Vujković, Milica

Link to this page

Authority KeyName Variants
orcid::0000-0002-0518-8837
  • Vujković, Milica (21)
Projects
Lithium-ion batteries and fuel cells - research and development Serbian Academy of Sciences and Arts, Project F-190
Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them HiSuperBat - High-Capacity Electrodes for Aqueous Rechargeable Multivalent-Ion Batteries and Supercapacitors: Next Step Towards a Hybrid Model
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade) Magnetic and radionuclide labeled nanostructured materials for medical applications
Bilateral project between Serbia and Slovenia "Developments of novel materials for alkaline-ion batteries" Bilateral project Montenegro-Serbia: Development of ecological Li-ionic batteries
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry) Synthesis, processing and applications of nanostructured multifunctional materials with defined properties
NATO, Science for Peace and Security (SPS) Programme, the project SPC G5836 - SUPERCAR Scholarship for Doctoral Research in Montenegro
Slovenian Research Agency, ARRS-MS-BI-ZP bilateral project and P2-0393 Bilateral project Montenegro-Serbia: Bilateral project between Serbia and Slovenia "Developments of novel materials for alkaline-ion batteries"
Electroconducting and redox-active polymers and oligomers: synthesis, structure, properties and applications Directed synthesis, structure and properties of multifunctional materials
Physics and Chemistry with Ion Beams Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing
Serbia-Slovenia bilateral project (Project No. 451-03-38/2016-09/50). Slovenian Research Agency (Project P2-0091).

Author's Bibliography

Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Elsevier BV, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11655
AB  - Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.
PB  - Elsevier BV
T2  - Ceramics International
T1  - Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode
SP  - 17077
EP  - 17083
VL  - 47
IS  - 12
DO  - 10.1016/j.ceramint.2021.03.016
ER  - 
@article{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
url = "https://dais.sanu.ac.rs/123456789/11655",
abstract = "Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode",
pages = "17077-17083",
volume = "47",
number = "12",
doi = "10.1016/j.ceramint.2021.03.016"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M. (2021). Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode.
Ceramics International
Elsevier BV., 47(12), 17077-17083.
https://doi.org/10.1016/j.ceramint.2021.03.016
Milović M, Vujković M, Jugović D, Mitrić M. Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode. Ceramics International. 2021;47(12):17077-17083
Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083,
https://doi.org/10.1016/j.ceramint.2021.03.016 .

Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Elsevier BV, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11645
AB  - Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.
PB  - Elsevier BV
T2  - Ceramics International
T1  - Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode
SP  - 17077
EP  - 17083
VL  - 47
IS  - 12
DO  - 10.1016/j.ceramint.2021.03.016
ER  - 
@article{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
url = "https://dais.sanu.ac.rs/123456789/11645",
abstract = "Electrochemical and structural properties of LiV2O5 cathode were investigated. Obtained by solid state reaction at high temperature the material crystallized as gamma polymorph phase, γ-LiV2O5. The gamma structure provides two crystallographic sites to accommodate lithium ions, Li1 and Li2 position. Lithium insertion at these two sites occurs at two respective voltages versus lithium metal: ~3.6 V (Li1) and ~2.4 V (Li2). Intercalation at Li1 position is reversible in both organic and aqueous electrolyte and provides stable cycling performance at the high voltage. On the contrary, sluggish insertion/removal of Li+ at Li2 sites causes unstable performance and significant storage capacity fade at lower voltages. Lithium diffusion 3d landscape was determined by bond valence calculations applied on the γ-LiV2O5 phase, as well as on the metastable phases of γ′-V2O5 and ζ-Li2V2O5 that exist at high and low voltages respectively. The model was proposed based on inactivity of Li2 position of the metastable ζ-Li2V2O5 phase which provides explanation for the observed storage capacity loss at low voltages.",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode",
pages = "17077-17083",
volume = "47",
number = "12",
doi = "10.1016/j.ceramint.2021.03.016"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M. (2021). Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode.
Ceramics International
Elsevier BV., 47(12), 17077-17083.
https://doi.org/10.1016/j.ceramint.2021.03.016
Milović M, Vujković M, Jugović D, Mitrić M. Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode. Ceramics International. 2021;47(12):17077-17083
Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083,
https://doi.org/10.1016/j.ceramint.2021.03.016 .

Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016

Milović, Miloš; Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag

(Elsevier BV, 2021)

TY  - BOOK
AU  - Milović, Miloš
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11646
AB  - Figure S1. Particle size distribution by number (blue) and by volume (red) of the as prepared powder of LiV2O5; 2. Ex-situ X-ray diffraction analysis; Figure S2. XRD patterns of the as prepared electrode before cycling (black line) and of electrodes in discharged state after cycling in aqueous (red) and in organic electrolyte (blue); a: whole pattern, b: 002 reflection
PB  - Elsevier BV
T2  - Ceramics International
T1  - Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016
VL  - 47
IS  - 12
ER  - 
@book{
author = "Milović, Miloš and Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag",
year = "2021",
url = "https://dais.sanu.ac.rs/123456789/11646",
abstract = "Figure S1. Particle size distribution by number (blue) and by volume (red) of the as prepared powder of LiV2O5; 2. Ex-situ X-ray diffraction analysis; Figure S2. XRD patterns of the as prepared electrode before cycling (black line) and of electrodes in discharged state after cycling in aqueous (red) and in organic electrolyte (blue); a: whole pattern, b: 002 reflection",
publisher = "Elsevier BV",
journal = "Ceramics International",
title = "Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016",
volume = "47",
number = "12"
}
Milović, M., Vujković, M., Jugović, D.,& Mitrić, M. (2021). Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016.
Ceramics International
Elsevier BV., 47(12).
Milović M, Vujković M, Jugović D, Mitrić M. Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016. Ceramics International. 2021;47(12)
Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Supplementary information for the article: Milović Miloš, Vujković Milica, Jugović Dragana, Mitrić Miodrag, "Electrochemical and structural study on cycling performance of γ-LiV2O5 cathode" Ceramics International, 47, no. 12 (2021):17077-17083, https://doi.org/10.1016/j.ceramint.2021.03.016" Ceramics International, 47, no. 12 (2021)

Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011

Gezović, Aleksandra; Vujković, Milica; Milović, Miloš; Grudić, Veselinka; Dominko, Robert; Mentus, Slavko

(Elsevier BV, 2021)

TY  - BOOK
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Milović, Miloš
AU  - Grudić, Veselinka
AU  - Dominko, Robert
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11634
AB  - Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.
PB  - Elsevier BV
T2  - Energy Storage Materials
T1  - Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011
VL  - 37
ER  - 
@book{
author = "Gezović, Aleksandra and Vujković, Milica and Milović, Miloš and Grudić, Veselinka and Dominko, Robert and Mentus, Slavko",
year = "2021",
url = "https://dais.sanu.ac.rs/123456789/11634",
abstract = "Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.",
publisher = "Elsevier BV",
journal = "Energy Storage Materials",
title = "Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011",
volume = "37"
}
Gezović, A., Vujković, M., Milović, M., Grudić, V., Dominko, R.,& Mentus, S. (2021). Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011.
Energy Storage Materials
Elsevier BV., 37.
Gezović A, Vujković M, Milović M, Grudić V, Dominko R, Mentus S. Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011. Energy Storage Materials. 2021;37
Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Supplementary information for the article: Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273, https://doi.org/10.1016/j.ensm.2021.02.011" Energy Storage Materials, 37 (2021)

Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook

Gezović, Aleksandra; Vujković, Milica; Milović, Miloš; Grudić, Veselinka; Dominko, Robert; Mentus, Slavko

(Elsevier BV, 2021)

