano Powder Dilatometric Data Deconvolution" in Зборник радова / IX међународне конференције ИцЕТРАН и LXVI конференције ЕТРАН, Нови Пазар 6-9. јуна 2022. године = Proceedings / IX International Conference IcETRAN and LXVI ETRAN Conference, Novi Pazar, Serbia, 6-9, June, 2022 (2022):479-486,
https://hdl.handle.net/21.15107/rcub_dais_13641 .

The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites

Jovanović, Zoran; Bajuk-Bogdanović, Danica; Vujković, Milica; Mravik, Željko; Jovanović, Sonja; Marković, Smilja; Pejčić, Milica; Holclajtner Antunović, Ivanka

(Belgrade : University of Belgrade, Faculty of Physical Chemistry, 2022)

TY  - CONF
AU  - Jovanović, Zoran
AU  - Bajuk-Bogdanović, Danica
AU  - Vujković, Milica
AU  - Mravik, Željko
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Pejčić, Milica
AU  - Holclajtner Antunović, Ivanka
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13644
AB  - Gaining a momentum from newly emerging properties of nanomaterials the further enhancement and integration of various functionalities have been made possible. Also, it became apparent that interaction between nano-objects can provide additional synergy capable of yielding new or significantly improved properties. This particularly applies to the surfaces and interfaces of nanomaterials where the intimate contact between components amplifies possible contributions of interfacial interactions. Since this aspect of interaction-property relation in many nanocomposites is still insufficiently explored, it is of interest to identify to what extent the properties emerge as a result of interaction-based synergy or a co-action of individual components. To address these aspects, we have investigated a nanocomposite of graphene oxide (GO) and 12-tungstophosporic acid (WPA) – a combination of materials that are known for the rich “portfolio” of properties. In the talk the novel findings will be presented that contribute to better the understanding of interactions between nano-objects and how they contribute to novel properties. The results are showing how simple temperature treatment and weight ratio of components is influencing the evolution of surface, structural properties and charge storage properties – all closely connected to interactions between components. Finally, the implications on synthetic approaches and fine-tuning of the functionality of GO/WPA nanocomposites will be discussed from the perspective of the obtained results.
PB  - Belgrade : University of Belgrade, Faculty of Physical Chemistry
C3  - Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022
T1  - The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites
SP  - 16
EP  - 16
UR  - https://hdl.handle.net/21.15107/rcub_dais_13644
ER  - 
@conference{
author = "Jovanović, Zoran and Bajuk-Bogdanović, Danica and Vujković, Milica and Mravik, Željko and Jovanović, Sonja and Marković, Smilja and Pejčić, Milica and Holclajtner Antunović, Ivanka",
year = "2022",
abstract = "Gaining a momentum from newly emerging properties of nanomaterials the further enhancement and integration of various functionalities have been made possible. Also, it became apparent that interaction between nano-objects can provide additional synergy capable of yielding new or significantly improved properties. This particularly applies to the surfaces and interfaces of nanomaterials where the intimate contact between components amplifies possible contributions of interfacial interactions. Since this aspect of interaction-property relation in many nanocomposites is still insufficiently explored, it is of interest to identify to what extent the properties emerge as a result of interaction-based synergy or a co-action of individual components. To address these aspects, we have investigated a nanocomposite of graphene oxide (GO) and 12-tungstophosporic acid (WPA) – a combination of materials that are known for the rich “portfolio” of properties. In the talk the novel findings will be presented that contribute to better the understanding of interactions between nano-objects and how they contribute to novel properties. The results are showing how simple temperature treatment and weight ratio of components is influencing the evolution of surface, structural properties and charge storage properties – all closely connected to interactions between components. Finally, the implications on synthetic approaches and fine-tuning of the functionality of GO/WPA nanocomposites will be discussed from the perspective of the obtained results.",
publisher = "Belgrade : University of Belgrade, Faculty of Physical Chemistry",
journal = "Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022",
title = "The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites",
pages = "16-16",
url = "https://hdl.handle.net/21.15107/rcub_dais_13644"
}
Jovanović, Z., Bajuk-Bogdanović, D., Vujković, M., Mravik, Ž., Jovanović, S., Marković, S., Pejčić, M.,& Holclajtner Antunović, I.. (2022). The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites. in Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022
Belgrade : University of Belgrade, Faculty of Physical Chemistry., 16-16.
https://hdl.handle.net/21.15107/rcub_dais_13644
Jovanović Z, Bajuk-Bogdanović D, Vujković M, Mravik Ž, Jovanović S, Marković S, Pejčić M, Holclajtner Antunović I. The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites. in Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022. 2022;:16-16.
https://hdl.handle.net/21.15107/rcub_dais_13644 .
Jovanović, Zoran, Bajuk-Bogdanović, Danica, Vujković, Milica, Mravik, Željko, Jovanović, Sonja, Marković, Smilja, Pejčić, Milica, Holclajtner Antunović, Ivanka, "The Role of Surface Chemistry, Structure and Interactions in the Electrochemical Charge Storage Properties of Graphene Oxide and 12-tungstophoshoric Acid Nanocomposites" in Contemporary batteries and supercapacitors : COIN2022 : program and book of abstracts / International Symposium Belgrade, June 1-2, 2022 (2022):16-16,
https://hdl.handle.net/21.15107/rcub_dais_13644 .

Successful Preservation of Helichrysum plicatum L. Flowers Extract Using Novel Carriers by Spray Drying Method

Ćujić-Nikolić, Nada; Jovanović, Miloš; Drinić, Zorica; Bigović, Dubravka; Marković, Smilja; Radan, Milica; Šavikin, Katarina

(International Association for Food Protection, 2022)

TY  - CONF
AU  - Ćujić-Nikolić, Nada
AU  - Jovanović, Miloš
AU  - Drinić, Zorica
AU  - Bigović, Dubravka
AU  - Marković, Smilja
AU  - Radan, Milica
AU  - Šavikin, Katarina
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13681
AB  - Research hypothesis: Everlasting flowers (genus Helichrysum) represent a significant source of pharmacologically active secondary metabolites (flavonoids naringenin, kaempferol, apigenin) related to proven spasmolytic, antioxidant, and antimicrobial activity. A critical point in development of polyphenol rich extracts of H. plicatum is their limited stability, which can be solved using microencapsulation technique spray drying. Method : Helichrysum flower extract was spray dried using four different carriers, and their combinations. Besides the conventional ones (maltodextrin-MD, whey protein-WP, 20%, w/w), innovative carriers, cyclodextrins (beta-cyclodextrin-BCD, hydroxy-propyl-betacyclodextrin- HPCD, 15%, w/w) have been proposed to overcome the extract limitations. The liquid feed was spray dried in a Labtex ESDTi spray dryer, under following conditions: inlet 130  } 5°C and outlet 70  } 5°C temperatures, spraying air flow rate (75 m3/h), liquid feed (11 mL/min rate), atomization pressure (2 bar). The spray-dried Helichrysum extract (HE) was obtained and used for further analyses: total polyphenols and flavonoids contents, spectrophotometrically and individual components by HPLC method. The dried extracts were stored in brown glass tubes for 6 months under room temperature in order to determine changes in the content of total and individual compounds during period of real storage. Samples were placed at in stability chamber (Memmert, Schwabach, Germany), in the absence of light, during one month in order to determine the effect of storage during accelerated stability test. All experiments were executed in triplicates. One-way ANOVA was conducted to test the individual factors AND Duncan post hoc test for differences between the mean values detection (STATISTICA v.7.0.3, MS Office Excel v. 2010). Results : Obtained powders manifested high encapsulation efficiency (more than 80%), confirming spray drying as adequate microencapsulation technique. Spray dried HE, without a carrier addition, exhibited 97.32% and powders microencapsulated using carriers ranged from 80.07 (HE+HPCD+MD) to 96.45% (HE+HPCD) of EE%, suggesting HEs active compounds are successfully microencapsulated into examined carriers. Spray-dried HE exhibited 106.32 mg GAE/g of polyphenol content, and powders produced using different polymers ranged from 83.25 (HE+HPCD+WP) to 100.28 mg GAE/g (HE+HPCD). The highest total flavonoids content was achieved in spray-dried HE. Among powders obtained using carriers, total flavonoids ranged from 15.66 (HE+HPCD+WP) to 21.55 (HE+HPCD) mg catechin/g. HPCD complexes exhibited the highest polyphenols and flavonoids content. Results of HPLC method confirmed that mainly presented flavonoids in obtained powders were naringenin, kaempferol, quercitrin, isoquercitrin, apigenin, and apigenin and naringenin derivates. Kaempferol-3-O-glycoside was the most dominant compound presented in all tested samples. Analysis of total polyphenols, flavonoids and individual compounds were carried after one month of accelerated and 6 months of real storage conditions. After one-month, total polyphenols and flavonoids increased in all examined samples. During the accelerated storage, water migrate from CDs and other carrier complexes, resulting the higher concentration. After 6 months, total polyphenols and flavonoids increased compared to the contents before storage tests, while decreased compared to 30 days without statistical significance. Content of individual compounds did not decrease significantly after 6 months, indicating that process of spray drying was suitable for stabilization of HE active compounds and indicating good preservation using polymers. Discussion : Spray drying of Helichrysum flower extract to obtain powders with high retention of bioactive compounds was evaluated. All microencapsulated bioactive principles reached high content and preservation during storage, based on good preservation. This could be important for further use in pharmaceutical and food industry due to its confirmed health benefits.
PB  - International Association for Food Protection
C3  - Abstract Book / 7th International Food Safety Congress, 3-4 November 2022, Istanbul - Тürkiye, Grand Cevahir Hotel & Convention Center
T1  - Successful Preservation of Helichrysum plicatum L. Flowers Extract Using Novel Carriers by Spray Drying Method
UR  - https://hdl.handle.net/21.15107/rcub_dais_13681
ER  - 
@conference{
author = "Ćujić-Nikolić, Nada and Jovanović, Miloš and Drinić, Zorica and Bigović, Dubravka and Marković, Smilja and Radan, Milica and Šavikin, Katarina",
year = "2022",
abstract = "Research hypothesis: Everlasting flowers (genus Helichrysum) represent a significant source of pharmacologically active secondary metabolites (flavonoids naringenin, kaempferol, apigenin) related to proven spasmolytic, antioxidant, and antimicrobial activity. A critical point in development of polyphenol rich extracts of H. plicatum is their limited stability, which can be solved using microencapsulation technique spray drying. Method : Helichrysum flower extract was spray dried using four different carriers, and their combinations. Besides the conventional ones (maltodextrin-MD, whey protein-WP, 20%, w/w), innovative carriers, cyclodextrins (beta-cyclodextrin-BCD, hydroxy-propyl-betacyclodextrin- HPCD, 15%, w/w) have been proposed to overcome the extract limitations. The liquid feed was spray dried in a Labtex ESDTi spray dryer, under following conditions: inlet 130  } 5°C and outlet 70  } 5°C temperatures, spraying air flow rate (75 m3/h), liquid feed (11 mL/min rate), atomization pressure (2 bar). The spray-dried Helichrysum extract (HE) was obtained and used for further analyses: total polyphenols and flavonoids contents, spectrophotometrically and individual components by HPLC method. The dried extracts were stored in brown glass tubes for 6 months under room temperature in order to determine changes in the content of total and individual compounds during period of real storage. Samples were placed at in stability chamber (Memmert, Schwabach, Germany), in the absence of light, during one month in order to determine the effect of storage during accelerated stability test. All experiments were executed in triplicates. One-way ANOVA was conducted to test the individual factors AND Duncan post hoc test for differences between the mean values detection (STATISTICA v.7.0.3, MS Office Excel v. 2010). Results : Obtained powders manifested high encapsulation efficiency (more than 80%), confirming spray drying as adequate microencapsulation technique. Spray dried HE, without a carrier addition, exhibited 97.32% and powders microencapsulated using carriers ranged from 80.07 (HE+HPCD+MD) to 96.45% (HE+HPCD) of EE%, suggesting HEs active compounds are successfully microencapsulated into examined carriers. Spray-dried HE exhibited 106.32 mg GAE/g of polyphenol content, and powders produced using different polymers ranged from 83.25 (HE+HPCD+WP) to 100.28 mg GAE/g (HE+HPCD). The highest total flavonoids content was achieved in spray-dried HE. Among powders obtained using carriers, total flavonoids ranged from 15.66 (HE+HPCD+WP) to 21.55 (HE+HPCD) mg catechin/g. HPCD complexes exhibited the highest polyphenols and flavonoids content. Results of HPLC method confirmed that mainly presented flavonoids in obtained powders were naringenin, kaempferol, quercitrin, isoquercitrin, apigenin, and apigenin and naringenin derivates. Kaempferol-3-O-glycoside was the most dominant compound presented in all tested samples. Analysis of total polyphenols, flavonoids and individual compounds were carried after one month of accelerated and 6 months of real storage conditions. After one-month, total polyphenols and flavonoids increased in all examined samples. During the accelerated storage, water migrate from CDs and other carrier complexes, resulting the higher concentration. After 6 months, total polyphenols and flavonoids increased compared to the contents before storage tests, while decreased compared to 30 days without statistical significance. Content of individual compounds did not decrease significantly after 6 months, indicating that process of spray drying was suitable for stabilization of HE active compounds and indicating good preservation using polymers. Discussion : Spray drying of Helichrysum flower extract to obtain powders with high retention of bioactive compounds was evaluated. All microencapsulated bioactive principles reached high content and preservation during storage, based on good preservation. This could be important for further use in pharmaceutical and food industry due to its confirmed health benefits.",
publisher = "International Association for Food Protection",
journal = "Abstract Book / 7th International Food Safety Congress, 3-4 November 2022, Istanbul - Тürkiye, Grand Cevahir Hotel & Convention Center",
title = "Successful Preservation of Helichrysum plicatum L. Flowers Extract Using Novel Carriers by Spray Drying Method",
url = "https://hdl.handle.net/21.15107/rcub_dais_13681"
}
Ćujić-Nikolić, N., Jovanović, M., Drinić, Z., Bigović, D., Marković, S., Radan, M.,& Šavikin, K.. (2022). Successful Preservation of Helichrysum plicatum L. Flowers Extract Using Novel Carriers by Spray Drying Method. in Abstract Book / 7th International Food Safety Congress, 3-4 November 2022, Istanbul - Тürkiye, Grand Cevahir Hotel & Convention Center
International Association for Food Protection..
https://hdl.handle.net/21.15107/rcub_dais_13681
Ćujić-Nikolić N, Jovanović M, Drinić Z, Bigović D, Marković S, Radan M, Šavikin K. Successful Preservation of Helichrysum plicatum L. Flowers Extract Using Novel Carriers by Spray Drying Method. in Abstract Book / 7th International Food Safety Congress, 3-4 November 2022, Istanbul - Тürkiye, Grand Cevahir Hotel & Convention Center. 2022;.
https://hdl.handle.net/21.15107/rcub_dais_13681 .
Ćujić-Nikolić, Nada, Jovanović, Miloš, Drinić, Zorica, Bigović, Dubravka, Marković, Smilja, Radan, Milica, Šavikin, Katarina, "Successful Preservation of Helichrysum plicatum L. Flowers Extract Using Novel Carriers by Spray Drying Method" in Abstract Book / 7th International Food Safety Congress, 3-4 November 2022, Istanbul - Тürkiye, Grand Cevahir Hotel & Convention Center (2022),
https://hdl.handle.net/21.15107/rcub_dais_13681 .

ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution

Aleksić, Katarina; Stanković, Ana; Stojković Simatović, Ivana; Marković, Smilja

(DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e.V., 2022)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Stanković, Ana
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13682
AB  - Over the last decade, due to its numerous unique features that can achieve single biomolecule detection, zinc oxide have been examined as potential electrochemical biosensor for medical diagnosis. Previous studies proved success of ZnO-based materials in determining various biomolecules such as glucose, cholesterol, uric acid, etc. The materials being used as biosensors require special characteristics including high corrosion resistance. The main goal of this study was to examine biocorrosion characteristics of ZnO materials in Ringer’s physiological solution as a function of immersion time. Six different ZnO nanostructured powders were synthesized by microwave processing with an aid of citric acid and CTAB in different weight amount (5, 10, and 20 wt.%). To comprehend the influence of physicochemical characteristics of ZnO samples on biocorrosion, decisive features such as the crystal structure, morphology, textural properties, and surface chemistry were systematically investigated and correlated with biocorrosion activity. The biocorrosion activity of the samples was measured by potentiodynamic polarization technique. The measurements were performed on a potentiostat using a conventional three-electrode cell and a Ringer’s solution as the electrolyte. Platinum foil and a standard calomel electrode (SCE) were used as the counter and the reference electrode, respectively, while FTO glass was used as the working electrode. The working electrode was coated with a thin film of ZnO ink prepared by mixing of a ZnO powder as an active material and Nafion solution as a binder. Prepared specimens were immersed in 100 ml of Ringer’s solution for different immersion times ranging from 30 min to 7 days. The immersed specimens were then characterized by potentiodynamic polarization techniques in the potential range from -0.2 to +0.3 V vs SCE, at the scan rate of 0.1 mVs-1. We found that all examined ZnO samples has low biocorrosion activity. Slight differences in biocorrosion activity between the samples are determined by particles morphology, textural properties and surface chemistry influenced by used surfactants.
PB  - DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e.V.
C3  - EUROCORR 2022 - European Corrosion Congress: Corrosion in a Changing World - Energy, Mobility, Digitalization, 28 August - 1 September 2022, Berlin, Germany: Abstracts / Extended papers for posters /
T1  - ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution
UR  - https://hdl.handle.net/21.15107/rcub_dais_13682
ER  - 
@conference{
author = "Aleksić, Katarina and Stanković, Ana and Stojković Simatović, Ivana and Marković, Smilja",
year = "2022",
abstract = "Over the last decade, due to its numerous unique features that can achieve single biomolecule detection, zinc oxide have been examined as potential electrochemical biosensor for medical diagnosis. Previous studies proved success of ZnO-based materials in determining various biomolecules such as glucose, cholesterol, uric acid, etc. The materials being used as biosensors require special characteristics including high corrosion resistance. The main goal of this study was to examine biocorrosion characteristics of ZnO materials in Ringer’s physiological solution as a function of immersion time. Six different ZnO nanostructured powders were synthesized by microwave processing with an aid of citric acid and CTAB in different weight amount (5, 10, and 20 wt.%). To comprehend the influence of physicochemical characteristics of ZnO samples on biocorrosion, decisive features such as the crystal structure, morphology, textural properties, and surface chemistry were systematically investigated and correlated with biocorrosion activity. The biocorrosion activity of the samples was measured by potentiodynamic polarization technique. The measurements were performed on a potentiostat using a conventional three-electrode cell and a Ringer’s solution as the electrolyte. Platinum foil and a standard calomel electrode (SCE) were used as the counter and the reference electrode, respectively, while FTO glass was used as the working electrode. The working electrode was coated with a thin film of ZnO ink prepared by mixing of a ZnO powder as an active material and Nafion solution as a binder. Prepared specimens were immersed in 100 ml of Ringer’s solution for different immersion times ranging from 30 min to 7 days. The immersed specimens were then characterized by potentiodynamic polarization techniques in the potential range from -0.2 to +0.3 V vs SCE, at the scan rate of 0.1 mVs-1. We found that all examined ZnO samples has low biocorrosion activity. Slight differences in biocorrosion activity between the samples are determined by particles morphology, textural properties and surface chemistry influenced by used surfactants.",
publisher = "DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e.V.",
journal = "EUROCORR 2022 - European Corrosion Congress: Corrosion in a Changing World - Energy, Mobility, Digitalization, 28 August - 1 September 2022, Berlin, Germany: Abstracts / Extended papers for posters /",
title = "ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution",
url = "https://hdl.handle.net/21.15107/rcub_dais_13682"
}
Aleksić, K., Stanković, A., Stojković Simatović, I.,& Marković, S.. (2022). ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution. in EUROCORR 2022 - European Corrosion Congress: Corrosion in a Changing World - Energy, Mobility, Digitalization, 28 August - 1 September 2022, Berlin, Germany: Abstracts / Extended papers for posters /
DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie e.V...
https://hdl.handle.net/21.15107/rcub_dais_13682
Aleksić K, Stanković A, Stojković Simatović I, Marković S. ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution. in EUROCORR 2022 - European Corrosion Congress: Corrosion in a Changing World - Energy, Mobility, Digitalization, 28 August - 1 September 2022, Berlin, Germany: Abstracts / Extended papers for posters /. 2022;.
https://hdl.handle.net/21.15107/rcub_dais_13682 .
Aleksić, Katarina, Stanković, Ana, Stojković Simatović, Ivana, Marković, Smilja, "ZnO-based nanostructured electrodes for biosensors: Corrosion behavior in Ringer’s physiological solution" in EUROCORR 2022 - European Corrosion Congress: Corrosion in a Changing World - Energy, Mobility, Digitalization, 28 August - 1 September 2022, Berlin, Germany: Abstracts / Extended papers for posters / (2022),
https://hdl.handle.net/21.15107/rcub_dais_13682 .

Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles

Dorm, Bruna Carolina; Iemma, Mônica Rosas Costa; Neto, Benedito Domingos; Francisco, Rauany Cristina Lopes; Dinić, Ivana; Ignjatović, Nenad; Marković, Smilja; Vuković, Marina; Škapin, Srečo; Trovatti, Eliane; Mančić, Lidija

(2022)

TY  - JOUR
AU  - Dorm, Bruna Carolina
AU  - Iemma, Mônica Rosas Costa
AU  - Neto, Benedito Domingos
AU  - Francisco, Rauany Cristina Lopes
AU  - Dinić, Ivana
AU  - Ignjatović, Nenad
AU  - Marković, Smilja
AU  - Vuković, Marina
AU  - Škapin, Srečo
AU  - Trovatti, Eliane
AU  - Mančić, Lidija
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13685
AB  - Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.
T2  - Life
T1  - Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles
SP  - 116
VL  - 13
IS  - 1
DO  - 10.3390/life13010116
UR  - https://hdl.handle.net/21.15107/rcub_dais_13685
ER  - 
@article{
author = "Dorm, Bruna Carolina and Iemma, Mônica Rosas Costa and Neto, Benedito Domingos and Francisco, Rauany Cristina Lopes and Dinić, Ivana and Ignjatović, Nenad and Marković, Smilja and Vuković, Marina and Škapin, Srečo and Trovatti, Eliane and Mančić, Lidija",
year = "2022",
abstract = "Hydroxyapatite attracts great attention as hard tissues implant material for bones and teeth. Its application in reconstructive medicine depends on its biocompatibility, which is in a function of composition and surface properties. The insertion of a protein element in the composition of implants can improve the cell adhesion and the osseointegration. Having this in mind, the proposal of this work was to develop L-alanine-grafted hydroxyapatite nanoparticles and to study their biocompatibility. Two L-alanine sources and three grafting methods were used for hydroxyapatite surface functionalization. The efficiency of grafting was determined based on X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermal analyses, and field-emission scanning electron microscopy. The results indicated the formation of hydroxyapatite with 8–25 wt% of organic content, depending on the grafting method. Protein adsorption, cell adhesion, and viability studies were carried out to evaluate biological properties of grafted materials. The viability of MG-63 human osteoblastic cells following 24 h incubation with the alanine-grafted hydroxyapatite samples is well preserved, being in all cases above the viability of cells incubated with hydroxyapatite. The alanine-grafted hydroxyapatite prepared in situ and by simple mixture showed higher protein adsorption and cell adhesion, respectively, indicating their potential toward use in regenerative medicine.",
journal = "Life",
title = "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles",
pages = "116",
volume = "13",
number = "1",
doi = "10.3390/life13010116",
url = "https://hdl.handle.net/21.15107/rcub_dais_13685"
}
Dorm, B. C., Iemma, M. R. C., Neto, B. D., Francisco, R. C. L., Dinić, I., Ignjatović, N., Marković, S., Vuković, M., Škapin, S., Trovatti, E.,& Mančić, L.. (2022). Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. in Life, 13(1), 116.
https://doi.org/10.3390/life13010116
https://hdl.handle.net/21.15107/rcub_dais_13685
Dorm BC, Iemma MRC, Neto BD, Francisco RCL, Dinić I, Ignjatović N, Marković S, Vuković M, Škapin S, Trovatti E, Mančić L. Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles. in Life. 2022;13(1):116.
doi:10.3390/life13010116
https://hdl.handle.net/21.15107/rcub_dais_13685 .
Dorm, Bruna Carolina, Iemma, Mônica Rosas Costa, Neto, Benedito Domingos, Francisco, Rauany Cristina Lopes, Dinić, Ivana, Ignjatović, Nenad, Marković, Smilja, Vuković, Marina, Škapin, Srečo, Trovatti, Eliane, Mančić, Lidija, "Synthesis and Biological Properties of Alanine-Grafted Hydroxyapatite Nanoparticles" in Life, 13, no. 1 (2022):116,
https://doi.org/10.3390/life13010116 .,
https://hdl.handle.net/21.15107/rcub_dais_13685 .

The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals

Vuković, Marina; Dinić, Ivana; Jardim, Paula; Marković, Smilja; Veselinović, Ljiljana; Nikolić, Marko; Mančić, Lidija

(Elsevier BV, 2022)

TY  - JOUR
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Jardim, Paula
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Nikolić, Marko
AU  - Mančić, Lidija
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/12817
AB  - In this paper, we report the mild sonochemical synthesis of hexagonal (β) NaYF4:Yb,Er mesocrystals at low temperature of 40 °C. The nucleation and transformation of crystal structures is investigated in the course of time, and it is shown that the pure β phase is obtained after 2 h of pulsed sonication. The crystallization of orthorhombic YF3:Yb,Er and cubic (α) NaYF4:Yb,Er precedes the appearance of a thermodynamically stable β NaYF4:Yb,Er phase. Based on the evolution of the nanoparticle morphology, it is concluded that the transition from α to β phase is consistent with the dissolution-recrystallization process, while the final shape of mesocrystals is a consequence of the oriented attachment growth in the newly formed β phase nanocrystallites along two planes. The structural properties of all compounds are analyzed and correlated with their thermal and optical characteristics. The pump power dependence of green and red emissions confirms that only two-photon process is involved in up-conversion, which is superior in β phase mesocrystals.
PB  - Elsevier BV
T2  - Advanced Powder Technology
T1  - The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals
SP  - 103403
VL  - 33
IS  - 2
DO  - 10.1016/j.apt.2021.103403
UR  - https://hdl.handle.net/21.15107/rcub_dais_12817
ER  - 
@article{
author = "Vuković, Marina and Dinić, Ivana and Jardim, Paula and Marković, Smilja and Veselinović, Ljiljana and Nikolić, Marko and Mančić, Lidija",
year = "2022",
abstract = "In this paper, we report the mild sonochemical synthesis of hexagonal (β) NaYF4:Yb,Er mesocrystals at low temperature of 40 °C. The nucleation and transformation of crystal structures is investigated in the course of time, and it is shown that the pure β phase is obtained after 2 h of pulsed sonication. The crystallization of orthorhombic YF3:Yb,Er and cubic (α) NaYF4:Yb,Er precedes the appearance of a thermodynamically stable β NaYF4:Yb,Er phase. Based on the evolution of the nanoparticle morphology, it is concluded that the transition from α to β phase is consistent with the dissolution-recrystallization process, while the final shape of mesocrystals is a consequence of the oriented attachment growth in the newly formed β phase nanocrystallites along two planes. The structural properties of all compounds are analyzed and correlated with their thermal and optical characteristics. The pump power dependence of green and red emissions confirms that only two-photon process is involved in up-conversion, which is superior in β phase mesocrystals.",
publisher = "Elsevier BV",
journal = "Advanced Powder Technology",
title = "The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals",
pages = "103403",
volume = "33",
number = "2",
doi = "10.1016/j.apt.2021.103403",
url = "https://hdl.handle.net/21.15107/rcub_dais_12817"
}
Vuković, M., Dinić, I., Jardim, P., Marković, S., Veselinović, L., Nikolić, M.,& Mančić, L.. (2022). The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals. in Advanced Powder Technology
Elsevier BV., 33(2), 103403.
https://doi.org/10.1016/j.apt.2021.103403
https://hdl.handle.net/21.15107/rcub_dais_12817
Vuković M, Dinić I, Jardim P, Marković S, Veselinović L, Nikolić M, Mančić L. The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals. in Advanced Powder Technology. 2022;33(2):103403.
doi:10.1016/j.apt.2021.103403
https://hdl.handle.net/21.15107/rcub_dais_12817 .
Vuković, Marina, Dinić, Ivana, Jardim, Paula, Marković, Smilja, Veselinović, Ljiljana, Nikolić, Marko, Mančić, Lidija, "The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals" in Advanced Powder Technology, 33, no. 2 (2022):103403,
https://doi.org/10.1016/j.apt.2021.103403 .,
https://hdl.handle.net/21.15107/rcub_dais_12817 .
1
1

The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals

Vuković, Marina; Dinić, Ivana; Jardim, Paula; Marković, Smilja; Veselinović, Ljiljana; Nikolić, Marko; Mančić, Lidija

(Elsevier BV, 2022)

TY  - JOUR
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Jardim, Paula
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Nikolić, Marko
AU  - Mančić, Lidija
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/12818
AB  - In this paper, we report the mild sonochemical synthesis of hexagonal (β) NaYF4:Yb,Er mesocrystals at low temperature of 40 °C. The nucleation and transformation of crystal structures is investigated in the course of time, and it is shown that the pure β phase is obtained after 2 h of pulsed sonication. The crystallization of orthorhombic YF3:Yb,Er and cubic (α) NaYF4:Yb,Er precedes the appearance of a thermodynamically stable β NaYF4:Yb,Er phase. Based on the evolution of the nanoparticle morphology, it is concluded that the transition from α to β phase is consistent with the dissolution-recrystallization process, while the final shape of mesocrystals is a consequence of the oriented attachment growth in the newly formed β phase nanocrystallites along two planes. The structural properties of all compounds are analyzed and correlated with their thermal and optical characteristics. The pump power dependence of green and red emissions confirms that only two-photon process is involved in up-conversion, which is superior in β phase mesocrystals.
PB  - Elsevier BV
T2  - Advanced Powder Technology
T1  - The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals
SP  - 103403
VL  - 33
IS  - 2
DO  - 10.1016/j.apt.2021.103403
UR  - https://hdl.handle.net/21.15107/rcub_dais_12818
ER  - 
@article{
author = "Vuković, Marina and Dinić, Ivana and Jardim, Paula and Marković, Smilja and Veselinović, Ljiljana and Nikolić, Marko and Mančić, Lidija",
year = "2022",
abstract = "In this paper, we report the mild sonochemical synthesis of hexagonal (β) NaYF4:Yb,Er mesocrystals at low temperature of 40 °C. The nucleation and transformation of crystal structures is investigated in the course of time, and it is shown that the pure β phase is obtained after 2 h of pulsed sonication. The crystallization of orthorhombic YF3:Yb,Er and cubic (α) NaYF4:Yb,Er precedes the appearance of a thermodynamically stable β NaYF4:Yb,Er phase. Based on the evolution of the nanoparticle morphology, it is concluded that the transition from α to β phase is consistent with the dissolution-recrystallization process, while the final shape of mesocrystals is a consequence of the oriented attachment growth in the newly formed β phase nanocrystallites along two planes. The structural properties of all compounds are analyzed and correlated with their thermal and optical characteristics. The pump power dependence of green and red emissions confirms that only two-photon process is involved in up-conversion, which is superior in β phase mesocrystals.",
publisher = "Elsevier BV",
journal = "Advanced Powder Technology",
title = "The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals",
pages = "103403",
volume = "33",
number = "2",
doi = "10.1016/j.apt.2021.103403",
url = "https://hdl.handle.net/21.15107/rcub_dais_12818"
}
Vuković, M., Dinić, I., Jardim, P., Marković, S., Veselinović, L., Nikolić, M.,& Mančić, L.. (2022). The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals. in Advanced Powder Technology
Elsevier BV., 33(2), 103403.
https://doi.org/10.1016/j.apt.2021.103403
https://hdl.handle.net/21.15107/rcub_dais_12818
Vuković M, Dinić I, Jardim P, Marković S, Veselinović L, Nikolić M, Mančić L. The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals. in Advanced Powder Technology. 2022;33(2):103403.
doi:10.1016/j.apt.2021.103403
https://hdl.handle.net/21.15107/rcub_dais_12818 .
Vuković, Marina, Dinić, Ivana, Jardim, Paula, Marković, Smilja, Veselinović, Ljiljana, Nikolić, Marko, Mančić, Lidija, "The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals" in Advanced Powder Technology, 33, no. 2 (2022):103403,
https://doi.org/10.1016/j.apt.2021.103403 .,
https://hdl.handle.net/21.15107/rcub_dais_12818 .
1
1

