Mihajilov Krstev, Tatjana

Link to this page

Authority KeyName Variants
1bc5a9c0-f665-4792-8820-602ccf4ffce0
  • Mihajilov Krstev, Tatjana (4)
Projects

Author's Bibliography

Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues

Ignjatović, Nenad; Wu, Victoria; Ajduković, Zorica; Mihajilov Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

(2016)

TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Wu, Victoria
AU  - Ajduković, Zorica
AU  - Mihajilov Krstev, Tatjana
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
AB  - Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.
T2  - Materials science & engineering. C, Materials for biological applications
T1  - Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues
SP  - 357
EP  - 364
VL  - 60
DO  - 10.1016/j.msec.2015.11.061
ER  - 
@article{
author = "Ignjatović, Nenad and Wu, Victoria and Ajduković, Zorica and Mihajilov Krstev, Tatjana and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.",
journal = "Materials science & engineering. C, Materials for biological applications",
title = "Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues",
pages = "357-364",
volume = "60",
doi = "10.1016/j.msec.2015.11.061"
}
Ignjatović, N., Wu, V., Ajduković, Z., Mihajilov Krstev, T., Uskoković, V.,& Uskoković, D. (2016). Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues.
Materials science & engineering. C, Materials for biological applications, 60, 357-364.
https://doi.org/10.1016/j.msec.2015.11.061
Ignjatović N, Wu V, Ajduković Z, Mihajilov Krstev T, Uskoković V, Uskoković D. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Materials science & engineering. C, Materials for biological applications. 2016;60:357-364.
doi:10.1016/j.msec.2015.11.061.
Ignjatović Nenad, Wu Victoria, Ajduković Zorica, Mihajilov Krstev Tatjana, Uskoković Vuk, Uskoković Dragan, "Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues" Materials science & engineering. C, Materials for biological applications, 60 (2016):357-364,
https://doi.org/10.1016/j.msec.2015.11.061 .
57
49
53

Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues

Ignjatović, Nenad; Wu, Victoria; Ajduković, Zorica; Mihajilov Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

(Elsevier, 2016)

TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Wu, Victoria
AU  - Ajduković, Zorica
AU  - Mihajilov Krstev, Tatjana
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2016
AB  - Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.
PB  - Elsevier
T2  - Materials Science and Engineering C
T1  - Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues
SP  - 357
EP  - 364
VL  - 60
DO  - 10.1016/j.msec.2015.11.061
ER  - 
@article{
author = "Ignjatović, Nenad and Wu, Victoria and Ajduković, Zorica and Mihajilov Krstev, Tatjana and Uskoković, Vuk and Uskoković, Dragan",
year = "2016",
abstract = "Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.",
publisher = "Elsevier",
journal = "Materials Science and Engineering C",
title = "Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues",
pages = "357-364",
volume = "60",
doi = "10.1016/j.msec.2015.11.061"
}
Ignjatović, N., Wu, V., Ajduković, Z., Mihajilov Krstev, T., Uskoković, V.,& Uskoković, D. (2016). Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues.
Materials Science and Engineering C
Elsevier., 60, 357-364.
https://doi.org/10.1016/j.msec.2015.11.061
Ignjatović N, Wu V, Ajduković Z, Mihajilov Krstev T, Uskoković V, Uskoković D. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Materials Science and Engineering C. 2016;60:357-364.
doi:10.1016/j.msec.2015.11.061.
Ignjatović Nenad, Wu Victoria, Ajduković Zorica, Mihajilov Krstev Tatjana, Uskoković Vuk, Uskoković Dragan, "Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues" Materials Science and Engineering C, 60 (2016):357-364,
https://doi.org/10.1016/j.msec.2015.11.061 .
57
49
53

In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties

Ajduković, Zorica; Mihajilov Krstev, Tatjana; Ignjatović, Nenad; Stojanović, Zoran S.; Mladenović Antić, Snežana; Kocić, Branislava; Najman, Stevo; Petrović, Nenad D.; Uskoković, Dragan

(American Scientific Publishers, 2016)