TY  - JOUR
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Milović, Miloš
AU  - Grudić, Veselinka
AU  - Dominko, Robert
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11632
AB  - Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.
PB  - Elsevier BV
T2  - Energy Storage Materials
T1  - Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook
SP  - 243
EP  - 273
VL  - 37
DO  - 10.1016/j.ensm.2021.02.011
ER  - 
@article{
author = "Gezović, Aleksandra and Vujković, Milica and Milović, Miloš and Grudić, Veselinka and Dominko, Robert and Mentus, Slavko",
year = "2021",
url = "https://dais.sanu.ac.rs/123456789/11632",
abstract = "Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.",
publisher = "Elsevier BV",
journal = "Energy Storage Materials",
title = "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook",
pages = "243-273",
volume = "37",
doi = "10.1016/j.ensm.2021.02.011"
}
Gezović, A., Vujković, M., Milović, M., Grudić, V., Dominko, R.,& Mentus, S. (2021). Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook.
Energy Storage Materials
Elsevier BV., 37, 243-273.
https://doi.org/10.1016/j.ensm.2021.02.011
Gezović A, Vujković M, Milović M, Grudić V, Dominko R, Mentus S. Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. Energy Storage Materials. 2021;37:243-273
Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273,
https://doi.org/10.1016/j.ensm.2021.02.011 .
1

Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook

Gezović, Aleksandra; Vujković, Milica; Milović, Miloš; Grudić, Veselinka; Dominko, Robert; Mentus, Slavko

(Elsevier BV, 2021)

TY  - JOUR
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Milović, Miloš
AU  - Grudić, Veselinka
AU  - Dominko, Robert
AU  - Mentus, Slavko
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11633
AB  - Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.
PB  - Elsevier BV
T2  - Energy Storage Materials
T1  - Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook
SP  - 243
EP  - 273
VL  - 37
DO  - 10.1016/j.ensm.2021.02.011
ER  - 
@article{
author = "Gezović, Aleksandra and Vujković, Milica and Milović, Miloš and Grudić, Veselinka and Dominko, Robert and Mentus, Slavko",
year = "2021",
url = "https://dais.sanu.ac.rs/123456789/11633",
abstract = "Sodium ion batteries (SIB) present one of the most perspective post lithium technology and their progress strongly depends on the development of compounds having the structure which enables fast sodium insertion/deinsertion reactions. Polyanion compounds have been widely investigated as cathode materials for SIBs where they compete effectively to the usually used layered oxides. This survey is focused on the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7). The comprehensive retrospective of their synthesis procedures, the kinetics and mechanism of sodiation/desodiation reactions, based on both experimental and theoretical results, is provided. First, the review summarizes the structural properties of variety of Na4M3(PO4)2(P2O7) compounds in terms of its electrical, vibrational and surface properties. Then, the synthesis methods and sodium/lithium storage performance, of each type of Na4M3(PO4)2(P2O7) compounds, are chronologically presented and discussed. Finally, the strengths and weaknesses of these mixed polyanion cathodes are outlined, with the aim to explain some discrepancies and unclarified issues encountered in the literature. Besides, this survey will make room for future development. It can be very useful for the future design of high-performance mixed polyanionic compounds as cathodes for alkaline-ion rechargeable batteries.",
publisher = "Elsevier BV",
journal = "Energy Storage Materials",
title = "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook",
pages = "243-273",
volume = "37",
doi = "10.1016/j.ensm.2021.02.011"
}
Gezović, A., Vujković, M., Milović, M., Grudić, V., Dominko, R.,& Mentus, S. (2021). Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook.
Energy Storage Materials
Elsevier BV., 37, 243-273.
https://doi.org/10.1016/j.ensm.2021.02.011
Gezović A, Vujković M, Milović M, Grudić V, Dominko R, Mentus S. Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. Energy Storage Materials. 2021;37:243-273
Gezović Aleksandra, Vujković Milica, Milović Miloš, Grudić Veselinka, Dominko Robert, Mentus Slavko, "Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook" Energy Storage Materials, 37 (2021):243-273,
https://doi.org/10.1016/j.ensm.2021.02.011 .
1

Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix

Milović, Miloš; Jugović, Dragana; Vujković, Milica; Kuzmanović, Maja; Mraković, Ana; Mitrić, Miodrag

(Springer Science and Business Media LLC, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Jugović, Dragana
AU  - Vujković, Milica
AU  - Kuzmanović, Maja
AU  - Mraković, Ana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11635
AB  - The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.
PB  - Springer Science and Business Media LLC
T2  - Bulletin of Materials Science
T1  - Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix
SP  - 144
VL  - 44
IS  - 2
DO  - 10.1007/s12034-021-02397-3
ER  - 
@article{
author = "Milović, Miloš and Jugović, Dragana and Vujković, Milica and Kuzmanović, Maja and Mraković, Ana and Mitrić, Miodrag",
year = "2021",
url = "https://dais.sanu.ac.rs/123456789/11635",
abstract = "The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.",
publisher = "Springer Science and Business Media LLC",
journal = "Bulletin of Materials Science",
title = "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix",
pages = "144",
volume = "44",
number = "2",
doi = "10.1007/s12034-021-02397-3"
}
Milović, M., Jugović, D., Vujković, M., Kuzmanović, M., Mraković, A.,& Mitrić, M. (2021). Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix.
Bulletin of Materials Science
Springer Science and Business Media LLC., 44(2), 144.
https://doi.org/10.1007/s12034-021-02397-3
Milović M, Jugović D, Vujković M, Kuzmanović M, Mraković A, Mitrić M. Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. Bulletin of Materials Science. 2021;44(2):144
Milović Miloš, Jugović Dragana, Vujković Milica, Kuzmanović Maja, Mraković Ana, Mitrić Miodrag, "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix" Bulletin of Materials Science, 44, no. 2 (2021):144,
https://doi.org/10.1007/s12034-021-02397-3 .

Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix

Milović, Miloš; Jugović, Dragana; Vujković, Milica; Kuzmanović, Maja; Mraković, Ana; Mitrić, Miodrag

(Springer Science and Business Media LLC, 2021)

TY  - JOUR
AU  - Milović, Miloš
AU  - Jugović, Dragana
AU  - Vujković, Milica
AU  - Kuzmanović, Maja
AU  - Mraković, Ana
AU  - Mitrić, Miodrag
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11636
AB  - The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.
PB  - Springer Science and Business Media LLC
T2  - Bulletin of Materials Science
T1  - Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix
SP  - 144
VL  - 44
IS  - 2
DO  - 10.1007/s12034-021-02397-3
ER  - 
@article{
author = "Milović, Miloš and Jugović, Dragana and Vujković, Milica and Kuzmanović, Maja and Mraković, Ana and Mitrić, Miodrag",
year = "2021",
url = "https://dais.sanu.ac.rs/123456789/11636",
abstract = "The polyanion cathodes for Li-ion batteries, namely LiFePO4, Li2FeP2O7 and Li2FeSiO4, were synthesized by very short high-temperature treatment (approximately several minutes) and subsequent quenching. Methylcellulose—a polymer with thermally driven water solubility—was used as the medium in which the precursor solutions were dispersed prior to high temperature treatment. The methylcellulose pyrolytically decomposes to carbon, thus producing the polyanion material/carbon composites of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C. The obtained powders have reduced crystallinity and significant microstructural characteristics: low crystallite size and notable microstrain. They exhibit stable electrochemical performances in both aqueous and organic electrolyte. The broadening of existing peaks in cyclic voltammetry and/or the emergence of new broad peaks was attributed to the presence of the amorphous phase in the samples. In galvanostatic charge–discharge tests, the materials provided high capacities at low current densities, while the highest rate performance was demonstrated by olivine-phosphate when compared to the other two materials.",
publisher = "Springer Science and Business Media LLC",
journal = "Bulletin of Materials Science",
title = "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix",
pages = "144",
volume = "44",
number = "2",
doi = "10.1007/s12034-021-02397-3"
}
Milović, M., Jugović, D., Vujković, M., Kuzmanović, M., Mraković, A.,& Mitrić, M. (2021). Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix.
Bulletin of Materials Science
Springer Science and Business Media LLC., 44(2), 144.
https://doi.org/10.1007/s12034-021-02397-3
Milović M, Jugović D, Vujković M, Kuzmanović M, Mraković A, Mitrić M. Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix. Bulletin of Materials Science. 2021;44(2):144
Milović Miloš, Jugović Dragana, Vujković Milica, Kuzmanović Maja, Mraković Ana, Mitrić Miodrag, "Towards a green and cost-effective synthesis of polyanionic cathodes: comparative electrochemical behaviour of LiFePO4/C, Li2FeP2O7/C and Li2FeSiO4/C synthesized using methylcellulose matrix" Bulletin of Materials Science, 44, no. 2 (2021):144,
https://doi.org/10.1007/s12034-021-02397-3 .

Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite

Jovanović, Zoran; Mravik, Željko; Bajuk Bogdanović, Danica; Jovanović, Sonja; Marković, Smilja; Vujković, Milica; Kovač, Janez; Vengust, Damjan; Uskoković-Marković, Snežana; Holclajtner Antunović, Ivanka

(2020)

TY  - JOUR
AU  - Jovanović, Zoran
AU  - Mravik, Željko
AU  - Bajuk Bogdanović, Danica
AU  - Jovanović, Sonja
AU  - Marković, Smilja
AU  - Vujković, Milica
AU  - Kovač, Janez
AU  - Vengust, Damjan
AU  - Uskoković-Marković, Snežana
AU  - Holclajtner Antunović, Ivanka
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/6882
AB  - In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole.
T2  - Carbon
T1  - Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite
SP  - 166
EP  - 178
VL  - 156
DO  - 10.1016/j.carbon.2019.09.072
ER  - 
@article{
author = "Jovanović, Zoran and Mravik, Željko and Bajuk Bogdanović, Danica and Jovanović, Sonja and Marković, Smilja and Vujković, Milica and Kovač, Janez and Vengust, Damjan and Uskoković-Marković, Snežana and Holclajtner Antunović, Ivanka",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/6882",
abstract = "In the present study we investigated the interaction between 12-tungstophosphoric acid (WPA) and graphene oxide (GO) in their nanocomposite by utilizing the loading of WPA as an intrinsic parameter for interaction tuning. The Fourier-transform infrared spectroscopy, temperature-programmed desorption, X-ray photoelectron spectroscopy, zeta-potential measurements, thermogravimetric analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy methods revealed that ∼5–13 wt% of WPA represents critical loading that separates two distinct contributions to GO-WPA interaction. This was explained by the self-limiting nature of GO-WPA interaction, initially controlled by high dispersion of WPA on GO (up to 13 wt%), that is eventually overpowered by WPA-WPA interaction as loading increases. As a result, the WPA agglomerates are being formed because of which the hybrid character of the nanocomposite diminishes, i.e., the properties of independent components start to be manifested to greater extent. The obtained results provide an important framework for considering possible outcomes in other 2D-0D systems, whose interaction is relevant both from fundamental and applicative point of view. Thus, the GO/WPA nanocomposite illustrates how the interactions between the components can be used for tuning the properties of nanocomposite as a whole.",
journal = "Carbon",
title = "Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite",
pages = "166-178",
volume = "156",
doi = "10.1016/j.carbon.2019.09.072"
}
Jovanović, Z., Mravik, Ž., Bajuk Bogdanović, D., Jovanović, S., Marković, S., Vujković, M., Kovač, J., Vengust, D., Uskoković-Marković, S.,& Holclajtner Antunović, I. (2020). Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite.
Carbon, 156, 166-178.
https://doi.org/10.1016/j.carbon.2019.09.072
Jovanović Z, Mravik Ž, Bajuk Bogdanović D, Jovanović S, Marković S, Vujković M, Kovač J, Vengust D, Uskoković-Marković S, Holclajtner Antunović I. Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite. Carbon. 2020;156:166-178
Jovanović Zoran, Mravik Željko, Bajuk Bogdanović Danica, Jovanović Sonja, Marković Smilja, Vujković Milica, Kovač Janez, Vengust Damjan, Uskoković-Marković Snežana, Holclajtner Antunović Ivanka, "Self-limiting interactions in 2D–0D system: A case study of graphene oxide and 12-tungstophosphoric acid nanocomposite" Carbon, 156 (2020):166-178,
https://doi.org/10.1016/j.carbon.2019.09.072 .
4
3

Supporting material for the article: Georgijević, R., Vujković, M., Gutić, S., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V., Mentus, S., 2019. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. Journal of Alloys and Compounds 776, 475–485. https://doi.org/10.1016/j.jallcom.2018.10.246

Georgijević, Radovan; Vujković, Milica; Gutić, Sanjin; Aliefendić, Meho; Jugović, Dragana; Mitrić, Miodrag; Đokić, Veljko; Mentus, Slavko

(2019)

TY  - BOOK
AU  - Georgijević, Radovan
AU  - Vujković, Milica
AU  - Gutić, Sanjin
AU  - Aliefendić, Meho
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Đokić, Veljko
AU  - Mentus, Slavko
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0925838818339185
UR  - http://dais.sanu.ac.rs/123456789/5975
T2  - Journal of Alloys and Compounds
T1  - Supporting material for the article: Georgijević, R., Vujković, M., Gutić, S., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V., Mentus, S., 2019. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. Journal of Alloys and Compounds 776, 475–485. https://doi.org/10.1016/j.jallcom.2018.10.246
ER  - 
@book{
author = "Georgijević, Radovan and Vujković, Milica and Gutić, Sanjin and Aliefendić, Meho and Jugović, Dragana and Mitrić, Miodrag and Đokić, Veljko and Mentus, Slavko",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0925838818339185, http://dais.sanu.ac.rs/123456789/5975",
journal = "Journal of Alloys and Compounds",
title = "Supporting material for the article: Georgijević, R., Vujković, M., Gutić, S., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V., Mentus, S., 2019. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. Journal of Alloys and Compounds 776, 475–485. https://doi.org/10.1016/j.jallcom.2018.10.246"
}
Georgijević, R., Vujković, M., Gutić, S., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V.,& Mentus, S. (2019). Supporting material for the article: Georgijević, R., Vujković, M., Gutić, S., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V., Mentus, S., 2019. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. Journal of Alloys and Compounds 776, 475–485. https://doi.org/10.1016/j.jallcom.2018.10.246.
Journal of Alloys and Compounds.
Georgijević R, Vujković M, Gutić S, Aliefendić M, Jugović D, Mitrić M, Đokić V, Mentus S. Supporting material for the article: Georgijević, R., Vujković, M., Gutić, S., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V., Mentus, S., 2019. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. Journal of Alloys and Compounds 776, 475–485. https://doi.org/10.1016/j.jallcom.2018.10.246. Journal of Alloys and Compounds. 2019;
Georgijević Radovan, Vujković Milica, Gutić Sanjin, Aliefendić Meho, Jugović Dragana, Mitrić Miodrag, Đokić Veljko, Mentus Slavko, "Supporting material for the article: Georgijević, R., Vujković, M., Gutić, S., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V., Mentus, S., 2019. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. Journal of Alloys and Compounds 776, 475–485. https://doi.org/10.1016/j.jallcom.2018.10.246" Journal of Alloys and Compounds (2019)

The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution

Georgijević, Radovan; Vujković, Milica; Gutić, Sanjin; Aliefendić, Meho; Jugović, Dragana; Mitrić, Miodrag; Đokić, Veljko; Mentus, Slavko

(Elsevier, 2019)

TY  - JOUR
AU  - Georgijević, Radovan
AU  - Vujković, Milica
AU  - Gutić, Sanjin
AU  - Aliefendić, Meho
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Đokić, Veljko
AU  - Mentus, Slavko
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0925838818339185
UR  - http://dais.sanu.ac.rs/123456789/4569
AB  - To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g−1 at 5 mV s−1). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g−1 at 1 mV s−1.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution
SP  - 475
EP  - 485
VL  - 776
DO  - 10.1016/j.jallcom.2018.10.246
ER  - 
@article{
author = "Georgijević, Radovan and Vujković, Milica and Gutić, Sanjin and Aliefendić, Meho and Jugović, Dragana and Mitrić, Miodrag and Đokić, Veljko and Mentus, Slavko",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0925838818339185, http://dais.sanu.ac.rs/123456789/4569",
abstract = "To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g−1 at 5 mV s−1). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g−1 at 1 mV s−1.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution",
pages = "475-485",
volume = "776",
doi = "10.1016/j.jallcom.2018.10.246"
}
Georgijević, R., Vujković, M., Gutić, S., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V.,& Mentus, S. (2019). The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution.
Journal of Alloys and Compounds
Elsevier., 776, 475-485.
https://doi.org/10.1016/j.jallcom.2018.10.246
Georgijević R, Vujković M, Gutić S, Aliefendić M, Jugović D, Mitrić M, Đokić V, Mentus S. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. Journal of Alloys and Compounds. 2019;776:475-485
Georgijević Radovan, Vujković Milica, Gutić Sanjin, Aliefendić Meho, Jugović Dragana, Mitrić Miodrag, Đokić Veljko, Mentus Slavko, "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution" Journal of Alloys and Compounds, 776 (2019):475-485,
https://doi.org/10.1016/j.jallcom.2018.10.246 .
5
6
6