Supplementary information for the article: Vuković, Marina, Dinić, Ivana, Jardim, Paula, Marković, Smilja, Veselinović, Ljiljana, Nikolić, Marko, Mančić, Lidija, "The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals" in Advanced Powder Technology, 33, no. 2 (2022):103403, https://doi.org/10.1016/j.apt.2021.103403

Vuković, Marina; Dinić, Ivana; Jardim, Paula; Marković, Smilja; Veselinović, Ljiljana; Nikolić, Marko; Mančić, Lidija

(Elsevier BV, 2022)

TY  - DATA
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Jardim, Paula
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Nikolić, Marko
AU  - Mančić, Lidija
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/12819
AB  - Figure S1. XRPD data and refined patterns of the obtained samples; Figure S2. Typical spectrum of FT-IR analysis; Figure S3. XRPD of samples obtained through sonochemical synthesis after DSC analysis; Figure S4: Simulated electron diffraction pattern of β NaYF4:Yb,Er hexagonal [-111] zone axis  compared with experimental SAED; Figure S5: Simulated electron diffraction pattern of β NaYF4:Yb,Er hexagonal [2-10] zone axis  compared with experimental SAED
PB  - Elsevier BV
T2  - Advanced Powder Technology
T1  - Supplementary information for the article: Vuković, Marina, Dinić, Ivana, Jardim, Paula, Marković, Smilja, Veselinović, Ljiljana, Nikolić, Marko, Mančić, Lidija, "The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals" in Advanced Powder Technology, 33, no. 2 (2022):103403, https://doi.org/10.1016/j.apt.2021.103403
VL  - 33
IS  - 2
UR  - https://hdl.handle.net/21.15107/rcub_dais_12819
ER  - 
@misc{
author = "Vuković, Marina and Dinić, Ivana and Jardim, Paula and Marković, Smilja and Veselinović, Ljiljana and Nikolić, Marko and Mančić, Lidija",
year = "2022",
abstract = "Figure S1. XRPD data and refined patterns of the obtained samples; Figure S2. Typical spectrum of FT-IR analysis; Figure S3. XRPD of samples obtained through sonochemical synthesis after DSC analysis; Figure S4: Simulated electron diffraction pattern of β NaYF4:Yb,Er hexagonal [-111] zone axis  compared with experimental SAED; Figure S5: Simulated electron diffraction pattern of β NaYF4:Yb,Er hexagonal [2-10] zone axis  compared with experimental SAED",
publisher = "Elsevier BV",
journal = "Advanced Powder Technology",
title = "Supplementary information for the article: Vuković, Marina, Dinić, Ivana, Jardim, Paula, Marković, Smilja, Veselinović, Ljiljana, Nikolić, Marko, Mančić, Lidija, "The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals" in Advanced Powder Technology, 33, no. 2 (2022):103403, https://doi.org/10.1016/j.apt.2021.103403",
volume = "33",
number = "2",
url = "https://hdl.handle.net/21.15107/rcub_dais_12819"
}
Vuković, M., Dinić, I., Jardim, P., Marković, S., Veselinović, L., Nikolić, M.,& Mančić, L.. (2022). Supplementary information for the article: Vuković, Marina, Dinić, Ivana, Jardim, Paula, Marković, Smilja, Veselinović, Ljiljana, Nikolić, Marko, Mančić, Lidija, "The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals" in Advanced Powder Technology, 33, no. 2 (2022):103403, https://doi.org/10.1016/j.apt.2021.103403. in Advanced Powder Technology
Elsevier BV., 33(2).
https://hdl.handle.net/21.15107/rcub_dais_12819
Vuković M, Dinić I, Jardim P, Marković S, Veselinović L, Nikolić M, Mančić L. Supplementary information for the article: Vuković, Marina, Dinić, Ivana, Jardim, Paula, Marković, Smilja, Veselinović, Ljiljana, Nikolić, Marko, Mančić, Lidija, "The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals" in Advanced Powder Technology, 33, no. 2 (2022):103403, https://doi.org/10.1016/j.apt.2021.103403. in Advanced Powder Technology. 2022;33(2).
https://hdl.handle.net/21.15107/rcub_dais_12819 .
Vuković, Marina, Dinić, Ivana, Jardim, Paula, Marković, Smilja, Veselinović, Ljiljana, Nikolić, Marko, Mančić, Lidija, "Supplementary information for the article: Vuković, Marina, Dinić, Ivana, Jardim, Paula, Marković, Smilja, Veselinović, Ljiljana, Nikolić, Marko, Mančić, Lidija, "The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals" in Advanced Powder Technology, 33, no. 2 (2022):103403, https://doi.org/10.1016/j.apt.2021.103403" in Advanced Powder Technology, 33, no. 2 (2022),
https://hdl.handle.net/21.15107/rcub_dais_12819 .

Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium

Marković, Smilja; Rau, Julietta V.; De Bonis, Angela; De Bellis, Giovanni; Stojanović, Zoran; Veselinović, Ljiljana; Mitrić, Miodrag; Ignjatović, Nenad; Škapin, Srečo Davor; Vengust, Damjan

(2022)

TY  - JOUR
AU  - Marković, Smilja
AU  - Rau, Julietta V.
AU  - De Bonis, Angela
AU  - De Bellis, Giovanni
AU  - Stojanović, Zoran
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Ignjatović, Nenad
AU  - Škapin, Srečo Davor
AU  - Vengust, Damjan
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/12953
AB  - Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.
T2  - Surface and Coatings Technology
T2  - Surface and Coatings TechnologySurface and Coatings Technology
T1  - Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium
SP  - 128275
VL  - 437
DO  - 10.1016/j.surfcoat.2022.128275
UR  - https://hdl.handle.net/21.15107/rcub_dais_12953
ER  - 
@article{
author = "Marković, Smilja and Rau, Julietta V. and De Bonis, Angela and De Bellis, Giovanni and Stojanović, Zoran and Veselinović, Ljiljana and Mitrić, Miodrag and Ignjatović, Nenad and Škapin, Srečo Davor and Vengust, Damjan",
year = "2022",
abstract = "Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.",
journal = "Surface and Coatings Technology, Surface and Coatings TechnologySurface and Coatings Technology",
title = "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium",
pages = "128275",
volume = "437",
doi = "10.1016/j.surfcoat.2022.128275",
url = "https://hdl.handle.net/21.15107/rcub_dais_12953"
}
Marković, S., Rau, J. V., De Bonis, A., De Bellis, G., Stojanović, Z., Veselinović, L., Mitrić, M., Ignjatović, N., Škapin, S. D.,& Vengust, D.. (2022). Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology, 437, 128275.
https://doi.org/10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_12953
Marković S, Rau JV, De Bonis A, De Bellis G, Stojanović Z, Veselinović L, Mitrić M, Ignjatović N, Škapin SD, Vengust D. Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology. 2022;437:128275.
doi:10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_12953 .
Marković, Smilja, Rau, Julietta V., De Bonis, Angela, De Bellis, Giovanni, Stojanović, Zoran, Veselinović, Ljiljana, Mitrić, Miodrag, Ignjatović, Nenad, Škapin, Srečo Davor, Vengust, Damjan, "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium" in Surface and Coatings Technology, 437 (2022):128275,
https://doi.org/10.1016/j.surfcoat.2022.128275 .,
https://hdl.handle.net/21.15107/rcub_dais_12953 .

Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium

Marković, Smilja; Rau, Julietta V.; De Bonis, Angela; De Bellis, Giovanni; Stojanović, Zoran; Veselinović, Ljiljana; Mitrić, Miodrag; Ignjatović, Nenad; Škapin, Srečo Davor; Vengust, Damjan

(2022)

TY  - JOUR
AU  - Marković, Smilja
AU  - Rau, Julietta V.
AU  - De Bonis, Angela
AU  - De Bellis, Giovanni
AU  - Stojanović, Zoran
AU  - Veselinović, Ljiljana
AU  - Mitrić, Miodrag
AU  - Ignjatović, Nenad
AU  - Škapin, Srečo Davor
AU  - Vengust, Damjan
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13034
AB  - Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.
T2  - Surface and Coatings Technology
T1  - Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium
SP  - 128275
VL  - 437
DO  - 10.1016/j.surfcoat.2022.128275
UR  - https://hdl.handle.net/21.15107/rcub_dais_13034
ER  - 
@article{
author = "Marković, Smilja and Rau, Julietta V. and De Bonis, Angela and De Bellis, Giovanni and Stojanović, Zoran and Veselinović, Ljiljana and Mitrić, Miodrag and Ignjatović, Nenad and Škapin, Srečo Davor and Vengust, Damjan",
year = "2022",
abstract = "Dense calcium phosphate-based ceramics were fabricated to be used as targets for pulsed laser deposition (PLD). Nanostructured cobalt-substituted hydroxyapatite (Co:HAP) was used as a starting powder. To vary phase composition and microstructure of targets, two sintering approaches were applied, conventional (CS) and two-step sintering (TSS). The obtained results show that in both cases biphasic calcium phosphate (BCP) ceramics (targets) were prepared, with slightly different HAP-to-β–TCP amount ratio and a significantly different microstructure. While the CS method yielded fully dense ceramics with an average grain size of 1.3 μm, the ceramics prepared by TSS had a density of 98.5%, with a predominant grain size below 100 nm. (Ca + Co)P coatings were prepared by PLD of (Ca + Co)P targets. The temperature of the Ti substrate was adjusted to be 25 and 500 °C. The results show that the phase composition of (Ca + Co)P coatings depended on the phase composition of targets as well as on the temperature of the Ti substrate. The coating prepared at 25 °C using CS target consisted of three calcium phosphate phases, HAP, β–TCP and α–TCP; when the TSS target was used, the coating was biphasic, containing HAP and β–TCP. When the substrate was heated to 500 °C, regardless of whether the CS or the TSS target was used, the deposited coatings were composed of HAP and α–TCP. Due to different phase compositions, the (Ca + Co)P coatings deposited at 25 °C showed an improved hardness compared to those deposited at 500 °C. The obtained results confirmed that the phase composition, morphology and mechanical properties of 0.3 μm thick (Ca + Co)P coatings on a Ti substrate can be tailored by employing (Ca + Co)P targets with different microstructures, and also by varying the temperature of the Ti substrate during deposition experiments.",
journal = "Surface and Coatings Technology",
title = "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium",
pages = "128275",
volume = "437",
doi = "10.1016/j.surfcoat.2022.128275",
url = "https://hdl.handle.net/21.15107/rcub_dais_13034"
}
Marković, S., Rau, J. V., De Bonis, A., De Bellis, G., Stojanović, Z., Veselinović, L., Mitrić, M., Ignjatović, N., Škapin, S. D.,& Vengust, D.. (2022). Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology, 437, 128275.
https://doi.org/10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_13034
Marković S, Rau JV, De Bonis A, De Bellis G, Stojanović Z, Veselinović L, Mitrić M, Ignjatović N, Škapin SD, Vengust D. Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. in Surface and Coatings Technology. 2022;437:128275.
doi:10.1016/j.surfcoat.2022.128275
https://hdl.handle.net/21.15107/rcub_dais_13034 .
Marković, Smilja, Rau, Julietta V., De Bonis, Angela, De Bellis, Giovanni, Stojanović, Zoran, Veselinović, Ljiljana, Mitrić, Miodrag, Ignjatović, Nenad, Škapin, Srečo Davor, Vengust, Damjan, "Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium" in Surface and Coatings Technology, 437 (2022):128275,
https://doi.org/10.1016/j.surfcoat.2022.128275 .,
https://hdl.handle.net/21.15107/rcub_dais_13034 .

