Mojović, Miloš

Link to this page

Authority KeyName Variants
orcid::0000-0002-1868-9913
  • Mojović, Miloš (5)

Author's Bibliography

The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes

Pagnacco, Maja; Marković, Smilja; Potočnik, Jelena; Krstić, Vesna; Tančić, Pavle; Mojović, Miloš; Mojović, Zorica

(Elsevier, 2022)

TY  - JOUR
AU  - Pagnacco, Maja
AU  - Marković, Smilja
AU  - Potočnik, Jelena
AU  - Krstić, Vesna
AU  - Tančić, Pavle
AU  - Mojović, Miloš
AU  - Mojović, Zorica
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13493
AB  - Phosphate tungsten bronze (WPB) and phosphate molybdenum bronze (MoPB) were synthesized and modified with rhenium. The existing phases were established by X-ray powder diffraction (XRPD), electron paramagnetic spectroscopy (EPR) and Field emission scanning electron microscopy (FESEM). The electroactivity of bronze samples, with and without rhenium for hydrogen evolution reaction (HER) was tested. The influence of carbon black presence in the catalytic ink on the electrochemical activity was investigated. Collected results provide insight into the effects of the constituents of an electrode on its electrochemical activity.
PB  - Elsevier
T2  - Journal of Electrochemical Society
T1  - The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes
SP  - 106508
VL  - 169
IS  - 10
DO  - 10.1149/1945-7111/ac96ab
UR  - https://hdl.handle.net/21.15107/rcub_dais_13493
ER  - 
@article{
author = "Pagnacco, Maja and Marković, Smilja and Potočnik, Jelena and Krstić, Vesna and Tančić, Pavle and Mojović, Miloš and Mojović, Zorica",
year = "2022",
abstract = "Phosphate tungsten bronze (WPB) and phosphate molybdenum bronze (MoPB) were synthesized and modified with rhenium. The existing phases were established by X-ray powder diffraction (XRPD), electron paramagnetic spectroscopy (EPR) and Field emission scanning electron microscopy (FESEM). The electroactivity of bronze samples, with and without rhenium for hydrogen evolution reaction (HER) was tested. The influence of carbon black presence in the catalytic ink on the electrochemical activity was investigated. Collected results provide insight into the effects of the constituents of an electrode on its electrochemical activity.",
publisher = "Elsevier",
journal = "Journal of Electrochemical Society",
title = "The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes",
pages = "106508",
volume = "169",
number = "10",
doi = "10.1149/1945-7111/ac96ab",
url = "https://hdl.handle.net/21.15107/rcub_dais_13493"
}
Pagnacco, M., Marković, S., Potočnik, J., Krstić, V., Tančić, P., Mojović, M.,& Mojović, Z.. (2022). The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes. in Journal of Electrochemical Society
Elsevier., 169(10), 106508.
https://doi.org/10.1149/1945-7111/ac96ab
https://hdl.handle.net/21.15107/rcub_dais_13493
Pagnacco M, Marković S, Potočnik J, Krstić V, Tančić P, Mojović M, Mojović Z. The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes. in Journal of Electrochemical Society. 2022;169(10):106508.
doi:10.1149/1945-7111/ac96ab
https://hdl.handle.net/21.15107/rcub_dais_13493 .
Pagnacco, Maja, Marković, Smilja, Potočnik, Jelena, Krstić, Vesna, Tančić, Pavle, Mojović, Miloš, Mojović, Zorica, "The Influence of Electrode Constituents on Hydrogen Evolution Reaction on Phosphate W- and Mo-Bronze-Based Electrodes" in Journal of Electrochemical Society, 169, no. 10 (2022):106508,
https://doi.org/10.1149/1945-7111/ac96ab .,
https://hdl.handle.net/21.15107/rcub_dais_13493 .
1
1

Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Marković, Smilja

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d
UR  - https://dais.sanu.ac.rs/123456789/9543
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry
SP  - 22078
EP  - 22095
VL  - 22
IS  - 38
DO  - 10.1039/D0CP03377D
UR  - https://hdl.handle.net/21.15107/rcub_dais_9543
ER  - 
@article{
author = "Rajić, Vladimir and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Marković, Smilja",
year = "2020",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22078-22095",
volume = "22",
number = "38",
doi = "10.1039/D0CP03377D",
url = "https://hdl.handle.net/21.15107/rcub_dais_9543"
}
Rajić, V., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković Častvan, I.,& Marković, S.. (2020). Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(38), 22078-22095.
https://doi.org/10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9543
Rajić V, Stojković Simatović I, Veselinović L, Belošević Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković Častvan I, Marković S. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics. 2020;22(38):22078-22095.
doi:10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9543 .
Rajić, Vladimir, Stojković Simatović, Ivana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Novaković, Mirjana, Popović, Maja, Škapin, Srečo Davor, Mojović, Miloš, Stojadinović, Stevan, Rac, Vladislav, Janković Častvan, Ivona, Marković, Smilja, "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry" in Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/D0CP03377D .,
https://hdl.handle.net/21.15107/rcub_dais_9543 .
11
3
10

Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Marković, Smilja

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d
UR  - https://dais.sanu.ac.rs/123456789/9544
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry
SP  - 22078
EP  - 22095
VL  - 22
IS  - 38
DO  - 10.1039/D0CP03377D
UR  - https://hdl.handle.net/21.15107/rcub_dais_9544
ER  - 
@article{
author = "Rajić, Vladimir and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Marković, Smilja",
year = "2020",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22078-22095",
volume = "22",
number = "38",
doi = "10.1039/D0CP03377D",
url = "https://hdl.handle.net/21.15107/rcub_dais_9544"
}
Rajić, V., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković Častvan, I.,& Marković, S.. (2020). Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(38), 22078-22095.
https://doi.org/10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9544
Rajić V, Stojković Simatović I, Veselinović L, Belošević Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković Častvan I, Marković S. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics. 2020;22(38):22078-22095.
doi:10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9544 .
Rajić, Vladimir, Stojković Simatović, Ivana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Novaković, Mirjana, Popović, Maja, Škapin, Srečo Davor, Mojović, Miloš, Stojadinović, Stevan, Rac, Vladislav, Janković Častvan, Ivona, Marković, Smilja, "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry" in Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/D0CP03377D .,
https://hdl.handle.net/21.15107/rcub_dais_9544 .
11
3
10

Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics

Marković, Smilja; Rajić, Vladimir B.; Veselinović, Ljiljana; Belošević Čavor, Jelena; Škapin, Srečo Davor; Stojadinović, Stevan; Rac, Vladislav; Lević, Steva; Mojović, Miloš; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2016)