The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution

Georgijević, Radovan; Vujković, Milica; Gutić, Sanjin; Aliefendić, Meho; Jugović, Dragana; Mitrić, Miodrag; Đokić, Veljko; Mentus, Slavko

(Elsevier, 2019)

TY  - JOUR
AU  - Georgijević, Radovan
AU  - Vujković, Milica
AU  - Gutić, Sanjin
AU  - Aliefendić, Meho
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Đokić, Veljko
AU  - Mentus, Slavko
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0925838818339185
UR  - http://dais.sanu.ac.rs/123456789/4568
AB  - To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g−1 at 5 mV s−1). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g−1 at 1 mV s−1.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution
SP  - 475
EP  - 485
VL  - 776
DO  - 10.1016/j.jallcom.2018.10.246
ER  - 
@article{
author = "Georgijević, Radovan and Vujković, Milica and Gutić, Sanjin and Aliefendić, Meho and Jugović, Dragana and Mitrić, Miodrag and Đokić, Veljko and Mentus, Slavko",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0925838818339185, http://dais.sanu.ac.rs/123456789/4568",
abstract = "To contribute to the knowledge on the influence of synthesis procedure on the intercalation kinetics of lithium ions into phospho-olivines, LiFePO4/C composite samples (LFPC) were synthesized in two ways, the first one in a sol-gel procedure (SG), and the other in a solid-state reaction (SS). The X-ray diffractograms (XRD) of both samples overlapped with that of pure LiFePO4, taken from the crystallographic database. Scanning electron microscopy pictures indicated the high degree of interparticle sintering, which caused a considerable agglomerate growth. The results of potentiodynamic measurements in aqueous LiNO3 solution revealed that for SS sample, three times higher initial capacity from that of SG one, (amounting to 74 mAh g−1 at 5 mV s−1). However, capacity fade on rising scan rate is much more expressed for SS sample than for SG one. We suggest that a different degree of material utilization due to the incomplete coverage of olivine particles by carbon explains this difference. The technique of separation of diffusion and capacitance currents was applied in a kinetic analysis, but it was shown to be inappropriate. We suggest the inapplicability of classic CV theory to the intercalation system accompanied by phase transition. Instead, a model of ohmic resistance determination of process kinetics was considered. LFPC-SS sample delivers three times larger capacity in LiNO3, amounting to 74 mAh g−1 at 1 mV s−1.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution",
pages = "475-485",
volume = "776",
doi = "10.1016/j.jallcom.2018.10.246"
}
Georgijević, R., Vujković, M., Gutić, S., Aliefendić, M., Jugović, D., Mitrić, M., Đokić, V.,& Mentus, S. (2019). The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution.
Journal of Alloys and Compounds
Elsevier., 776, 475-485.
https://doi.org/10.1016/j.jallcom.2018.10.246
Georgijević R, Vujković M, Gutić S, Aliefendić M, Jugović D, Mitrić M, Đokić V, Mentus S. The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution. Journal of Alloys and Compounds. 2019;776:475-485
Georgijević Radovan, Vujković Milica, Gutić Sanjin, Aliefendić Meho, Jugović Dragana, Mitrić Miodrag, Đokić Veljko, Mentus Slavko, "The influence of synthesis conditions on the redox behaviour of LiFePO4 in aqueous solution" Journal of Alloys and Compounds, 776 (2019):475-485,
https://doi.org/10.1016/j.jallcom.2018.10.246 .
5
6
6

Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C

Milović, Miloš; Jugović, Dragana; Mitrić, Miodrag; Kuzmanović, Maja; Vujković, Milica; Uskoković, Dragan

([s.l.] : [s.n.], 2019)

TY  - CONF
AU  - Milović, Miloš
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Kuzmanović, Maja
AU  - Vujković, Milica
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/7047
AB  - Since Padhi et al. reported the electrochemical properties of LiFePO4 in 1997 [1], polyanion cathode materials for lithium-ion batteries attract interest of researchers because of the added safety and higher voltage values in comparison to the oxide analogues with the same M2+/3+ redox pair. The higher safety and higher voltage come from strong covalent bonding within the polyanion units and, over the years, these inherent characteristics have promoted the investigation of different polyanion compounds. Among them, lithium transition-metal silicates, Li2MSiO4, and pyrophosphates, Li2MP2O7, additionally offer the possibility of extraction/ insertion two lithium ions per formula unit thus increasing theoretical capacity. However, unlike their oxide counterparts, polyanion cathodes suffer considerably from low conductivity (both ionic and electronic) which significantly limits their rate performance and therefore application in high power devices. To overcome this obstacle various strategies were developed like minimization of particle size, addition of conductive additives and/or ion doping. In this study, the approach that was used includes preparation of Li2FeSiO4/C, LiFePO4/C a nd L i2FeP2O7/C composites where carbon is obtained by pyrolytical degradation of methylcellulose and in situ during formation of polyanion active material on high temperatures. Methylcellulose, or methyl cellulose ether, is a water-soluble derivative of cellulose with an ability to gel upon heating and reversibly liquefy upon cooling due to the hydrophobic interaction between molecules containing methoxyl groups [2]. Thanks to this outstanding ability, the methylcellulose acts not only as a carbon source, but also as a dispersing agent that enables both the homogeneous deployment of the precursor compounds and the control of active material’ particle growth from the earliest stages of crystallization. This further allowed a significant shortening of high temperature treatment (to several minutes long) with additional decreases of particle agglomeration. Being both simple and inexpensive, the described method is also beneficial for commercial purposes. The electrochemical and microstructural properties of the obtained powders were examined and compared. Also, the opportunity is taken to discuss potential of a redox couple Fe2+/Fe3+ (Figure 1) in a relation to the crystal structure of a given polyanion cathode.
PB  - [s.l.] : [s.n.]
C3  - Abstracts/Proceedings / mESC-IS 2019 : The Fourth International Symposium on Materials for Energy Storage and Conversion, 7-11 September 2019, Akyaka –Muğla
T1  - Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C
SP  - 42
EP  - 42
ER  - 
@conference{
author = "Milović, Miloš and Jugović, Dragana and Mitrić, Miodrag and Kuzmanović, Maja and Vujković, Milica and Uskoković, Dragan",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/7047",
abstract = "Since Padhi et al. reported the electrochemical properties of LiFePO4 in 1997 [1], polyanion cathode materials for lithium-ion batteries attract interest of researchers because of the added safety and higher voltage values in comparison to the oxide analogues with the same M2+/3+ redox pair. The higher safety and higher voltage come from strong covalent bonding within the polyanion units and, over the years, these inherent characteristics have promoted the investigation of different polyanion compounds. Among them, lithium transition-metal silicates, Li2MSiO4, and pyrophosphates, Li2MP2O7, additionally offer the possibility of extraction/ insertion two lithium ions per formula unit thus increasing theoretical capacity. However, unlike their oxide counterparts, polyanion cathodes suffer considerably from low conductivity (both ionic and electronic) which significantly limits their rate performance and therefore application in high power devices. To overcome this obstacle various strategies were developed like minimization of particle size, addition of conductive additives and/or ion doping. In this study, the approach that was used includes preparation of Li2FeSiO4/C, LiFePO4/C a nd L i2FeP2O7/C composites where carbon is obtained by pyrolytical degradation of methylcellulose and in situ during formation of polyanion active material on high temperatures. Methylcellulose, or methyl cellulose ether, is a water-soluble derivative of cellulose with an ability to gel upon heating and reversibly liquefy upon cooling due to the hydrophobic interaction between molecules containing methoxyl groups [2]. Thanks to this outstanding ability, the methylcellulose acts not only as a carbon source, but also as a dispersing agent that enables both the homogeneous deployment of the precursor compounds and the control of active material’ particle growth from the earliest stages of crystallization. This further allowed a significant shortening of high temperature treatment (to several minutes long) with additional decreases of particle agglomeration. Being both simple and inexpensive, the described method is also beneficial for commercial purposes. The electrochemical and microstructural properties of the obtained powders were examined and compared. Also, the opportunity is taken to discuss potential of a redox couple Fe2+/Fe3+ (Figure 1) in a relation to the crystal structure of a given polyanion cathode.",
publisher = "[s.l.] : [s.n.]",
journal = "Abstracts/Proceedings / mESC-IS 2019 : The Fourth International Symposium on Materials for Energy Storage and Conversion, 7-11 September 2019, Akyaka –Muğla",
title = "Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C",
pages = "42-42"
}
Milović, M., Jugović, D., Mitrić, M., Kuzmanović, M., Vujković, M.,& Uskoković, D. (2019). Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C.
Abstracts/Proceedings / mESC-IS 2019 : The Fourth International Symposium on Materials for Energy Storage and Conversion, 7-11 September 2019, Akyaka –Muğla
[s.l.] : [s.n.]., 42-42.
Milović M, Jugović D, Mitrić M, Kuzmanović M, Vujković M, Uskoković D. Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C. Abstracts/Proceedings / mESC-IS 2019 : The Fourth International Symposium on Materials for Energy Storage and Conversion, 7-11 September 2019, Akyaka –Muğla. 2019;:42-42
Milović Miloš, Jugović Dragana, Mitrić Miodrag, Kuzmanović Maja, Vujković Milica, Uskoković Dragan, "Synthesis of cathode composite powders from methylcellulose matrix: Li2FeSiO4/C, Li2FeP2O7/C and LiFePO4/C" Abstracts/Proceedings / mESC-IS 2019 : The Fourth International Symposium on Materials for Energy Storage and Conversion, 7-11 September 2019, Akyaka –Muğla (2019):42-42