The biocorrosion activity of ZnO-based materials as biosensors

Aleksić, Katarina; Stanković, Ana; Veselinović, Ljiljana; Stojković Simatović, Ivana; Marković, Smilja

(Belgrade : Institute of Technical Sciences of SASA, 2022)

TY  - CONF
AU  - Aleksić, Katarina
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13504
AB  - Due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility and ease of synthesis by diverse methods, ZnO-based materials have attracted much interest as materials for biosensors. Its unique properties allow it to be used for single-molecule detection and determining various biomolecules, so it can be potentially utilized as biosensor for medical diagnosis. The materials being used as biosensors require special characteristics including high corrosion resistance. The aim of this research was to investigate biocorrosion properties of ZnO materials in Ringer’s physiological solution as a function of immersion time. ZnO powders were prepared by microwave (MW) processing of a precipitate in the presence of a different amount (5, 10 and 20 wt.%) of two different surfactants, CA and CTAB. The particles crystallinity and phase purity were investigated by X-ray powder diffraction (XRD) and Raman spectroscopy. Fourier-transform infrared (FTIR) spectroscopy was used to analyze surface chemistry. The particles morphology and textural properties were observed with field emission scanning electron microscopy (FE-SEM) and BET. The biocorrosion activity of the materials was measured by potentiodynamic polarization technique. Prepared samples were immersed in Ringer solution for different immersion times ranging from 30 min to 7 days. We found that all examined ZnO samples hаve low biocorrosion activity. Slight differences in biocorrosion activity between the samples are determined by particles morphology, textural properties and surface chemistry influenced by used surfactants.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia
T1  - The biocorrosion activity of ZnO-based materials as biosensors
SP  - 39
EP  - 39
UR  - https://hdl.handle.net/21.15107/rcub_dais_13504
ER  - 
@conference{
author = "Aleksić, Katarina and Stanković, Ana and Veselinović, Ljiljana and Stojković Simatović, Ivana and Marković, Smilja",
year = "2022",
abstract = "Due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility and ease of synthesis by diverse methods, ZnO-based materials have attracted much interest as materials for biosensors. Its unique properties allow it to be used for single-molecule detection and determining various biomolecules, so it can be potentially utilized as biosensor for medical diagnosis. The materials being used as biosensors require special characteristics including high corrosion resistance. The aim of this research was to investigate biocorrosion properties of ZnO materials in Ringer’s physiological solution as a function of immersion time. ZnO powders were prepared by microwave (MW) processing of a precipitate in the presence of a different amount (5, 10 and 20 wt.%) of two different surfactants, CA and CTAB. The particles crystallinity and phase purity were investigated by X-ray powder diffraction (XRD) and Raman spectroscopy. Fourier-transform infrared (FTIR) spectroscopy was used to analyze surface chemistry. The particles morphology and textural properties were observed with field emission scanning electron microscopy (FE-SEM) and BET. The biocorrosion activity of the materials was measured by potentiodynamic polarization technique. Prepared samples were immersed in Ringer solution for different immersion times ranging from 30 min to 7 days. We found that all examined ZnO samples hаve low biocorrosion activity. Slight differences in biocorrosion activity between the samples are determined by particles morphology, textural properties and surface chemistry influenced by used surfactants.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia",
title = "The biocorrosion activity of ZnO-based materials as biosensors",
pages = "39-39",
url = "https://hdl.handle.net/21.15107/rcub_dais_13504"
}
Aleksić, K., Stanković, A., Veselinović, L., Stojković Simatović, I.,& Marković, S.. (2022). The biocorrosion activity of ZnO-based materials as biosensors. in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 39-39.
https://hdl.handle.net/21.15107/rcub_dais_13504
Aleksić K, Stanković A, Veselinović L, Stojković Simatović I, Marković S. The biocorrosion activity of ZnO-based materials as biosensors. in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia. 2022;:39-39.
https://hdl.handle.net/21.15107/rcub_dais_13504 .
Aleksić, Katarina, Stanković, Ana, Veselinović, Ljiljana, Stojković Simatović, Ivana, Marković, Smilja, "The biocorrosion activity of ZnO-based materials as biosensors" in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia (2022):39-39,
https://hdl.handle.net/21.15107/rcub_dais_13504 .

Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide

Marković, Smilja; Stanković, Ana; Stojković Simatović, Ivana

(Belgrade : Materials Research Society of Serbia, 2022)

TY  - CONF
AU  - Marković, Smilja
AU  - Stanković, Ana
AU  - Stojković Simatović, Ivana
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13593
AB  - Due to their tunable multifunctional properties zinc oxide (ZnO) based materials have attracted extensive scientific and technological attention. Since they combines different properties such as electrochemical activities, chemical and photochemical stability, non-toxicity, biocompatibility, etc. ZnO-based materials have been used for variety of applications in electronics, opto-electronics, biosensing, bioimaging, drug and gene delivery, implants, antimicrobial and anticancer agents, as well as sensing in environmental applications.
The main aim of this study was to improve efficiency of ZnO particles toward both electrochemical sensing for environmental application and electrocatalysis. To vary electrochemical properties, series of zinc oxide/graphene oxide (ZnO/GO) composites were synthesized by microwave processing of precipitate in the presence of a different amount (0.1 and 0.5 wt.%) of previously prepared GO as well as reduced GO (rGO). The particles crystal structure and phase composition were investigated by X-ray diffraction and Raman spectroscopy. The particles morphology was observed with FE–SEM while the textural properties (BET surface area and pore volume) were determined by low-temperature adsorption-desorption of nitrogen. The optical properties were studied using UV–Vis DRS and PL spectroscopy. The electrochemical sensing activity of ZnO, ZnO/GO and ZnO/rGO electrodes was tested for detection of bisphenol A in water solution while electrocatalytic activity was tested for water splitting when samples were used as anode materials and evaluated by linear sweep voltammetry in several different electrolytes. Differences in electrochemical activity between the composites were correlated with presence of GO, particles morphology and textural properties.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022
T1  - Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide
SP  - 60
EP  - 60
UR  - https://hdl.handle.net/21.15107/rcub_dais_13593
ER  - 
@conference{
author = "Marković, Smilja and Stanković, Ana and Stojković Simatović, Ivana",
year = "2022",
abstract = "Due to their tunable multifunctional properties zinc oxide (ZnO) based materials have attracted extensive scientific and technological attention. Since they combines different properties such as electrochemical activities, chemical and photochemical stability, non-toxicity, biocompatibility, etc. ZnO-based materials have been used for variety of applications in electronics, opto-electronics, biosensing, bioimaging, drug and gene delivery, implants, antimicrobial and anticancer agents, as well as sensing in environmental applications.
The main aim of this study was to improve efficiency of ZnO particles toward both electrochemical sensing for environmental application and electrocatalysis. To vary electrochemical properties, series of zinc oxide/graphene oxide (ZnO/GO) composites were synthesized by microwave processing of precipitate in the presence of a different amount (0.1 and 0.5 wt.%) of previously prepared GO as well as reduced GO (rGO). The particles crystal structure and phase composition were investigated by X-ray diffraction and Raman spectroscopy. The particles morphology was observed with FE–SEM while the textural properties (BET surface area and pore volume) were determined by low-temperature adsorption-desorption of nitrogen. The optical properties were studied using UV–Vis DRS and PL spectroscopy. The electrochemical sensing activity of ZnO, ZnO/GO and ZnO/rGO electrodes was tested for detection of bisphenol A in water solution while electrocatalytic activity was tested for water splitting when samples were used as anode materials and evaluated by linear sweep voltammetry in several different electrolytes. Differences in electrochemical activity between the composites were correlated with presence of GO, particles morphology and textural properties.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022",
title = "Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide",
pages = "60-60",
url = "https://hdl.handle.net/21.15107/rcub_dais_13593"
}
Marković, S., Stanković, A.,& Stojković Simatović, I.. (2022). Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide. in Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022
Belgrade : Materials Research Society of Serbia., 60-60.
https://hdl.handle.net/21.15107/rcub_dais_13593
Marković S, Stanković A, Stojković Simatović I. Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide. in Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022. 2022;:60-60.
https://hdl.handle.net/21.15107/rcub_dais_13593 .
Marković, Smilja, Stanković, Ana, Stojković Simatović, Ivana, "Improvement of electrochemical properties of ZnO nanoparticles via composites with graphene oxide" in Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022 (2022):60-60,
https://hdl.handle.net/21.15107/rcub_dais_13593 .