TY  - CONF
AU  - Marković, Smilja
AU  - Rajić, Vladimir B.
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Škapin, Srečo Davor
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Lević, Steva
AU  - Mojović, Miloš
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/902
AB  - Zinc oxide is one of the most studied materials due to its wide bandgap (3.37 eV) and large exciton binding energy (60 meV) which enables application in electronics, optoelectronics and spintronics. In the forms of single crystal and thin-film ZnO are used as UV and blue light emitter, while sintered ZnO-based ceramics are important as varistors, thermistors or semiconductors. It has been found that point defects in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Neutral oxygen vacancies are considered to be a major component of the defect structure of ZnO. Thus, correlation of the oxygen vacancies concentration with band gap energy of ZnO product is important to its application in optoelectronic devices. In this study we investigated the influence of point defects concentration in ZnO crystal structure on its optical and photocatalytic properties. We analyzed ZnO powders prepared by different techniques: (a) microwave processing of precipitate and (b) hydrothermal processing, which yield different ordered crystal structure. To increase a concentration of the point defects in the crystal structure, the powders were sintered in air atmosphere by heating rate of 10 °/min up to 1100 °C, with dwell time of 1 h. The crystal structure, average crystallite size and phase purity of the ZnO ceramics were determined by X-ray diffraction and Raman spectroscopy. The optical properties, in particular, absorption capacity and bang gap energy, were studied using UV–Vis diffuse reflectance spectroscopy. To reveal the role of microstructures and point defects in ZnO crystal lattice, which are receptive for luminescence and photocatalytic activity of this functional oxide, photoluminescence (PL), photoluminescence excitation (PLE) and EPR spectra were analyzed. The influence of point defects concentration in the ZnO crystal structure on photocatalytic properties was examined via decolorization of methylene blue under direct sunlight irradiation. Correlation between amount of the point defects, absorption capacity and photocatalytic efficiency were established. In order to clarify the experimental results ab initio calculations based on density functional theory (DFT) were performed.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
T1  - Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics
SP  - 34
EP  - 34
UR  - https://hdl.handle.net/21.15107/rcub_dais_902
ER  - 
@conference{
author = "Marković, Smilja and Rajić, Vladimir B. and Veselinović, Ljiljana and Belošević Čavor, Jelena and Škapin, Srečo Davor and Stojadinović, Stevan and Rac, Vladislav and Lević, Steva and Mojović, Miloš and Uskoković, Dragan",
year = "2016",
abstract = "Zinc oxide is one of the most studied materials due to its wide bandgap (3.37 eV) and large exciton binding energy (60 meV) which enables application in electronics, optoelectronics and spintronics. In the forms of single crystal and thin-film ZnO are used as UV and blue light emitter, while sintered ZnO-based ceramics are important as varistors, thermistors or semiconductors. It has been found that point defects in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Neutral oxygen vacancies are considered to be a major component of the defect structure of ZnO. Thus, correlation of the oxygen vacancies concentration with band gap energy of ZnO product is important to its application in optoelectronic devices. In this study we investigated the influence of point defects concentration in ZnO crystal structure on its optical and photocatalytic properties. We analyzed ZnO powders prepared by different techniques: (a) microwave processing of precipitate and (b) hydrothermal processing, which yield different ordered crystal structure. To increase a concentration of the point defects in the crystal structure, the powders were sintered in air atmosphere by heating rate of 10 °/min up to 1100 °C, with dwell time of 1 h. The crystal structure, average crystallite size and phase purity of the ZnO ceramics were determined by X-ray diffraction and Raman spectroscopy. The optical properties, in particular, absorption capacity and bang gap energy, were studied using UV–Vis diffuse reflectance spectroscopy. To reveal the role of microstructures and point defects in ZnO crystal lattice, which are receptive for luminescence and photocatalytic activity of this functional oxide, photoluminescence (PL), photoluminescence excitation (PLE) and EPR spectra were analyzed. The influence of point defects concentration in the ZnO crystal structure on photocatalytic properties was examined via decolorization of methylene blue under direct sunlight irradiation. Correlation between amount of the point defects, absorption capacity and photocatalytic efficiency were established. In order to clarify the experimental results ab initio calculations based on density functional theory (DFT) were performed.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016",
title = "Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics",
pages = "34-34",
url = "https://hdl.handle.net/21.15107/rcub_dais_902"
}
Marković, S., Rajić, V. B., Veselinović, L., Belošević Čavor, J., Škapin, S. D., Stojadinović, S., Rac, V., Lević, S., Mojović, M.,& Uskoković, D.. (2016). Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
Belgrade : Materials Research Society of Serbia., 34-34.
https://hdl.handle.net/21.15107/rcub_dais_902
Marković S, Rajić VB, Veselinović L, Belošević Čavor J, Škapin SD, Stojadinović S, Rac V, Lević S, Mojović M, Uskoković D. Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016. 2016;:34-34.
https://hdl.handle.net/21.15107/rcub_dais_902 .
Marković, Smilja, Rajić, Vladimir B., Veselinović, Ljiljana, Belošević Čavor, Jelena, Škapin, Srečo Davor, Stojadinović, Stevan, Rac, Vladislav, Lević, Steva, Mojović, Miloš, Uskoković, Dragan, "Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics" in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016 (2016):34-34,
https://hdl.handle.net/21.15107/rcub_dais_902 .