Electrochemical oxidation of maricite NaFePO4 in mild aqueous solutions as a way to boost its charge storage capacity

Petrović, Tamara; Milović, Miloš; Bajuk Bogdanović, Danica; Vujković, Milica

(Belgrade : Institute of Technical Sciences of SASA, 2019)

TY  - CONF
AU  - Petrović, Tamara
AU  - Milović, Miloš
AU  - Bajuk Bogdanović, Danica
AU  - Vujković, Milica
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6971
AB  - Lithium has a low abundance in the Earth's crust, which in a few years will lead to difficult lithium production, and therefore difficult production of lithium-ion batteries. Sodium-ion batteries, on the other hand, have been proven to be a good replacement. The material obtained from iron combined with the phosphate and pyrophosphate compounds of sodium has attracted attention as a possible cathode material for sodium-ion batteries. NaFePO4 exists in two polymorphic structures (triphylite and maricite). Maricite NaFePO4 is a more thermodynamically stable structure than triphylite NaFePO4 but doesn’t have channels for Na+ movement and electrochemical performance of this structure is low. In comparison to maricite NaFePO4, triphylite NaFePO4 (structural analogue to LiFePO4) has one-dimensional channels for Na+-ions movement and better electrochemical activity but it is not stable and is difficult to synthesize. Herein, the maricite NaFePO4 can be obtained by sintering a polyanionic compound, Na4Fe3(PO4)2P2O7, at temperatures above 600 °C, as shown by XRD. Na4Fe3(PO4)2P2O7 is synthesized by the glycine-nitrate process after which it was sintered at temperatures above 500 °C. The glycine-nitrate process was found to catalyze the decomposition of the sintered Na4Fe3(PO4)2P2O7 to the NaFePO4 maricite. The electrochemical characterization of the sintered material, evaluated in aqueous NaNO3 and LiNO3 electrolyte by cyclic voltammetry, showed poor electrochemical activity of maricite NaFePO4. By exposing the sintered material to high anodic potentials, the electrochemical activity and specific capacity of the material were increased by 50% in case of NaNO3 and 80% in case of LiNO3 relative to the pristine with low activity. After electrochemical measurements, residual powder was characterized by FTIR and Raman spectroscopy. It was shown that high anodic polarization of the material tested in LiNO3 causes the formation of triphylite LiFePO4. Similarly, it is assumed that the electrochemical activity obtained by deep anodic polarization of the material in NaNO3 electrolyte originates from the formed triphylite NaFePO4. The obtained results open novel directions regarding the use of NaFePO4 in metal-ion rechargeable batteries.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia
T1  - Electrochemical oxidation of maricite NaFePO4 in mild aqueous solutions as a way to boost its charge storage capacity
SP  - 48
EP  - 48
ER  - 
@conference{
author = "Petrović, Tamara and Milović, Miloš and Bajuk Bogdanović, Danica and Vujković, Milica",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6971",
abstract = "Lithium has a low abundance in the Earth's crust, which in a few years will lead to difficult lithium production, and therefore difficult production of lithium-ion batteries. Sodium-ion batteries, on the other hand, have been proven to be a good replacement. The material obtained from iron combined with the phosphate and pyrophosphate compounds of sodium has attracted attention as a possible cathode material for sodium-ion batteries. NaFePO4 exists in two polymorphic structures (triphylite and maricite). Maricite NaFePO4 is a more thermodynamically stable structure than triphylite NaFePO4 but doesn’t have channels for Na+ movement and electrochemical performance of this structure is low. In comparison to maricite NaFePO4, triphylite NaFePO4 (structural analogue to LiFePO4) has one-dimensional channels for Na+-ions movement and better electrochemical activity but it is not stable and is difficult to synthesize. Herein, the maricite NaFePO4 can be obtained by sintering a polyanionic compound, Na4Fe3(PO4)2P2O7, at temperatures above 600 °C, as shown by XRD. Na4Fe3(PO4)2P2O7 is synthesized by the glycine-nitrate process after which it was sintered at temperatures above 500 °C. The glycine-nitrate process was found to catalyze the decomposition of the sintered Na4Fe3(PO4)2P2O7 to the NaFePO4 maricite. The electrochemical characterization of the sintered material, evaluated in aqueous NaNO3 and LiNO3 electrolyte by cyclic voltammetry, showed poor electrochemical activity of maricite NaFePO4. By exposing the sintered material to high anodic potentials, the electrochemical activity and specific capacity of the material were increased by 50% in case of NaNO3 and 80% in case of LiNO3 relative to the pristine with low activity. After electrochemical measurements, residual powder was characterized by FTIR and Raman spectroscopy. It was shown that high anodic polarization of the material tested in LiNO3 causes the formation of triphylite LiFePO4. Similarly, it is assumed that the electrochemical activity obtained by deep anodic polarization of the material in NaNO3 electrolyte originates from the formed triphylite NaFePO4. The obtained results open novel directions regarding the use of NaFePO4 in metal-ion rechargeable batteries.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia",
title = "Electrochemical oxidation of maricite NaFePO4 in mild aqueous solutions as a way to boost its charge storage capacity",
pages = "48-48"
}
Petrović, T., Milović, M., Bajuk Bogdanović, D.,& Vujković, M. (2019). Electrochemical oxidation of maricite NaFePO4 in mild aqueous solutions as a way to boost its charge storage capacity.
Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 48-48.
Petrović T, Milović M, Bajuk Bogdanović D, Vujković M. Electrochemical oxidation of maricite NaFePO4 in mild aqueous solutions as a way to boost its charge storage capacity. Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia. 2019;:48-48
Petrović Tamara, Milović Miloš, Bajuk Bogdanović Danica, Vujković Milica, "Electrochemical oxidation of maricite NaFePO4 in mild aqueous solutions as a way to boost its charge storage capacity" Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia (2019):48-48

Synthesis, characterization and electrochemical properties of Na0.44MnO2 in NaNO3 and LiNO3 aqueous solution

Gezović, Aleksandra; Vujković, Milica; Jugović, Dragana; Janković Častvan, Ivona; Stojković Simatović, Ivana; Mentus, Slavko

(Belgrade : Society of Physical Chemists of Serbia, 2018)