On the contribution of surface chemistry, structure and interactions in GO/WPA nanocomposites for the electrochemical charge storage applications

Jovanović, Zoran; Mravik, Željko; Pejčić, Milica; Jovanović, Sonja; Vujković, Milica; Marković, Smilja; Bajuk-Bogdanović, Danica

(Belgrade : Materials Research Society of Serbia, 2022)

TY  - CONF
AU  - Jovanović, Zoran
AU  - Mravik, Željko
AU  - Pejčić, Milica
AU  - Jovanović, Sonja
AU  - Vujković, Milica
AU  - Marković, Smilja
AU  - Bajuk-Bogdanović, Danica
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13592
AB  - Gaining a momentum from newly emerging properties of nanomaterials the further enhancement and integration of various functionalities have been made possible. Also, it became apparent that interaction between nano-objects can provide additional synergy capable of yielding new or significantly improved properties. This particularly applies to the surfaces and interfaces of nanomaterials where the intimate contact between components amplifies possible contributions of interfacial interactions. Since this aspect of interaction-property relation in many nanocomposites is still insufficiently explored, it is of interest to identify to what extent the properties emerge as a result of interaction-based synergy. To address these aspects, we have investigated a nano-composite of graphene oxide (GO) and 12-tungstophosporic acid (WPA) – a combination of materials that are known for the rich “portfolio” of properties. We will present results that contribute to better the understanding of interactions between nano-objects. The results are showing how simple temperature treatment and weight ratio of components is influencing the evolution of surface, structural properties and charge storage properties – all closely connected to interactions between components. Finally, the implications on synthetic approaches and fine-tuning of the functionality of GO/WPA nanocomposites will be discussed from the perspective of the obtained results.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022
T1  - On the contribution of surface chemistry, structure and interactions in GO/WPA nanocomposites for the electrochemical charge storage applications
SP  - 61
EP  - 61
UR  - https://hdl.handle.net/21.15107/rcub_dais_13592
ER  - 
@conference{
author = "Jovanović, Zoran and Mravik, Željko and Pejčić, Milica and Jovanović, Sonja and Vujković, Milica and Marković, Smilja and Bajuk-Bogdanović, Danica",
year = "2022",
abstract = "Gaining a momentum from newly emerging properties of nanomaterials the further enhancement and integration of various functionalities have been made possible. Also, it became apparent that interaction between nano-objects can provide additional synergy capable of yielding new or significantly improved properties. This particularly applies to the surfaces and interfaces of nanomaterials where the intimate contact between components amplifies possible contributions of interfacial interactions. Since this aspect of interaction-property relation in many nanocomposites is still insufficiently explored, it is of interest to identify to what extent the properties emerge as a result of interaction-based synergy. To address these aspects, we have investigated a nano-composite of graphene oxide (GO) and 12-tungstophosporic acid (WPA) – a combination of materials that are known for the rich “portfolio” of properties. We will present results that contribute to better the understanding of interactions between nano-objects. The results are showing how simple temperature treatment and weight ratio of components is influencing the evolution of surface, structural properties and charge storage properties – all closely connected to interactions between components. Finally, the implications on synthetic approaches and fine-tuning of the functionality of GO/WPA nanocomposites will be discussed from the perspective of the obtained results.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022",
title = "On the contribution of surface chemistry, structure and interactions in GO/WPA nanocomposites for the electrochemical charge storage applications",
pages = "61-61",
url = "https://hdl.handle.net/21.15107/rcub_dais_13592"
}
Jovanović, Z., Mravik, Ž., Pejčić, M., Jovanović, S., Vujković, M., Marković, S.,& Bajuk-Bogdanović, D.. (2022). On the contribution of surface chemistry, structure and interactions in GO/WPA nanocomposites for the electrochemical charge storage applications. in Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022
Belgrade : Materials Research Society of Serbia., 61-61.
https://hdl.handle.net/21.15107/rcub_dais_13592
Jovanović Z, Mravik Ž, Pejčić M, Jovanović S, Vujković M, Marković S, Bajuk-Bogdanović D. On the contribution of surface chemistry, structure and interactions in GO/WPA nanocomposites for the electrochemical charge storage applications. in Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022. 2022;:61-61.
https://hdl.handle.net/21.15107/rcub_dais_13592 .
Jovanović, Zoran, Mravik, Željko, Pejčić, Milica, Jovanović, Sonja, Vujković, Milica, Marković, Smilja, Bajuk-Bogdanović, Danica, "On the contribution of surface chemistry, structure and interactions in GO/WPA nanocomposites for the electrochemical charge storage applications" in Program and The Book of abstracts / Twenty-third Annual Conference YUCOMAT 2022 & Twelfth World Round Table Conference on Sintering XII WRTCS 2022, Herceg Novi, Montenegro, August 29 - September 2, 2022 (2022):61-61,
https://hdl.handle.net/21.15107/rcub_dais_13592 .

TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution

Stojanović, Srna; Rac, Vladislav; Mojsilović, Kristina; Vasilić, Rastko; Marković, Smilja; Damjanović Vasilić, Ljiljana

(Belgrade : Institute of Technical Sciences of SASA, 2022)

TY  - CONF
AU  - Stojanović, Srna
AU  - Rac, Vladislav
AU  - Mojsilović, Kristina
AU  - Vasilić, Rastko
AU  - Marković, Smilja
AU  - Damjanović Vasilić, Ljiljana
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13500
AB  - Bisphenol A (BPA) is a well-known emerging contaminant that pose a severe threat to
human health due to its negative effect on the body’s endocrine systems. BPA is widely used in the production of polycarbonate plastic and epoxy resins and therefore often detected in different water environments. Since the conventional wastewater treatments for BPA removal haven’t been proven efficient it is important to find a green and efficient method for its complete elimination. Therefore, the aim of this work was to prepare a cost-effective hybrid photocatalyst based on TiO2 nanoparticles and natural zeolite clinoptilolite and study its photocatalytic performance toward BPA. The TiO2/clinoptilolite, containing 20 wt% of TiO2, was prepared using ultrasound assisted solid-state dispersion method and characterized using a multi-technique approach by combining X-ray powder diffraction, FTIR, UV Vis DRS spectroscopy, atomic force microscopy (AFM), BET measurements and laser diffraction. The study showed complete removal of BPA (5 mg/L) after 180 minutes of simulated solar irradiation using 2 g/L of hybrid photocatalyst, at pH = 6.4. The addition of H2O2 led to a faster BPA removal after 120 minutes of irradiation. When BPA removal was tested in bottled drinking water a lower removal of 60 % after 180 minutes of irradiation was observed because of the presence of bicarbonate ions and its scavenger effect toward hydroxyl radicals. The reused photocatalyst showed good photocatalytic activity in repeated cycles (e. i. 70 % of BPA was still successfully removed at the end of the 4th cycle).
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia
T1  - TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution
SP  - 74
EP  - 74
UR  - https://hdl.handle.net/21.15107/rcub_dais_13500
ER  - 
@conference{
author = "Stojanović, Srna and Rac, Vladislav and Mojsilović, Kristina and Vasilić, Rastko and Marković, Smilja and Damjanović Vasilić, Ljiljana",
year = "2022",
abstract = "Bisphenol A (BPA) is a well-known emerging contaminant that pose a severe threat to
human health due to its negative effect on the body’s endocrine systems. BPA is widely used in the production of polycarbonate plastic and epoxy resins and therefore often detected in different water environments. Since the conventional wastewater treatments for BPA removal haven’t been proven efficient it is important to find a green and efficient method for its complete elimination. Therefore, the aim of this work was to prepare a cost-effective hybrid photocatalyst based on TiO2 nanoparticles and natural zeolite clinoptilolite and study its photocatalytic performance toward BPA. The TiO2/clinoptilolite, containing 20 wt% of TiO2, was prepared using ultrasound assisted solid-state dispersion method and characterized using a multi-technique approach by combining X-ray powder diffraction, FTIR, UV Vis DRS spectroscopy, atomic force microscopy (AFM), BET measurements and laser diffraction. The study showed complete removal of BPA (5 mg/L) after 180 minutes of simulated solar irradiation using 2 g/L of hybrid photocatalyst, at pH = 6.4. The addition of H2O2 led to a faster BPA removal after 120 minutes of irradiation. When BPA removal was tested in bottled drinking water a lower removal of 60 % after 180 minutes of irradiation was observed because of the presence of bicarbonate ions and its scavenger effect toward hydroxyl radicals. The reused photocatalyst showed good photocatalytic activity in repeated cycles (e. i. 70 % of BPA was still successfully removed at the end of the 4th cycle).",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia",
title = "TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution",
pages = "74-74",
url = "https://hdl.handle.net/21.15107/rcub_dais_13500"
}
Stojanović, S., Rac, V., Mojsilović, K., Vasilić, R., Marković, S.,& Damjanović Vasilić, L.. (2022). TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution. in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 74-74.
https://hdl.handle.net/21.15107/rcub_dais_13500
Stojanović S, Rac V, Mojsilović K, Vasilić R, Marković S, Damjanović Vasilić L. TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution. in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia. 2022;:74-74.
https://hdl.handle.net/21.15107/rcub_dais_13500 .
Stojanović, Srna, Rac, Vladislav, Mojsilović, Kristina, Vasilić, Rastko, Marković, Smilja, Damjanović Vasilić, Ljiljana, "TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution" in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia (2022):74-74,
https://hdl.handle.net/21.15107/rcub_dais_13500 .

Bioactives preservation of everlasting (Helichrysum plicatum L.) flowers extract by freeze drying method and powder characterisation

Mutavski, Zorana; Ćujić-Nikolić, Nada; Radan, Milica; Bigović, Dubravka; Marković, Smilja; Šavikin, Katarina

(Belgrade : Institute of Technical Sciences of SASA, 2022)

