Mirković, M.

Link to this page

Authority KeyName Variants
f9a77cfe-9899-4c6f-a178-a48e1dfd71be
  • Mirković, M. (5)
Projects

Author's Bibliography

Effect of mechanical activation on carbothermal synthesis and densification of ZrC

Obradović, Nina; Filipović, Suzana; Feng, Lun; Mirković, M.; Fahrenholtz, William G.

(American Ceramic Society, 2023)

TY  - CONF
AU  - Obradović, Nina
AU  - Filipović, Suzana
AU  - Feng, Lun
AU  - Mirković, M.
AU  - Fahrenholtz, William G.
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16181
AB  - Mixtures of ZrO2 and C were prepared by high-energy ball milling. Powders were milled for times from 0 to 120 minutes in air atmosphere. As milling time increased, surface area of powders increased, indicating significant particle size reduction. Milled powders were densified by spark plasma sintering at 2000 °C. Unmilled powders did not reach full density. Milled powders reached full density, but ZrO2 impurities were found for specimens prepared from powders milled for 60 and 120 minutes. Microstructure analysis showed that grain size was less than 2 microns for powder milled for 15 minutes. Based on densification data and impurities level, milling time of
15 minutes appears to give the best balance of particle size reduction to promote densification while minimizing impurities level.
PB  - American Ceramic Society
C3  - Abstract Book / 47th International Conference & Exposition on Advanced Ceramics and Composites, January 22–27, 2023, Daytona Beach, Florida
T1  - Effect of mechanical activation on carbothermal synthesis and densification of ZrC
SP  - ICACC-S18-025-2023
SP  - 117
EP  - 118
UR  - https://hdl.handle.net/21.15107/rcub_dais_16181
ER  - 
@conference{
author = "Obradović, Nina and Filipović, Suzana and Feng, Lun and Mirković, M. and Fahrenholtz, William G.",
year = "2023",
abstract = "Mixtures of ZrO2 and C were prepared by high-energy ball milling. Powders were milled for times from 0 to 120 minutes in air atmosphere. As milling time increased, surface area of powders increased, indicating significant particle size reduction. Milled powders were densified by spark plasma sintering at 2000 °C. Unmilled powders did not reach full density. Milled powders reached full density, but ZrO2 impurities were found for specimens prepared from powders milled for 60 and 120 minutes. Microstructure analysis showed that grain size was less than 2 microns for powder milled for 15 minutes. Based on densification data and impurities level, milling time of
15 minutes appears to give the best balance of particle size reduction to promote densification while minimizing impurities level.",
publisher = "American Ceramic Society",
journal = "Abstract Book / 47th International Conference & Exposition on Advanced Ceramics and Composites, January 22–27, 2023, Daytona Beach, Florida",
title = "Effect of mechanical activation on carbothermal synthesis and densification of ZrC",
pages = "ICACC-S18-025-2023-117-118",
url = "https://hdl.handle.net/21.15107/rcub_dais_16181"
}
Obradović, N., Filipović, S., Feng, L., Mirković, M.,& Fahrenholtz, W. G.. (2023). Effect of mechanical activation on carbothermal synthesis and densification of ZrC. in Abstract Book / 47th International Conference & Exposition on Advanced Ceramics and Composites, January 22–27, 2023, Daytona Beach, Florida
American Ceramic Society., ICACC-S18-025-2023-118.
https://hdl.handle.net/21.15107/rcub_dais_16181
Obradović N, Filipović S, Feng L, Mirković M, Fahrenholtz WG. Effect of mechanical activation on carbothermal synthesis and densification of ZrC. in Abstract Book / 47th International Conference & Exposition on Advanced Ceramics and Composites, January 22–27, 2023, Daytona Beach, Florida. 2023;:ICACC-S18-025-2023-118.
https://hdl.handle.net/21.15107/rcub_dais_16181 .
Obradović, Nina, Filipović, Suzana, Feng, Lun, Mirković, M., Fahrenholtz, William G., "Effect of mechanical activation on carbothermal synthesis and densification of ZrC" in Abstract Book / 47th International Conference & Exposition on Advanced Ceramics and Composites, January 22–27, 2023, Daytona Beach, Florida (2023):ICACC-S18-025-2023-118,
https://hdl.handle.net/21.15107/rcub_dais_16181 .