TY  - CONF
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Janković Častvan, Ivona
AU  - Stojković Simatović, Ivana
AU  - Mentus, Slavko
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4562
AB  - Na0.44MnO2 synthesized by glycine-nitrate method (GNM) was described in
this paper and it was characterized by X-ray powder diffraction (XRD) and
field-emission scanning electron microscopy (FE-SEM). Electrochemical
performances of Na0.44MnO2 were studied by cycling voltammetry (CV) at
various scan rates in NaNO3 and LiNO3 aqueous solutions in order to
compare the intercalation/deintercalation kinetics of Li+ and Na+ ions. The
initial discharge capacity was found to be 27.1 and 27.44 in the aqueous
solution of NaNO3 and LiNO3, respectively, and after 30 cycles its values
increased for 12% in both electrolytes.
PB  - Belgrade : Society of Physical Chemists of Serbia
C3  - Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018
T1  - Synthesis, characterization and electrochemical properties of Na0.44MnO2 in NaNO3 and LiNO3 aqueous solution
SP  - 407
EP  - 410
ER  - 
@conference{
author = "Gezović, Aleksandra and Vujković, Milica and Jugović, Dragana and Janković Častvan, Ivona and Stojković Simatović, Ivana and Mentus, Slavko",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4562",
abstract = "Na0.44MnO2 synthesized by glycine-nitrate method (GNM) was described in
this paper and it was characterized by X-ray powder diffraction (XRD) and
field-emission scanning electron microscopy (FE-SEM). Electrochemical
performances of Na0.44MnO2 were studied by cycling voltammetry (CV) at
various scan rates in NaNO3 and LiNO3 aqueous solutions in order to
compare the intercalation/deintercalation kinetics of Li+ and Na+ ions. The
initial discharge capacity was found to be 27.1 and 27.44 in the aqueous
solution of NaNO3 and LiNO3, respectively, and after 30 cycles its values
increased for 12% in both electrolytes.",
publisher = "Belgrade : Society of Physical Chemists of Serbia",
journal = "Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018",
title = "Synthesis, characterization and electrochemical properties of Na0.44MnO2 in NaNO3 and LiNO3 aqueous solution",
pages = "407-410"
}
Gezović, A., Vujković, M., Jugović, D., Janković Častvan, I., Stojković Simatović, I.,& Mentus, S. (2018). Synthesis, characterization and electrochemical properties of Na0.44MnO2 in NaNO3 and LiNO3 aqueous solution.
Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018
Belgrade : Society of Physical Chemists of Serbia., 407-410.
Gezović A, Vujković M, Jugović D, Janković Častvan I, Stojković Simatović I, Mentus S. Synthesis, characterization and electrochemical properties of Na0.44MnO2 in NaNO3 and LiNO3 aqueous solution. Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018. 2018;:407-410
Gezović Aleksandra, Vujković Milica, Jugović Dragana, Janković Častvan Ivona, Stojković Simatović Ivana, Mentus Slavko, "Synthesis, characterization and electrochemical properties of Na0.44MnO2 in NaNO3 and LiNO3 aqueous solution" Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018 (2018):407-410

Na0.44Mn02 as a cathode material for aqueous sodium-ion batteries

Gezović, Aleksandra; Vujković, Milica; Jugović, Dragana; Janković Častvan, Ivona; Stojković Simatović, Ivana

(Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade, 2018)

TY  - CONF
AU  - Gezović, Aleksandra
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Janković Častvan, Ivona
AU  - Stojković Simatović, Ivana
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4570
AB  - The application of rechargeable batteries is growing significantly and it became the nlost important field for largescale electric energy storage. While lithiuln-ion batteries (LIBs) have great commercial success, due to their large energy and power density, their application was limited because of the availability of lithiunl and its high cost. Sodiunl-ion batteries (SIBs) can be a promissing alternative due to the huge availability of sodium, its low price and similar intercalating electrochelnistry to LIBs. Among various Na-ion battery materials, low-cost and tunnel-type, Na0.44Mn02 (NMO) was regarded as one of the most pronlising cathode materials for sodium-ion batteries, because of its high theoretical specific capacity (122 rnA h g1) and good cyclability [2]. In this work, for the synthesis of NMO powder, rapid glycine-nitrate nlethod (GNM) was used, which, on the basis of the literature review, has not been used to synthesize this material so far.
PB  - Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade
PB  - Belgrade : Hydrogen Economy Initiative Serbia
C3  - Program and the Book of Abstracts / 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018
T1  - Na0.44Mn02 as a cathode material for aqueous sodium-ion batteries
SP  - 89
EP  - 89
ER  - 
@conference{
author = "Gezović, Aleksandra and Vujković, Milica and Jugović, Dragana and Janković Častvan, Ivona and Stojković Simatović, Ivana",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4570",
abstract = "The application of rechargeable batteries is growing significantly and it became the nlost important field for largescale electric energy storage. While lithiuln-ion batteries (LIBs) have great commercial success, due to their large energy and power density, their application was limited because of the availability of lithiunl and its high cost. Sodiunl-ion batteries (SIBs) can be a promissing alternative due to the huge availability of sodium, its low price and similar intercalating electrochelnistry to LIBs. Among various Na-ion battery materials, low-cost and tunnel-type, Na0.44Mn02 (NMO) was regarded as one of the most pronlising cathode materials for sodium-ion batteries, because of its high theoretical specific capacity (122 rnA h g1) and good cyclability [2]. In this work, for the synthesis of NMO powder, rapid glycine-nitrate nlethod (GNM) was used, which, on the basis of the literature review, has not been used to synthesize this material so far.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade : Hydrogen Economy Initiative Serbia",
journal = "Program and the Book of Abstracts / 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018",
title = "Na0.44Mn02 as a cathode material for aqueous sodium-ion batteries",
pages = "89-89"
}
Gezović, A., Vujković, M., Jugović, D., Janković Častvan, I.,& Stojković Simatović, I. (2018). Na0.44Mn02 as a cathode material for aqueous sodium-ion batteries.
Program and the Book of Abstracts / 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018
Belgrade : Hydrogen Economy Initiative Serbia., 89-89.
Gezović A, Vujković M, Jugović D, Janković Častvan I, Stojković Simatović I. Na0.44Mn02 as a cathode material for aqueous sodium-ion batteries. Program and the Book of Abstracts / 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018. 2018;:89-89
Gezović Aleksandra, Vujković Milica, Jugović Dragana, Janković Častvan Ivona, Stojković Simatović Ivana, "Na0.44Mn02 as a cathode material for aqueous sodium-ion batteries" Program and the Book of Abstracts / 3rd International Symposium on Materials for Energy Storage and Conversion - mESC-IS 2018 (2018):89-89

Morfološke i elektrohemijske karakteristike prahova LiFePO4 sintetisanih u prisustvu različitih karboksilnih kiselina

Stojković Simatović, Ivana; Jugović, Dragana; Cvjetićanin, Nikola; Vujković, Milica; Kuzmanović, Maja

(Belgrade Univerzitet u Beogradu, Fakultet za fizičku hemiju, 2017)