TY  - CONF
AU  - Mutavski, Zorana
AU  - Ćujić-Nikolić, Nada
AU  - Radan, Milica
AU  - Bigović, Dubravka
AU  - Marković, Smilja
AU  - Šavikin, Katarina
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13503
AB  - Everlasting flowers (Helichrysum plicatum L.), traditionally used for gastrointestinal disorders such as abdominal pain, jaundice, and hepatic disorders are a rich source of sensitive polyphenolic compounds whose preservation is of great importance. A critical point in the development of formulations with bioactive phenolic compounds, especially liquid extracts is their limited stability at elevated temperatures, pH variations, exposure to oxygen, light, and moisture. In order to overcome the extract limitations, drying method could be the optimal technique for preservation of bioactive compounds, in order to obtain stable powders with appropriate characteristics. One of the most advanced techniques based on the phenomenon of sublimation is a freeze drying, which enabling the long-term preservation of heat-sensitive compounds. In this study, extract obtained by percolation method was lyophilized by freeze drying method (firstly extract was frozen at -80 oC for 1 h, then freeze- dried at -60 oC with pressure of 0.011 mbar for 24 h, and finally main dried at -60 oC with pressure of 0.0012 mbar, for an additional hour in order to remove the capillary water residues). The obtained freeze-dried extract (FHE) was characterized by drying efficiency, the contents of total polyphenols-TPC and flavonoids-TFC. The most dominant polyphenolic compounds were determined and quantified by HPLC method. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analyzes were also performed. The stability of individual compounds, quantified by the HPLC method, was investigated after 30 days, whereby the sample was exposed to a temperature of 40 °C. Drying efficiency was 94.68%, while TPC and TFC were 113.22 mg gallic acid/g and 28.16 mg catechin/g od FHE, respectively. The most dominant individual compounds were naringenin (22.47 mg/g) and kaempferol (21.47 mg/g) of FHE. The DSC method confirmed the FHE stability, and the SEM analysis confirmed that the extract was successfully encapsulated, without visible deformations. The obtained powder showed excellent stability in terms of the content of the dominant individual compounds, with increasing of their content after 30 days.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia
T1  - Bioactives preservation of everlasting (Helichrysum plicatum L.) flowers extract by freeze drying method and powder characterisation
SP  - 13
EP  - 13
UR  - https://hdl.handle.net/21.15107/rcub_dais_13503
ER  - 
@conference{
author = "Mutavski, Zorana and Ćujić-Nikolić, Nada and Radan, Milica and Bigović, Dubravka and Marković, Smilja and Šavikin, Katarina",
year = "2022",
abstract = "Everlasting flowers (Helichrysum plicatum L.), traditionally used for gastrointestinal disorders such as abdominal pain, jaundice, and hepatic disorders are a rich source of sensitive polyphenolic compounds whose preservation is of great importance. A critical point in the development of formulations with bioactive phenolic compounds, especially liquid extracts is their limited stability at elevated temperatures, pH variations, exposure to oxygen, light, and moisture. In order to overcome the extract limitations, drying method could be the optimal technique for preservation of bioactive compounds, in order to obtain stable powders with appropriate characteristics. One of the most advanced techniques based on the phenomenon of sublimation is a freeze drying, which enabling the long-term preservation of heat-sensitive compounds. In this study, extract obtained by percolation method was lyophilized by freeze drying method (firstly extract was frozen at -80 oC for 1 h, then freeze- dried at -60 oC with pressure of 0.011 mbar for 24 h, and finally main dried at -60 oC with pressure of 0.0012 mbar, for an additional hour in order to remove the capillary water residues). The obtained freeze-dried extract (FHE) was characterized by drying efficiency, the contents of total polyphenols-TPC and flavonoids-TFC. The most dominant polyphenolic compounds were determined and quantified by HPLC method. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) analyzes were also performed. The stability of individual compounds, quantified by the HPLC method, was investigated after 30 days, whereby the sample was exposed to a temperature of 40 °C. Drying efficiency was 94.68%, while TPC and TFC were 113.22 mg gallic acid/g and 28.16 mg catechin/g od FHE, respectively. The most dominant individual compounds were naringenin (22.47 mg/g) and kaempferol (21.47 mg/g) of FHE. The DSC method confirmed the FHE stability, and the SEM analysis confirmed that the extract was successfully encapsulated, without visible deformations. The obtained powder showed excellent stability in terms of the content of the dominant individual compounds, with increasing of their content after 30 days.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia",
title = "Bioactives preservation of everlasting (Helichrysum plicatum L.) flowers extract by freeze drying method and powder characterisation",
pages = "13-13",
url = "https://hdl.handle.net/21.15107/rcub_dais_13503"
}
Mutavski, Z., Ćujić-Nikolić, N., Radan, M., Bigović, D., Marković, S.,& Šavikin, K.. (2022). Bioactives preservation of everlasting (Helichrysum plicatum L.) flowers extract by freeze drying method and powder characterisation. in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 13-13.
https://hdl.handle.net/21.15107/rcub_dais_13503
Mutavski Z, Ćujić-Nikolić N, Radan M, Bigović D, Marković S, Šavikin K. Bioactives preservation of everlasting (Helichrysum plicatum L.) flowers extract by freeze drying method and powder characterisation. in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia. 2022;:13-13.
https://hdl.handle.net/21.15107/rcub_dais_13503 .
Mutavski, Zorana, Ćujić-Nikolić, Nada, Radan, Milica, Bigović, Dubravka, Marković, Smilja, Šavikin, Katarina, "Bioactives preservation of everlasting (Helichrysum plicatum L.) flowers extract by freeze drying method and powder characterisation" in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia (2022):13-13,
https://hdl.handle.net/21.15107/rcub_dais_13503 .

The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes

Pagnacco, Maja; Marković, Smilja; Potočnik, Jelena; Krstić, Vesna; Tančić, Pavle; Mojović, Miloš; Mojović, Zorica

(Elsevier, 2022)

TY  - JOUR
AU  - Pagnacco, Maja
AU  - Marković, Smilja
AU  - Potočnik, Jelena
AU  - Krstić, Vesna
AU  - Tančić, Pavle
AU  - Mojović, Miloš
AU  - Mojović, Zorica
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13493
AB  - Phosphate tungsten bronze (WPB) and phosphate molybdenum bronze (MoPB) were synthesized and modified with rhenium. The existing phases were established by X-ray powder diffraction (XRPD), electron paramagnetic spectroscopy (EPR) and Field emission scanning electron microscopy (FESEM). The electroactivity of bronze samples, with and without rhenium for hydrogen evolution reaction (HER) was tested. The influence of carbon black presence in the catalytic ink on the electrochemical activity was investigated. Collected results provide insight into the effects of the constituents of an electrode on its electrochemical activity.
PB  - Elsevier
T2  - Journal of Electrochemical Society
T1  - The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes
SP  - 106508
VL  - 169
IS  - 10
DO  - 10.1149/1945-7111/ac96ab
UR  - https://hdl.handle.net/21.15107/rcub_dais_13493
ER  - 
@article{
author = "Pagnacco, Maja and Marković, Smilja and Potočnik, Jelena and Krstić, Vesna and Tančić, Pavle and Mojović, Miloš and Mojović, Zorica",
year = "2022",
abstract = "Phosphate tungsten bronze (WPB) and phosphate molybdenum bronze (MoPB) were synthesized and modified with rhenium. The existing phases were established by X-ray powder diffraction (XRPD), electron paramagnetic spectroscopy (EPR) and Field emission scanning electron microscopy (FESEM). The electroactivity of bronze samples, with and without rhenium for hydrogen evolution reaction (HER) was tested. The influence of carbon black presence in the catalytic ink on the electrochemical activity was investigated. Collected results provide insight into the effects of the constituents of an electrode on its electrochemical activity.",
publisher = "Elsevier",
journal = "Journal of Electrochemical Society",
title = "The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes",
pages = "106508",
volume = "169",
number = "10",
doi = "10.1149/1945-7111/ac96ab",
url = "https://hdl.handle.net/21.15107/rcub_dais_13493"
}
Pagnacco, M., Marković, S., Potočnik, J., Krstić, V., Tančić, P., Mojović, M.,& Mojović, Z.. (2022). The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes. in Journal of Electrochemical Society
Elsevier., 169(10), 106508.
https://doi.org/10.1149/1945-7111/ac96ab
https://hdl.handle.net/21.15107/rcub_dais_13493
Pagnacco M, Marković S, Potočnik J, Krstić V, Tančić P, Mojović M, Mojović Z. The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes. in Journal of Electrochemical Society. 2022;169(10):106508.
doi:10.1149/1945-7111/ac96ab
https://hdl.handle.net/21.15107/rcub_dais_13493 .
Pagnacco, Maja, Marković, Smilja, Potočnik, Jelena, Krstić, Vesna, Tančić, Pavle, Mojović, Miloš, Mojović, Zorica, "The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes" in Journal of Electrochemical Society, 169, no. 10 (2022):106508,
https://doi.org/10.1149/1945-7111/ac96ab .,
https://hdl.handle.net/21.15107/rcub_dais_13493 .

Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study

Bosnar, Sanja; Rac, Vladislav; Stošić, Dušan; Travert, Arnaud; Postole, Georgeta; Auroux, Aline; Škapin, Srečo Davor; Damjanović-Vasilić, Ljiljana S.; Bronić, Josip; Du, Xuesen; Marković, Smilja; Pavlović, Vladimir B.; Rakić, Vesna M.

(2021)

TY  - JOUR
AU  - Bosnar, Sanja
AU  - Rac, Vladislav
AU  - Stošić, Dušan
AU  - Travert, Arnaud
AU  - Postole, Georgeta
AU  - Auroux, Aline
AU  - Škapin, Srečo Davor
AU  - Damjanović-Vasilić, Ljiljana S.
AU  - Bronić, Josip
AU  - Du, Xuesen
AU  - Marković, Smilja
AU  - Pavlović, Vladimir B.
AU  - Rakić, Vesna M.
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/13631
AB  - Dual templating approach, using hexadecyltrimethylammonium bromide (CTAB), was employed in an attempt to synthesize hierarchical ZSM-5 zeolite. Amount of mesoporogen and the duration of aging of the precursor were varied. Majority of the synthesis routes resulted in phase separation, yielding separate ZSM-5 and amorphous mesoporous material. The relative amounts of the two phases were dependent on the CTAB amount ratio and also significantly on the duration of precursor aging before CTAB addition. One particular combination of the two factors led to the formation of a homogeneous hierarchical form of ZSM-5 with leafy morphology, consisting of intergrown thin crystalline sheets which formed flower-like structures. The hierarchical ZSM-5 possessed significant microporous (≈95 m2/g) and highly developed mesoporous surface (≈470 m2/g), with a relatively broad distribution of mesopore sizes (<20 nm). The acidity of all samples was studied in detail. Isothermal microcalorimetry/volumetry of ammonia adsorption provided quantitative data on the number and distribution of strength of acidic sites. In situ FTIR of pyridine and collidine adsorption was used to quantify Brønsted and Lewis acid sites, and to provide information on their location - in the micropores or mesopores/external surface. The hierarchical ZSM-5 possessed both Lewis and Brønsted acidity, with Brønsted sites located mainly in the micropores. All samples were fully characterized using XRD, low temperature nitrogen adsorption, FESEM and EDS. The synthetic route used for obtaining the ZSM-5 zeolite with flower-like morphology is a simple strategy for preparing hierarchical ZSM-5 forms targeting enhanced diffusivity and accessibility of catalytically active sites.
T2  - Microporous and Mesoporous Materials
T1  - Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study
SP  - 111534
VL  - 329
DO  - 10.1016/j.micromeso.2021.111534
UR  - https://hdl.handle.net/21.15107/rcub_dais_13631
ER  - 
@article{
author = "Bosnar, Sanja and Rac, Vladislav and Stošić, Dušan and Travert, Arnaud and Postole, Georgeta and Auroux, Aline and Škapin, Srečo Davor and Damjanović-Vasilić, Ljiljana S. and Bronić, Josip and Du, Xuesen and Marković, Smilja and Pavlović, Vladimir B. and Rakić, Vesna M.",
year = "2021",
abstract = "Dual templating approach, using hexadecyltrimethylammonium bromide (CTAB), was employed in an attempt to synthesize hierarchical ZSM-5 zeolite. Amount of mesoporogen and the duration of aging of the precursor were varied. Majority of the synthesis routes resulted in phase separation, yielding separate ZSM-5 and amorphous mesoporous material. The relative amounts of the two phases were dependent on the CTAB amount ratio and also significantly on the duration of precursor aging before CTAB addition. One particular combination of the two factors led to the formation of a homogeneous hierarchical form of ZSM-5 with leafy morphology, consisting of intergrown thin crystalline sheets which formed flower-like structures. The hierarchical ZSM-5 possessed significant microporous (≈95 m2/g) and highly developed mesoporous surface (≈470 m2/g), with a relatively broad distribution of mesopore sizes (<20 nm). The acidity of all samples was studied in detail. Isothermal microcalorimetry/volumetry of ammonia adsorption provided quantitative data on the number and distribution of strength of acidic sites. In situ FTIR of pyridine and collidine adsorption was used to quantify Brønsted and Lewis acid sites, and to provide information on their location - in the micropores or mesopores/external surface. The hierarchical ZSM-5 possessed both Lewis and Brønsted acidity, with Brønsted sites located mainly in the micropores. All samples were fully characterized using XRD, low temperature nitrogen adsorption, FESEM and EDS. The synthetic route used for obtaining the ZSM-5 zeolite with flower-like morphology is a simple strategy for preparing hierarchical ZSM-5 forms targeting enhanced diffusivity and accessibility of catalytically active sites.",
journal = "Microporous and Mesoporous Materials",
title = "Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study",
pages = "111534",
volume = "329",
doi = "10.1016/j.micromeso.2021.111534",
url = "https://hdl.handle.net/21.15107/rcub_dais_13631"
}
Bosnar, S., Rac, V., Stošić, D., Travert, A., Postole, G., Auroux, A., Škapin, S. D., Damjanović-Vasilić, L. S., Bronić, J., Du, X., Marković, S., Pavlović, V. B.,& Rakić, V. M.. (2021). Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study. in Microporous and Mesoporous Materials, 329, 111534.
https://doi.org/10.1016/j.micromeso.2021.111534
https://hdl.handle.net/21.15107/rcub_dais_13631
Bosnar S, Rac V, Stošić D, Travert A, Postole G, Auroux A, Škapin SD, Damjanović-Vasilić LS, Bronić J, Du X, Marković S, Pavlović VB, Rakić VM. Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study. in Microporous and Mesoporous Materials. 2021;329:111534.
doi:10.1016/j.micromeso.2021.111534
https://hdl.handle.net/21.15107/rcub_dais_13631 .
Bosnar, Sanja, Rac, Vladislav, Stošić, Dušan, Travert, Arnaud, Postole, Georgeta, Auroux, Aline, Škapin, Srečo Davor, Damjanović-Vasilić, Ljiljana S., Bronić, Josip, Du, Xuesen, Marković, Smilja, Pavlović, Vladimir B., Rakić, Vesna M., "Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study" in Microporous and Mesoporous Materials, 329 (2021):111534,
https://doi.org/10.1016/j.micromeso.2021.111534 .,
https://hdl.handle.net/21.15107/rcub_dais_13631 .
7
1
6

Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity

Stanković, Ana; Veselinović, Ljiljana; Škapin, Srečo Davor; Marković, Smilja

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Škapin, Srečo Davor
AU  - Marković, Smilja
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11911
AB  - It is known that the functional properties of zinc oxide (ZnO) materials depend on their physico-chemical properties, such as optical properties and specific surface area. They are defined with structural characteristics, for example: the particle size and morphology, phase composition, crystallite size, crystallinity degree, as well as the crystal structure ordering, i.e., the presence of structural defects. The primary purpose of this study was to synthesize ZnO powders with various physico-chemical properties by optimizing the reaction conditions in different processing methods. For example, reaction temperature or addition of various surfactants such as polyvinyl alcohol, polyvinyl pyrrolidone, or polyethylene oxide. In this study, to vary physico-chemical properties of ZnO particles, four different synthesis methods were employed: mechanochemical, hydrothermal, ultrasonic and microwave processing. Structural and morphological properties of prepared ZnO powders were characterized using a number of techniques such as: X-ray powder diffraction (XRPD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance and photoluminescence (PL) spectroscopy. One of the functional properties of the synthesized ZnO powders that was particularly examined is photocatalytic activity. In order to examine ZnO as a photocatalyst, photodegradation of methylene blue (MB) dye was carried out under simulated and direct sunlight irradiation. The UV–Vis spectra showed that the modification of the particle size and morphology from nanospheres to micro-rods resulted in increased absorption, and a slight red-shift of the absorption edge. Besides, the band gap energy of the synthesized ZnO micro and nanocrystals showed the red shift compared to bulk ZnO. According to the results of a Raman spectroscopy, the enhanced visible light absorption of the ZnO micro and nanocrystals is related to two phenomena: the existence of lattice defects (oxygen vacancies and zinc interstitials), and the particle surface sensitization by different surfactants.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity
SP  - 36
EP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_dais_11911
ER  - 
@conference{
author = "Stanković, Ana and Veselinović, Ljiljana and Škapin, Srečo Davor and Marković, Smilja",
year = "2021",
abstract = "It is known that the functional properties of zinc oxide (ZnO) materials depend on their physico-chemical properties, such as optical properties and specific surface area. They are defined with structural characteristics, for example: the particle size and morphology, phase composition, crystallite size, crystallinity degree, as well as the crystal structure ordering, i.e., the presence of structural defects. The primary purpose of this study was to synthesize ZnO powders with various physico-chemical properties by optimizing the reaction conditions in different processing methods. For example, reaction temperature or addition of various surfactants such as polyvinyl alcohol, polyvinyl pyrrolidone, or polyethylene oxide. In this study, to vary physico-chemical properties of ZnO particles, four different synthesis methods were employed: mechanochemical, hydrothermal, ultrasonic and microwave processing. Structural and morphological properties of prepared ZnO powders were characterized using a number of techniques such as: X-ray powder diffraction (XRPD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance and photoluminescence (PL) spectroscopy. One of the functional properties of the synthesized ZnO powders that was particularly examined is photocatalytic activity. In order to examine ZnO as a photocatalyst, photodegradation of methylene blue (MB) dye was carried out under simulated and direct sunlight irradiation. The UV–Vis spectra showed that the modification of the particle size and morphology from nanospheres to micro-rods resulted in increased absorption, and a slight red-shift of the absorption edge. Besides, the band gap energy of the synthesized ZnO micro and nanocrystals showed the red shift compared to bulk ZnO. According to the results of a Raman spectroscopy, the enhanced visible light absorption of the ZnO micro and nanocrystals is related to two phenomena: the existence of lattice defects (oxygen vacancies and zinc interstitials), and the particle surface sensitization by different surfactants.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity",
pages = "36-36",
url = "https://hdl.handle.net/21.15107/rcub_dais_11911"
}
Stanković, A., Veselinović, L., Škapin, S. D.,& Marković, S.. (2021). Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 36-36.
https://hdl.handle.net/21.15107/rcub_dais_11911
Stanković A, Veselinović L, Škapin SD, Marković S. Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:36-36.
https://hdl.handle.net/21.15107/rcub_dais_11911 .
Stanković, Ana, Veselinović, Ljiljana, Škapin, Srečo Davor, Marković, Smilja, "Synthesis and characterization of ZnO nano/micro crystals with enhanced sunlight-induced photo-catalytic activity" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):36-36,
https://hdl.handle.net/21.15107/rcub_dais_11911 .

Sonochemical synthesis of optically active fluorides

Vuković, Marina; Dinić, Ivana; Jardim, Paula M.; Marković, Smilja; Veselinović, Ljiljana; Nikolić, Marko G.; Mančić, Lidija

(Belgrade : Institute of Technical Sciences of SASA, 2021)

TY  - CONF
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Jardim, Paula M.
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Nikolić, Marko G.
AU  - Mančić, Lidija
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11915
AB  - Up-conversion is the optical property of materials which have ability to convert low energy photons (usually from infrared spectrum) into higher energy photons (from visible spectrum). Such compounds, usually lanthanide doped oxides or fluorides, have many applications in photoluminescence science and technology today. Currently, (β) NaYF4:Yb,Er polymorph is considered to be the most efficient up-converting material. Its synthesis usually includes the usage of toxic solvents, long-term heating, high pressures, controlled gas atmosphere, etc. The aim of this work was to utilize rarely applied sonochemical synthesis for the stabilization of (β) NaYF4:Yb,Er phase under mild and environmental friendly conditions. For this purpose, we performed ultrasonic treatment of common nitrate precursors and sodium fluorine for a different time. The obtained powders were analyzed in order to determine their phase composition and thermal stability, morphology, dopants distribution, particles surface purity and luminescent characteristics. Owing to this, the chemical and crystal phase transformations that occurred  in specified periods of synthesis time are explained in detail. Moreover, it was shown that obtaining of uniformly doped (β) NaYF4:Yb,Er mosocrystalline particles is possible after 2h of sonication.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Sonochemical synthesis of optically active fluorides
SP  - 33
EP  - 33
UR  - https://hdl.handle.net/21.15107/rcub_dais_11915
ER  - 
@conference{
author = "Vuković, Marina and Dinić, Ivana and Jardim, Paula M. and Marković, Smilja and Veselinović, Ljiljana and Nikolić, Marko G. and Mančić, Lidija",
year = "2021",
abstract = "Up-conversion is the optical property of materials which have ability to convert low energy photons (usually from infrared spectrum) into higher energy photons (from visible spectrum). Such compounds, usually lanthanide doped oxides or fluorides, have many applications in photoluminescence science and technology today. Currently, (β) NaYF4:Yb,Er polymorph is considered to be the most efficient up-converting material. Its synthesis usually includes the usage of toxic solvents, long-term heating, high pressures, controlled gas atmosphere, etc. The aim of this work was to utilize rarely applied sonochemical synthesis for the stabilization of (β) NaYF4:Yb,Er phase under mild and environmental friendly conditions. For this purpose, we performed ultrasonic treatment of common nitrate precursors and sodium fluorine for a different time. The obtained powders were analyzed in order to determine their phase composition and thermal stability, morphology, dopants distribution, particles surface purity and luminescent characteristics. Owing to this, the chemical and crystal phase transformations that occurred  in specified periods of synthesis time are explained in detail. Moreover, it was shown that obtaining of uniformly doped (β) NaYF4:Yb,Er mosocrystalline particles is possible after 2h of sonication.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Sonochemical synthesis of optically active fluorides",
pages = "33-33",
url = "https://hdl.handle.net/21.15107/rcub_dais_11915"
}
Vuković, M., Dinić, I., Jardim, P. M., Marković, S., Veselinović, L., Nikolić, M. G.,& Mančić, L.. (2021). Sonochemical synthesis of optically active fluorides. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Institute of Technical Sciences of SASA., 33-33.
https://hdl.handle.net/21.15107/rcub_dais_11915
Vuković M, Dinić I, Jardim PM, Marković S, Veselinović L, Nikolić MG, Mančić L. Sonochemical synthesis of optically active fluorides. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:33-33.
https://hdl.handle.net/21.15107/rcub_dais_11915 .
Vuković, Marina, Dinić, Ivana, Jardim, Paula M., Marković, Smilja, Veselinović, Ljiljana, Nikolić, Marko G., Mančić, Lidija, "Sonochemical synthesis of optically active fluorides" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):33-33,
https://hdl.handle.net/21.15107/rcub_dais_11915 .