Hybrid Nanoscale Materials for Convergent Technologies

Pavlović, Vladimir B.; Vuković, G.; Nikolić, M.; Pavlović, Vera P.; Perić, M.; Nenadović, S.; Ivanović, M.; Mirković, M.; Đoković, V.; Knežević, S.; Šuljagić, Marija; Anđelković, Lj.; Janićijević, Aleksandra; Kovačević, D.; Filipović, Suzana; Vujančević, Jelena; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Pavlović, Vladimir B.
AU  - Vuković, G.
AU  - Nikolić, M.
AU  - Pavlović, Vera P.
AU  - Perić, M.
AU  - Nenadović, S.
AU  - Ivanović, M.
AU  - Mirković, M.
AU  - Đoković, V.
AU  - Knežević, S.
AU  - Šuljagić, Marija
AU  - Anđelković, Lj.
AU  - Janićijević, Aleksandra
AU  - Kovačević, D.
AU  - Filipović, Suzana
AU  - Vujančević, Jelena
AU  - Vlahović, Branislav
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15760
AB  - The convergence of nano-, bio-, and information technologies is based on the understanding of complex hierarchical structures and systems, as well as on the material unity at the nanoscale and on technology integration from that scale. A growing interest in these technologies is a result of their potential to provide solutions to numerous societal challenges, such as advanced healthcare, environmental remediation, sustainable development, and adoption of cyber-physical systems based on the Internet of Things and the Internet of Systems. Taking into account that hybrid nanomaterials possess extraordinary physical and chemical properties derived from their size in the nanoscale, the aim of this work is to present the connection between processing parameters and multifunctional properties of nano scale hybrid materials, focusing on the study of ceramic-polymer structures before they can be nano-engineered into functional devices. The unique functionality of these nanostructures has enabled their applications in numerous devices such as: micro and nano-electro-mechanical systems (MEMS/NEMS), sensors, microactuators, surface acoustic wave devices, polymer electrolyte membrane fuel cells, switches, thermistors, resonators and filters, electrooptic devices, etc. In this study special attention has been paid to their applications in the fields of electronics, biotechnology, environmental protection and remediation.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
T1  - Hybrid Nanoscale Materials for Convergent Technologies
SP  - 45
EP  - 45
UR  - https://hdl.handle.net/21.15107/rcub_dais_15760
ER  - 
@conference{
author = "Pavlović, Vladimir B. and Vuković, G. and Nikolić, M. and Pavlović, Vera P. and Perić, M. and Nenadović, S. and Ivanović, M. and Mirković, M. and Đoković, V. and Knežević, S. and Šuljagić, Marija and Anđelković, Lj. and Janićijević, Aleksandra and Kovačević, D. and Filipović, Suzana and Vujančević, Jelena and Vlahović, Branislav",
year = "2023",
abstract = "The convergence of nano-, bio-, and information technologies is based on the understanding of complex hierarchical structures and systems, as well as on the material unity at the nanoscale and on technology integration from that scale. A growing interest in these technologies is a result of their potential to provide solutions to numerous societal challenges, such as advanced healthcare, environmental remediation, sustainable development, and adoption of cyber-physical systems based on the Internet of Things and the Internet of Systems. Taking into account that hybrid nanomaterials possess extraordinary physical and chemical properties derived from their size in the nanoscale, the aim of this work is to present the connection between processing parameters and multifunctional properties of nano scale hybrid materials, focusing on the study of ceramic-polymer structures before they can be nano-engineered into functional devices. The unique functionality of these nanostructures has enabled their applications in numerous devices such as: micro and nano-electro-mechanical systems (MEMS/NEMS), sensors, microactuators, surface acoustic wave devices, polymer electrolyte membrane fuel cells, switches, thermistors, resonators and filters, electrooptic devices, etc. In this study special attention has been paid to their applications in the fields of electronics, biotechnology, environmental protection and remediation.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023",
title = "Hybrid Nanoscale Materials for Convergent Technologies",
pages = "45-45",
url = "https://hdl.handle.net/21.15107/rcub_dais_15760"
}
Pavlović, V. B., Vuković, G., Nikolić, M., Pavlović, V. P., Perić, M., Nenadović, S., Ivanović, M., Mirković, M., Đoković, V., Knežević, S., Šuljagić, M., Anđelković, Lj., Janićijević, A., Kovačević, D., Filipović, S., Vujančević, J.,& Vlahović, B.. (2023). Hybrid Nanoscale Materials for Convergent Technologies. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023
Belgrade : Serbian Ceramic Society., 45-45.
https://hdl.handle.net/21.15107/rcub_dais_15760
Pavlović VB, Vuković G, Nikolić M, Pavlović VP, Perić M, Nenadović S, Ivanović M, Mirković M, Đoković V, Knežević S, Šuljagić M, Anđelković L, Janićijević A, Kovačević D, Filipović S, Vujančević J, Vlahović B. Hybrid Nanoscale Materials for Convergent Technologies. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023. 2023;:45-45.
https://hdl.handle.net/21.15107/rcub_dais_15760 .
Pavlović, Vladimir B., Vuković, G., Nikolić, M., Pavlović, Vera P., Perić, M., Nenadović, S., Ivanović, M., Mirković, M., Đoković, V., Knežević, S., Šuljagić, Marija, Anđelković, Lj., Janićijević, Aleksandra, Kovačević, D., Filipović, Suzana, Vujančević, Jelena, Vlahović, Branislav, "Hybrid Nanoscale Materials for Convergent Technologies" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application XI New Frontiers in Multifunctional Material Science and Processing, Serbian Academy of Sciences and Art Serbia, Belgrade,18-20.September 2023 (2023):45-45,
https://hdl.handle.net/21.15107/rcub_dais_15760 .