TY  - BOOK
AU  - Kuzmanović, Maja
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15988
UR  - http://eteze.bg.ac.rs/application/showtheses?thesesId=5007
UR  - http://nardus.mpn.gov.rs/123456789/8260
AB  - Predmet istraživanja ove doktorske disertacije je ispitivanje mogućnosti dobijanja prahova litijum gvožđe(II) fosfata (LiFePO4) novim i modifikovanim načinima sinteze. Zahvaljujući svojoj sposobnosti da reverzibilno interkalira/deinterkalira jone litijuma ovaj materijal se koristi kao katoda u litijum jonskim baterijama. Osnovni cilj ovih istraživanja je bio da se dobije čist materijal bez prisustva nečistoća, koji će imati pogodne fizičkohemijske karakteristike za elektrohemijsku primenu. Parametri kristalne građe mogu značajno uticati na elektrohemijske osobine, tako da je cilj istraživanja bio da se ovaj uticaj razjasni i da se sintetišu materijali koji bi u ovom smislu imali najoptimalniju morfologiju i ostale mikrostrukturne osobine. Polazeći iz vodenih rastvora, koji su se sastojali od jona litijuma, gvožđa i fosfora pomešanih u odnosu koji zadovoljava stehiometriju LiFePO4 i odgovarajuće karboksilne kiseline, dobijene su prekursorske smeše mikroemulzionom metodom, koprecipitacijom i liofilizacijom koje su dalje termički tretirane. Prekursorska smeša dobijena mikroemulzionom metodom je solvotermalno tretirana na temperaturi od 180 oC, dok su prekursorske smeše dobijene koprecipitacijom i liofilizacijom termički tretirane na visokim temperaturama (600-800 oC) u cilju dobijanja kristalnog praha LiFePO4. Korišćenjem eksperimentalnih tehnika rendgenske difrakcije na prahu, skenirajuće elektronske mikroskopije, Mesbauerove spektroskopije, rasejanja laserske svetlosti, termičke analize i elektrohemijske analize ispitan je uticaj različitih karboksilnih kiselina kao redukcionog sredstva i izvora ugljenika na morfološke i elektrohemijske karakteristike sintetisanih prahova.
AB  - The subject of this PhD thesis is investigation of possibility to synthesize lithium iron (II) phosphate (LiFePO4) powders with new and modified synthesis procedures. Due to its ability to reversibly intercalate/deintercalate lithium ions, this material is used as a cathode in lithium ion batteries. The main objective of this research was to synthesize pure material without any phase impurities, which would have appropriate physical chemical properties for electrochemical applications. Crystal lattice parameters can significantly influence electrochemical properties, and this thesis aim is to clarify this relation and to synthesize materials with optimal morphology and other microstructural properties. Starting from mixed aqueous solution of lithium, phosphorus and iron ions in stoichiometric ratio and different carboxylic acids, precursors mixtures were prepared by microemulsion, coprecipitation and lyophilisation techniques, and afterwards were thermally treated. To prepare crystal LiFePO4 powders, microemulsion-derived precursor mixture was solvothermally treated at 180 oC, while precursor mixtures obtained by coprecipitation and lyophilisation were thermally treated at high temperatures (600-800 oC). X-ray powder diffraction, scanning electron microscopy, Mossbauer spectroscopy, laser light scattering, and thermal and electrochemical analyses were used to investigate the influence of different carboxylic acids as reducing agents and carbon sources on morphological and electrochemical properties of synthesized powders
PB  - Belgrade Univerzitet u Beogradu, Fakultet za fizičku hemiju
T1  - Morfološke i elektrohemijske karakteristike prahova LiFePO4 sintetisanih u prisustvu različitih karboksilnih kiselina
T1  - Morfological and electrochemical properties of LiFePO4 powders synthesized in presence of different carboxylic acids
ER  - 
@phdthesis{
editor = "Stojković Simatović, Ivana, Jugović, Dragana, Cvjetićanin, Nikola, Vujković, Milica",
author = "Kuzmanović, Maja",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/15988, http://eteze.bg.ac.rs/application/showtheses?thesesId=5007, http://nardus.mpn.gov.rs/123456789/8260",
abstract = "Predmet istraživanja ove doktorske disertacije je ispitivanje mogućnosti dobijanja prahova litijum gvožđe(II) fosfata (LiFePO4) novim i modifikovanim načinima sinteze. Zahvaljujući svojoj sposobnosti da reverzibilno interkalira/deinterkalira jone litijuma ovaj materijal se koristi kao katoda u litijum jonskim baterijama. Osnovni cilj ovih istraživanja je bio da se dobije čist materijal bez prisustva nečistoća, koji će imati pogodne fizičkohemijske karakteristike za elektrohemijsku primenu. Parametri kristalne građe mogu značajno uticati na elektrohemijske osobine, tako da je cilj istraživanja bio da se ovaj uticaj razjasni i da se sintetišu materijali koji bi u ovom smislu imali najoptimalniju morfologiju i ostale mikrostrukturne osobine. Polazeći iz vodenih rastvora, koji su se sastojali od jona litijuma, gvožđa i fosfora pomešanih u odnosu koji zadovoljava stehiometriju LiFePO4 i odgovarajuće karboksilne kiseline, dobijene su prekursorske smeše mikroemulzionom metodom, koprecipitacijom i liofilizacijom koje su dalje termički tretirane. Prekursorska smeša dobijena mikroemulzionom metodom je solvotermalno tretirana na temperaturi od 180 oC, dok su prekursorske smeše dobijene koprecipitacijom i liofilizacijom termički tretirane na visokim temperaturama (600-800 oC) u cilju dobijanja kristalnog praha LiFePO4. Korišćenjem eksperimentalnih tehnika rendgenske difrakcije na prahu, skenirajuće elektronske mikroskopije, Mesbauerove spektroskopije, rasejanja laserske svetlosti, termičke analize i elektrohemijske analize ispitan je uticaj različitih karboksilnih kiselina kao redukcionog sredstva i izvora ugljenika na morfološke i elektrohemijske karakteristike sintetisanih prahova., The subject of this PhD thesis is investigation of possibility to synthesize lithium iron (II) phosphate (LiFePO4) powders with new and modified synthesis procedures. Due to its ability to reversibly intercalate/deintercalate lithium ions, this material is used as a cathode in lithium ion batteries. The main objective of this research was to synthesize pure material without any phase impurities, which would have appropriate physical chemical properties for electrochemical applications. Crystal lattice parameters can significantly influence electrochemical properties, and this thesis aim is to clarify this relation and to synthesize materials with optimal morphology and other microstructural properties. Starting from mixed aqueous solution of lithium, phosphorus and iron ions in stoichiometric ratio and different carboxylic acids, precursors mixtures were prepared by microemulsion, coprecipitation and lyophilisation techniques, and afterwards were thermally treated. To prepare crystal LiFePO4 powders, microemulsion-derived precursor mixture was solvothermally treated at 180 oC, while precursor mixtures obtained by coprecipitation and lyophilisation were thermally treated at high temperatures (600-800 oC). X-ray powder diffraction, scanning electron microscopy, Mossbauer spectroscopy, laser light scattering, and thermal and electrochemical analyses were used to investigate the influence of different carboxylic acids as reducing agents and carbon sources on morphological and electrochemical properties of synthesized powders",
publisher = "Belgrade Univerzitet u Beogradu, Fakultet za fizičku hemiju",
title = "Morfološke i elektrohemijske karakteristike prahova LiFePO4 sintetisanih u prisustvu različitih karboksilnih kiselina, Morfological and electrochemical properties of LiFePO4 powders synthesized in presence of different carboxylic acids"
}
Stojković Simatović, I., Jugović, D., Cvjetićanin, N., Vujković, M.,& Kuzmanović, M. (2017). Morfological and electrochemical properties of LiFePO4 powders synthesized in presence of different carboxylic acids.

Belgrade Univerzitet u Beogradu, Fakultet za fizičku hemiju..
Stojković Simatović I, Jugović D, Cvjetićanin N, Vujković M, Kuzmanović M. Morfological and electrochemical properties of LiFePO4 powders synthesized in presence of different carboxylic acids. 2017;
Stojković Simatović Ivana, Jugović Dragana, Cvjetićanin Nikola, Vujković Milica, Kuzmanović Maja, "Morfological and electrochemical properties of LiFePO4 powders synthesized in presence of different carboxylic acids" (2017)

Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior

Aleksić, Obrad S.; Vasiljević, Zorka Ž.; Vujković, Milica; Nikolić, Marko G.; Labus, Nebojša; Luković, Miloljub D.; Nikolić, Maria Vesna

(Springer US, 2017)

TY  - JOUR
AU  - Aleksić, Obrad S.
AU  - Vasiljević, Zorka Ž.
AU  - Vujković, Milica
AU  - Nikolić, Marko G.
AU  - Labus, Nebojša
AU  - Luković, Miloljub D.
AU  - Nikolić, Maria Vesna
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/16011
AB  - Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900°C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV–Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (~12 mA cm−2 at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookite and low-cost screen printing technology.
PB  - Springer US
T2  - Journal of Materials Science
T1  - Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior
SP  - 5938
EP  - 5953
VL  - 52
IS  - 10
DO  - 10.1007/s10853-017-0830-2
ER  - 
@article{
author = "Aleksić, Obrad S. and Vasiljević, Zorka Ž. and Vujković, Milica and Nikolić, Marko G. and Labus, Nebojša and Luković, Miloljub D. and Nikolić, Maria Vesna",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/16011",
abstract = "Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900°C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV–Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (~12 mA cm−2 at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookite and low-cost screen printing technology.",
publisher = "Springer US",
journal = "Journal of Materials Science",
title = "Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior",
pages = "5938-5953",
volume = "52",
number = "10",
doi = "10.1007/s10853-017-0830-2"
}
Aleksić, O. S., Vasiljević, Z. Ž., Vujković, M., Nikolić, M. G., Labus, N., Luković, M. D.,& Nikolić, M. V. (2017). Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior.
Journal of Materials Science
Springer US., 52(10), 5938-5953.
https://doi.org/10.1007/s10853-017-0830-2
Aleksić OS, Vasiljević ZŽ, Vujković M, Nikolić MG, Labus N, Luković MD, Nikolić MV. Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior. Journal of Materials Science. 2017;52(10):5938-5953
Aleksić Obrad S., Vasiljević Zorka Ž., Vujković Milica, Nikolić Marko G., Labus Nebojša, Luković Miloljub D., Nikolić Maria Vesna, "Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior" Journal of Materials Science, 52, no. 10 (2017):5938-5953,
https://doi.org/10.1007/s10853-017-0830-2 .
3
3
3