TY  - JOUR
AU  - Ajduković, Zorica
AU  - Mihajilov Krstev, Tatjana
AU  - Ignjatović, Nenad
AU  - Stojanović, Zoran S.
AU  - Mladenović Antić, Snežana
AU  - Kocić, Branislava
AU  - Najman, Stevo
AU  - Petrović, Nenad D.
AU  - Uskoković, Dragan
PY  - 2016
AB  - In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.
PB  - American Scientific Publishers
T2  - Journal of Nanoscience and Nanotechnology
T1  - In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties
SP  - 1420
EP  - 1428
VL  - 16
IS  - 2
DO  - 10.1166/jnn.2016.10699
ER  - 
@article{
author = "Ajduković, Zorica and Mihajilov Krstev, Tatjana and Ignjatović, Nenad and Stojanović, Zoran S. and Mladenović Antić, Snežana and Kocić, Branislava and Najman, Stevo and Petrović, Nenad D. and Uskoković, Dragan",
year = "2016",
abstract = "In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.",
publisher = "American Scientific Publishers",
journal = "Journal of Nanoscience and Nanotechnology",
title = "In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties",
pages = "1420-1428",
volume = "16",
number = "2",
doi = "10.1166/jnn.2016.10699"
}
Ajduković, Z., Mihajilov Krstev, T., Ignjatović, N., Stojanović, Z. S., Mladenović Antić, S., Kocić, B., Najman, S., Petrović, N. D.,& Uskoković, D. (2016). In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.
Journal of Nanoscience and Nanotechnology
American Scientific Publishers., 16(2), 1420-1428.
https://doi.org/10.1166/jnn.2016.10699
Ajduković Z, Mihajilov Krstev T, Ignjatović N, Stojanović ZS, Mladenović Antić S, Kocić B, Najman S, Petrović ND, Uskoković D. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties. Journal of Nanoscience and Nanotechnology. 2016;16(2):1420-1428.
doi:10.1166/jnn.2016.10699.
Ajduković Zorica, Mihajilov Krstev Tatjana, Ignjatović Nenad, Stojanović Zoran S., Mladenović Antić Snežana, Kocić Branislava, Najman Stevo, Petrović Nenad D., Uskoković Dragan, "In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties" Journal of Nanoscience and Nanotechnology, 16, no. 2 (2016):1420-1428,
https://doi.org/10.1166/jnn.2016.10699 .
3
3
4

Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties

Ignjatović, Nenad; Uskoković, Vuk; Ajduković, Zorica; Mihajilov Krstev, Tatjana; Uskoković, Dragan

(2015)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Uskoković, Vuk
AU  - Ajduković, Zorica
AU  - Mihajilov Krstev, Tatjana
AU  - Uskoković, Dragan
PY  - 2015
AB  - Composite biomaterials based on nano-hydroxyapatite have an enormous potential for natural bone tissue reparation, filling and augmentation. Multifunctional nanoparticulate systems based on HAp coated with biocompatible and bioresorbable polymers make a separate group of filler systems in bone tissue engineering [1,2]. Chitosan has many physicochemical (reactive OH and NH2 groups) and biological (biocompatible, biodegradable) properties that make it an attractive material for use in bone tissue engineering. However, chitosan may induce thrombosis and it is therefore unsuitable as blood – contacting biomaterial. One of the strategies to improve the biocompatibility of chitosan is combination of this biopolymer with compounds that exhibit complementary properties. 
In our studies, we present the synthesis, characterization, in vitro and in vivo research of a particulate form of nano HAp-coated polymer systems. We synthesized nanoparticulate HAp coated with chitosan (Ch) and a chitosan-poly-D,L-lactide-co-glycolide (Ch-PLGA) polymer blend obtained via the solvent/non-solvent method and freeze-drying processing. We also examined the possibility of using Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a finger print for identification purposes in coating processes. The quantitative antimicrobial test has shown that HAp/Ch-PLGA have some antibacterial properties (MIC (mg/mL): Pseudomonas aeruginosa – 6.40, Staphylococcus aureus – 6.40, Staphylococcus epidermidis – 3.20). MTT assay was used to test cytotoxicity and cell viability. By using HAp/Ch-PLGA in the form of a filler a high level of reparatory ability, with the presence Haversian canals and cement lines in reconstructed of bone defect, was achieved in vivo. 