Characterization of mechanically activated ZrO2-C powder mixtures

Obradović, Nina; Feng, Lun; Filipović, Suzana; Mirković, M.; Kosanović, Darko; Živojinović, Jelena; Rogan, Jelena; Fahrenholtz, William G.

(Belgrade : University of Belgrade - Faculty of Mechanical Engineering, 2023)

TY  - CONF
AU  - Obradović, Nina
AU  - Feng, Lun
AU  - Filipović, Suzana
AU  - Mirković, M.
AU  - Kosanović, Darko
AU  - Živojinović, Jelena
AU  - Rogan, Jelena
AU  - Fahrenholtz, William G.
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15008
AB  - Mechanical activation represents a very useful technique for powder processing prior to sintering process. First of all, it makes powders homogenized, leads to attrition of powder particles, and makes powder mixtures more reactive. Secondly, it can lead to mechano-chemical reaction, and finally, lowering of sintering time and temperature. Mixtures of ZrO2 and C were mechanically activated by high-energy ball milling. Powders were milled for times from 0 to 120 minutes in air atmosphere. Mechanically activated powder mixtures were characterized by various techniques, such as particle size analysis (PSA), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and diffraction scanning calorimetry along with thermo gravimetry (DSC-TGA). As milling time increased, surface area of powders increased, indicating significant particle size reduction. Mechanical activation for 15 minutes provides the best balance between particle size reduction and reactivity for the powders.
PB  - Belgrade : University of Belgrade - Faculty of Mechanical Engineering
C3  - Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia
T1  - Characterization of mechanically activated ZrO2-C powder mixtures
SP  - 78
UR  - https://hdl.handle.net/21.15107/rcub_dais_15008
ER  - 
@conference{
author = "Obradović, Nina and Feng, Lun and Filipović, Suzana and Mirković, M. and Kosanović, Darko and Živojinović, Jelena and Rogan, Jelena and Fahrenholtz, William G.",
year = "2023",
abstract = "Mechanical activation represents a very useful technique for powder processing prior to sintering process. First of all, it makes powders homogenized, leads to attrition of powder particles, and makes powder mixtures more reactive. Secondly, it can lead to mechano-chemical reaction, and finally, lowering of sintering time and temperature. Mixtures of ZrO2 and C were mechanically activated by high-energy ball milling. Powders were milled for times from 0 to 120 minutes in air atmosphere. Mechanically activated powder mixtures were characterized by various techniques, such as particle size analysis (PSA), X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and diffraction scanning calorimetry along with thermo gravimetry (DSC-TGA). As milling time increased, surface area of powders increased, indicating significant particle size reduction. Mechanical activation for 15 minutes provides the best balance between particle size reduction and reactivity for the powders.",
publisher = "Belgrade : University of Belgrade - Faculty of Mechanical Engineering",
journal = "Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia",
title = "Characterization of mechanically activated ZrO2-C powder mixtures",
pages = "78",
url = "https://hdl.handle.net/21.15107/rcub_dais_15008"
}
Obradović, N., Feng, L., Filipović, S., Mirković, M., Kosanović, D., Živojinović, J., Rogan, J.,& Fahrenholtz, W. G.. (2023). Characterization of mechanically activated ZrO2-C powder mixtures. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia
Belgrade : University of Belgrade - Faculty of Mechanical Engineering., 78.
https://hdl.handle.net/21.15107/rcub_dais_15008
Obradović N, Feng L, Filipović S, Mirković M, Kosanović D, Živojinović J, Rogan J, Fahrenholtz WG. Characterization of mechanically activated ZrO2-C powder mixtures. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia. 2023;:78.
https://hdl.handle.net/21.15107/rcub_dais_15008 .
Obradović, Nina, Feng, Lun, Filipović, Suzana, Mirković, M., Kosanović, Darko, Živojinović, Jelena, Rogan, Jelena, Fahrenholtz, William G., "Characterization of mechanically activated ZrO2-C powder mixtures" in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2023, 04 – 07 July 2023, Zlatibor, Serbia (2023):78,
https://hdl.handle.net/21.15107/rcub_dais_15008 .