Applicability of neural networks in the estimation of brain iron content in the diagnosis of amyotrophic lateral sclerosis

Milović, Miloš; Mojović, Miloš; Ignjatović, Aleksandar

(Belgrade : Institute of Technical Sciences of SASA, 2011)

TY  - CONF
AU  - Milović, Miloš
AU  - Mojović, Miloš
AU  - Ignjatović, Aleksandar
PY  - 2011
UR  - https://dais.sanu.ac.rs/123456789/697
AB  - Artificial Neural Networks, or simply ANN, are mathematical/computational model that are inspired by structure and functional aspects of biological neural networks. ANN, like man, learns by example. In the process of network training, network is supplied with set of data which represents examples of network’s proper behaviour. In the research we have done, neural network is created with the task to estimate the iron content in the brain of the Amyotrophic Lateral Sclerosis (ALS) patients. Network is created and trained using Neural Pattern Recognition Tool within the software package Matlab v7.10.0.499 (R2010a). Network is trained with set of data obtained from group of 50 ALS patients. Training set contains: (i) MRI signal of brain iron, (ii) EPR signal of hydroxyl radical from cerebrospinal fluid and (iii) score on ALS Functional Rating Scale (ALSFRS) for each patient individually. The results indicate that neural networks can be successfully used to predict the high content of iron in the brain, which in the perspective opens up the possibility of using this computer model as a standard tool in the diagnosis of ALS.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Tenth Young Researchers' Conference Materials Science and Engineering, December 21-23, 2011, Belgrade, Serbia
T1  - Applicability of neural networks in the estimation of brain iron content in the diagnosis of amyotrophic lateral sclerosis
SP  - 10
EP  - 10
UR  - https://hdl.handle.net/21.15107/rcub_dais_697
ER  - 
@conference{
author = "Milović, Miloš and Mojović, Miloš and Ignjatović, Aleksandar",
year = "2011",
abstract = "Artificial Neural Networks, or simply ANN, are mathematical/computational model that are inspired by structure and functional aspects of biological neural networks. ANN, like man, learns by example. In the process of network training, network is supplied with set of data which represents examples of network’s proper behaviour. In the research we have done, neural network is created with the task to estimate the iron content in the brain of the Amyotrophic Lateral Sclerosis (ALS) patients. Network is created and trained using Neural Pattern Recognition Tool within the software package Matlab v7.10.0.499 (R2010a). Network is trained with set of data obtained from group of 50 ALS patients. Training set contains: (i) MRI signal of brain iron, (ii) EPR signal of hydroxyl radical from cerebrospinal fluid and (iii) score on ALS Functional Rating Scale (ALSFRS) for each patient individually. The results indicate that neural networks can be successfully used to predict the high content of iron in the brain, which in the perspective opens up the possibility of using this computer model as a standard tool in the diagnosis of ALS.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Tenth Young Researchers' Conference Materials Science and Engineering, December 21-23, 2011, Belgrade, Serbia",
title = "Applicability of neural networks in the estimation of brain iron content in the diagnosis of amyotrophic lateral sclerosis",
pages = "10-10",
url = "https://hdl.handle.net/21.15107/rcub_dais_697"
}
Milović, M., Mojović, M.,& Ignjatović, A.. (2011). Applicability of neural networks in the estimation of brain iron content in the diagnosis of amyotrophic lateral sclerosis. in Program and the Book of Abstracts / Tenth Young Researchers' Conference Materials Science and Engineering, December 21-23, 2011, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 10-10.
https://hdl.handle.net/21.15107/rcub_dais_697
Milović M, Mojović M, Ignjatović A. Applicability of neural networks in the estimation of brain iron content in the diagnosis of amyotrophic lateral sclerosis. in Program and the Book of Abstracts / Tenth Young Researchers' Conference Materials Science and Engineering, December 21-23, 2011, Belgrade, Serbia. 2011;:10-10.
https://hdl.handle.net/21.15107/rcub_dais_697 .
Milović, Miloš, Mojović, Miloš, Ignjatović, Aleksandar, "Applicability of neural networks in the estimation of brain iron content in the diagnosis of amyotrophic lateral sclerosis" in Program and the Book of Abstracts / Tenth Young Researchers' Conference Materials Science and Engineering, December 21-23, 2011, Belgrade, Serbia (2011):10-10,
https://hdl.handle.net/21.15107/rcub_dais_697 .