[1] N. Ignjatovic, C. Liu, J. Czernuszka, D. Uskokovic, Micro and nano/injectable composite biomaterials containing calcium phosphate coated with poly(dl-lactide-co-glycolide), Acta Biomaterialia, 3 (2007) 927-935 
[2] N. Ignjatović, V. Uskoković, Z. Ajduković, D. Uskoković, Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol, Materials Science and Engineering: C 33 (2013) 943–950
C3  - ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts
T1  - Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties
SP  - 15
EP  - 16
ER  - 
@conference{
author = "Ignjatović, Nenad and Uskoković, Vuk and Ajduković, Zorica and Mihajilov Krstev, Tatjana and Uskoković, Dragan",
year = "2015",
abstract = "Composite biomaterials based on nano-hydroxyapatite have an enormous potential for natural bone tissue reparation, filling and augmentation. Multifunctional nanoparticulate systems based on HAp coated with biocompatible and bioresorbable polymers make a separate group of filler systems in bone tissue engineering [1,2]. Chitosan has many physicochemical (reactive OH and NH2 groups) and biological (biocompatible, biodegradable) properties that make it an attractive material for use in bone tissue engineering. However, chitosan may induce thrombosis and it is therefore unsuitable as blood – contacting biomaterial. One of the strategies to improve the biocompatibility of chitosan is combination of this biopolymer with compounds that exhibit complementary properties. 
In our studies, we present the synthesis, characterization, in vitro and in vivo research of a particulate form of nano HAp-coated polymer systems. We synthesized nanoparticulate HAp coated with chitosan (Ch) and a chitosan-poly-D,L-lactide-co-glycolide (Ch-PLGA) polymer blend obtained via the solvent/non-solvent method and freeze-drying processing. We also examined the possibility of using Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a finger print for identification purposes in coating processes. The quantitative antimicrobial test has shown that HAp/Ch-PLGA have some antibacterial properties (MIC (mg/mL): Pseudomonas aeruginosa – 6.40, Staphylococcus aureus – 6.40, Staphylococcus epidermidis – 3.20). MTT assay was used to test cytotoxicity and cell viability. By using HAp/Ch-PLGA in the form of a filler a high level of reparatory ability, with the presence Haversian canals and cement lines in reconstructed of bone defect, was achieved in vivo. 

[1] N. Ignjatovic, C. Liu, J. Czernuszka, D. Uskokovic, Micro and nano/injectable composite biomaterials containing calcium phosphate coated with poly(dl-lactide-co-glycolide), Acta Biomaterialia, 3 (2007) 927-935 
[2] N. Ignjatović, V. Uskoković, Z. Ajduković, D. Uskoković, Multifunctional hydroxyapatite and poly(D,L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol, Materials Science and Engineering: C 33 (2013) 943–950",
journal = "ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts",
title = "Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties",
pages = "15-16"
}
Ignjatović, N., Uskoković, V., Ajduković, Z., Mihajilov Krstev, T.,& Uskoković, D. (2015). Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties.
ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts, 15-16.
Ignjatović N, Uskoković V, Ajduković Z, Mihajilov Krstev T, Uskoković D. Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties. ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts. 2015;:15-16.
Ignjatović Nenad, Uskoković Vuk, Ajduković Zorica, Mihajilov Krstev Tatjana, Uskoković Dragan, "Rapid bone regeneration with nano-hydroxyapatite coated with a chitosan-poly (D, L)-lactide-co-glycolide bone-filling material with osteocondactive and antimicrobial properties" ITNANO2015: 3RD International Translational Nanomedicine Conference  21-26. June. 2015, Milocer, Hotel Maestral, Montenegro: Book of abstracts (2015):15-16