Effect of high energy ball milling on sintering of MgO-TiO2 system

Filipović, Suzana; Obradović, Nina; Fahrenholtz, William G.; Smith, Steven; Mirković, M.; Peleš Tadić, Adriana; Tadić, Nenad; Đorđević, Antonije

(Belgrade : Serbian Ceramic Society, 2022)

TY  - CONF
AU  - Filipović, Suzana
AU  - Obradović, Nina
AU  - Fahrenholtz, William G.
AU  - Smith, Steven
AU  - Mirković, M.
AU  - Peleš Tadić, Adriana
AU  - Tadić, Nenad
AU  - Đorđević, Antonije
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13622
AB  - Perovskite ceramic material based on MgTiO3 is used in various types of electronic devices owing to its dielectric properties, high dielectric constant, and low losses. These features can be tailored by setting preparation conditions. Densification of magnesium titanate by Spark Plasma Sintering (SPS) was the aim of this work. First, the mechanical activation in the highenergy ball mill was applied on the powder of MgO-TiO2 mixed in mole ratio 1:1. Prepared powder mixtures, activated for different times, were SPS sintered, at 1200 oC with a heating rate of 100oC/min. After reaching the desired temperature, a uniaxial pressure of 50 MPa was applied, and dwelled at this condition for 5 min, followed by cooling to room temperature at 5oC/min. The starting powders, activated mixtures, and sintered ceramics bodies were investigated by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The presence of the MgTi2O5 phase was noticed for the nonmilled ceramics. In the samples obtained from milled powders, MgTi2O5 was detected in EDS spectra in a lower amount, below the threshold of the XRD method. Dielectric measurements were performed at a wide range of frequencies and temperatures. The highest value of the hardness was obtained from powder milled for 15 min before SPS.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
T1  - Effect of high energy ball milling on sintering of MgO-TiO2 system
SP  - 88
EP  - 88
UR  - https://hdl.handle.net/21.15107/rcub_dais_13622
ER  - 
@conference{
author = "Filipović, Suzana and Obradović, Nina and Fahrenholtz, William G. and Smith, Steven and Mirković, M. and Peleš Tadić, Adriana and Tadić, Nenad and Đorđević, Antonije",
year = "2022",
abstract = "Perovskite ceramic material based on MgTiO3 is used in various types of electronic devices owing to its dielectric properties, high dielectric constant, and low losses. These features can be tailored by setting preparation conditions. Densification of magnesium titanate by Spark Plasma Sintering (SPS) was the aim of this work. First, the mechanical activation in the highenergy ball mill was applied on the powder of MgO-TiO2 mixed in mole ratio 1:1. Prepared powder mixtures, activated for different times, were SPS sintered, at 1200 oC with a heating rate of 100oC/min. After reaching the desired temperature, a uniaxial pressure of 50 MPa was applied, and dwelled at this condition for 5 min, followed by cooling to room temperature at 5oC/min. The starting powders, activated mixtures, and sintered ceramics bodies were investigated by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The presence of the MgTi2O5 phase was noticed for the nonmilled ceramics. In the samples obtained from milled powders, MgTi2O5 was detected in EDS spectra in a lower amount, below the threshold of the XRD method. Dielectric measurements were performed at a wide range of frequencies and temperatures. The highest value of the hardness was obtained from powder milled for 15 min before SPS.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.",
title = "Effect of high energy ball milling on sintering of MgO-TiO2 system",
pages = "88-88",
url = "https://hdl.handle.net/21.15107/rcub_dais_13622"
}
Filipović, S., Obradović, N., Fahrenholtz, W. G., Smith, S., Mirković, M., Peleš Tadić, A., Tadić, N.,& Đorđević, A.. (2022). Effect of high energy ball milling on sintering of MgO-TiO2 system. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.
Belgrade : Serbian Ceramic Society., 88-88.
https://hdl.handle.net/21.15107/rcub_dais_13622
Filipović S, Obradović N, Fahrenholtz WG, Smith S, Mirković M, Peleš Tadić A, Tadić N, Đorđević A. Effect of high energy ball milling on sintering of MgO-TiO2 system. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022.. 2022;:88-88.
https://hdl.handle.net/21.15107/rcub_dais_13622 .
Filipović, Suzana, Obradović, Nina, Fahrenholtz, William G., Smith, Steven, Mirković, M., Peleš Tadić, Adriana, Tadić, Nenad, Đorđević, Antonije, "Effect of high energy ball milling on sintering of MgO-TiO2 system" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. (2022):88-88,
https://hdl.handle.net/21.15107/rcub_dais_13622 .

Effect of prolonged precipitation on morphology and crystal struture of the bacterial nanocelulose/Fe3O4 composite

Janićijević, Aleksandra; Pavlović, Vladimir B.; Sknepnek, A.; Mirković, M.; Kovačević, D.; Đorđević, Nataša; Filipović, Suzana

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Janićijević, Aleksandra
AU  - Pavlović, Vladimir B.
AU  - Sknepnek, A.
AU  - Mirković, M.
AU  - Kovačević, D.
AU  - Đorđević, Nataša
AU  - Filipović, Suzana
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11905
AB  - Cellulose is a biopolymer with a wide range of properties like biocompatibility, hydrophilicity, porosity, good mechanical properties, biodegradability and non-toxicity. The properties and application of cellulose based materials are related to the source of the cellulose production. Despite the fact that the plant cellulose is playing a leading role in obtaining cellulose fibers, it has been found that ecologically and economically, a better source for obtaining cellulose is by fermenting a particular strain of bacteria. Although bacterial nano cellulose (BCN) based materials can be used in numerous industries, from the paper and food industries to biomedicine, their application in electronics is limited because bacterial cellulose does not have conductive and ferromagnetic properties. Having this in mind in this research, the results of the development of nanocomposite materials based on BCN modified with Fe3O4 has been presented. The differences in the interaction of Fe3O4 nanoparticles and BCN obtained by varying precipitation parameters were investigated and the effect of reaction time was followed by SEM-EDS, XRD, and FTIR analysis. It has been found that this type of modifications of the initial BCN, enables development of new composite materials with superior properties, which can be used in various fields of electronics.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Effect of prolonged precipitation on morphology and crystal struture of the bacterial nanocelulose/Fe3O4 composite
SP  - 55
EP  - 56
UR  - https://hdl.handle.net/21.15107/rcub_dais_11905
ER  - 
@conference{
author = "Janićijević, Aleksandra and Pavlović, Vladimir B. and Sknepnek, A. and Mirković, M. and Kovačević, D. and Đorđević, Nataša and Filipović, Suzana",
year = "2021",
abstract = "Cellulose is a biopolymer with a wide range of properties like biocompatibility, hydrophilicity, porosity, good mechanical properties, biodegradability and non-toxicity. The properties and application of cellulose based materials are related to the source of the cellulose production. Despite the fact that the plant cellulose is playing a leading role in obtaining cellulose fibers, it has been found that ecologically and economically, a better source for obtaining cellulose is by fermenting a particular strain of bacteria. Although bacterial nano cellulose (BCN) based materials can be used in numerous industries, from the paper and food industries to biomedicine, their application in electronics is limited because bacterial cellulose does not have conductive and ferromagnetic properties. Having this in mind in this research, the results of the development of nanocomposite materials based on BCN modified with Fe3O4 has been presented. The differences in the interaction of Fe3O4 nanoparticles and BCN obtained by varying precipitation parameters were investigated and the effect of reaction time was followed by SEM-EDS, XRD, and FTIR analysis. It has been found that this type of modifications of the initial BCN, enables development of new composite materials with superior properties, which can be used in various fields of electronics.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Effect of prolonged precipitation on morphology and crystal struture of the bacterial nanocelulose/Fe3O4 composite",
pages = "55-56",
url = "https://hdl.handle.net/21.15107/rcub_dais_11905"
}
Janićijević, A., Pavlović, V. B., Sknepnek, A., Mirković, M., Kovačević, D., Đorđević, N.,& Filipović, S.. (2021). Effect of prolonged precipitation on morphology and crystal struture of the bacterial nanocelulose/Fe3O4 composite. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 55-56.
https://hdl.handle.net/21.15107/rcub_dais_11905
Janićijević A, Pavlović VB, Sknepnek A, Mirković M, Kovačević D, Đorđević N, Filipović S. Effect of prolonged precipitation on morphology and crystal struture of the bacterial nanocelulose/Fe3O4 composite. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:55-56.
https://hdl.handle.net/21.15107/rcub_dais_11905 .
Janićijević, Aleksandra, Pavlović, Vladimir B., Sknepnek, A., Mirković, M., Kovačević, D., Đorđević, Nataša, Filipović, Suzana, "Effect of prolonged precipitation on morphology and crystal struture of the bacterial nanocelulose/Fe3O4 composite" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):55-56,
https://hdl.handle.net/21.15107/rcub_dais_11905 .