Fabrication, characterization and photoelectrochemical behavior of Fe2TiO5 screen printed thick films

Vasiljević, Zorka Ž.; Aleksić, Obrad S.; Luković, Miloljub D.; Vujković, Milica; Pavlović, Vladimir B.; Labus, Nebojša; Nikolić, Maria Vesna

(Belgrade : Institute of Technical Sciences of the Serbian Academz of Sciences and Arts, 2016)

TY  - CONF
AU  - Vasiljević, Zorka Ž.
AU  - Aleksić, Obrad S.
AU  - Luković, Miloljub D.
AU  - Vujković, Milica
AU  - Pavlović, Vladimir B.
AU  - Labus, Nebojša
AU  - Nikolić, Maria Vesna
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/893
AB  - Pseudobrookite paste was composed of a mixture of starting nanopowders of hematite (α-Fe2O3) and anatase (TiO2) in the molar ratio 1:1.5, organic vehicle and glass frit. The paste was screen printed on on fluorine-doped tin oxide (FTO) glass substrate using screen printing technology. Structural, morphological and optical studies have been carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The photo-electrochemical performance of Fe2TiO5 screen printed thick film was examined under xenon lamp illumination in 1 M NaOH electrolyte.
PB  - Belgrade : Institute of Technical Sciences of the Serbian Academz of Sciences and Arts
C3  - Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade
T1  - Fabrication, characterization and photoelectrochemical behavior of Fe2TiO5 screen printed thick films
SP  - 45
EP  - 45
ER  - 
@conference{
author = "Vasiljević, Zorka Ž. and Aleksić, Obrad S. and Luković, Miloljub D. and Vujković, Milica and Pavlović, Vladimir B. and Labus, Nebojša and Nikolić, Maria Vesna",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/893",
abstract = "Pseudobrookite paste was composed of a mixture of starting nanopowders of hematite (α-Fe2O3) and anatase (TiO2) in the molar ratio 1:1.5, organic vehicle and glass frit. The paste was screen printed on on fluorine-doped tin oxide (FTO) glass substrate using screen printing technology. Structural, morphological and optical studies have been carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The photo-electrochemical performance of Fe2TiO5 screen printed thick film was examined under xenon lamp illumination in 1 M NaOH electrolyte.",
publisher = "Belgrade : Institute of Technical Sciences of the Serbian Academz of Sciences and Arts",
journal = "Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade",
title = "Fabrication, characterization and photoelectrochemical behavior of Fe2TiO5 screen printed thick films",
pages = "45-45"
}
Vasiljević, Z. Ž., Aleksić, O. S., Luković, M. D., Vujković, M., Pavlović, V. B., Labus, N.,& Nikolić, M. V. (2016). Fabrication, characterization and photoelectrochemical behavior of Fe2TiO5 screen printed thick films.
Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade
Belgrade : Institute of Technical Sciences of the Serbian Academz of Sciences and Arts., 45-45.
Vasiljević ZŽ, Aleksić OS, Luković MD, Vujković M, Pavlović VB, Labus N, Nikolić MV. Fabrication, characterization and photoelectrochemical behavior of Fe2TiO5 screen printed thick films. Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade. 2016;:45-45
Vasiljević Zorka Ž., Aleksić Obrad S., Luković Miloljub D., Vujković Milica, Pavlović Vladimir B., Labus Nebojša, Nikolić Maria Vesna, "Fabrication, characterization and photoelectrochemical behavior of Fe2TiO5 screen printed thick films" Program and the Book of Abstracts / Fifteenth Young Researchers' Conference Materials Sciences and Engineering, December 7-9, 2016, Belgrade (2016):45-45

The LiFe(1-x)VxPO4/C Composite Synthesized by Gel-Combustion Method, with Improved Rate Capability and Cycle Life in Aerated Aqueous Solutions

Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag; Stojković, Ivana; Cvjetićanin, Nikola; Mentus, Slavko

(Elsevier, 2013)

TY  - JOUR
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Stojković, Ivana
AU  - Cvjetićanin, Nikola
AU  - Mentus, Slavko
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/384
AB  - The nitrate-(glycine + malonic acid)-assisted gel-combustion process, followed by a heat treatment at 750 °C under reductive atmosphere, was used as a fast and effective way to synthesize vanadium doped olivine incorporated in carbon matrix, of general formula LiFe(1−x)VxPO4/C. The two-phased Rietveld refinement confirmed that vanadium incorporation into olivine structure was complete. The heating under reduction atmosphere caused the formation of iron phosphide to some extent, the concentration was determined by Rietveld analysis. The capacity and rate capability of these composites were tested by both cyclic voltammetry and galvanostatic cycling. Specifically, the average discharging capacities of the composite with x = 0.055, determined in an saturated aqueous LiNO3 solution equilibrated with air, at the rates of 1, 10 and 100 C, amounted to 91, 73 and 35 mAh g−1, respectively, with no perceivable capacity fade.
PB  - Elsevier
T2  - Electrochimica Acta
T1  - The LiFe(1-x)VxPO4/C Composite Synthesized by Gel-Combustion Method, with Improved Rate Capability and Cycle Life in Aerated Aqueous Solutions
SP  - 835
EP  - 842
VL  - 109
DO  - 10.1016/j.electacta.2013.07.219
ER  - 
@article{
author = "Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag and Stojković, Ivana and Cvjetićanin, Nikola and Mentus, Slavko",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/384",
abstract = "The nitrate-(glycine + malonic acid)-assisted gel-combustion process, followed by a heat treatment at 750 °C under reductive atmosphere, was used as a fast and effective way to synthesize vanadium doped olivine incorporated in carbon matrix, of general formula LiFe(1−x)VxPO4/C. The two-phased Rietveld refinement confirmed that vanadium incorporation into olivine structure was complete. The heating under reduction atmosphere caused the formation of iron phosphide to some extent, the concentration was determined by Rietveld analysis. The capacity and rate capability of these composites were tested by both cyclic voltammetry and galvanostatic cycling. Specifically, the average discharging capacities of the composite with x = 0.055, determined in an saturated aqueous LiNO3 solution equilibrated with air, at the rates of 1, 10 and 100 C, amounted to 91, 73 and 35 mAh g−1, respectively, with no perceivable capacity fade.",
publisher = "Elsevier",
journal = "Electrochimica Acta",
title = "The LiFe(1-x)VxPO4/C Composite Synthesized by Gel-Combustion Method, with Improved Rate Capability and Cycle Life in Aerated Aqueous Solutions",
pages = "835-842",
volume = "109",
doi = "10.1016/j.electacta.2013.07.219"
}
Vujković, M., Jugović, D., Mitrić, M., Stojković, I., Cvjetićanin, N.,& Mentus, S. (2013). The LiFe(1-x)VxPO4/C Composite Synthesized by Gel-Combustion Method, with Improved Rate Capability and Cycle Life in Aerated Aqueous Solutions.
Electrochimica Acta
Elsevier., 109, 835-842.
https://doi.org/10.1016/j.electacta.2013.07.219
Vujković M, Jugović D, Mitrić M, Stojković I, Cvjetićanin N, Mentus S. The LiFe(1-x)VxPO4/C Composite Synthesized by Gel-Combustion Method, with Improved Rate Capability and Cycle Life in Aerated Aqueous Solutions. Electrochimica Acta. 2013;109:835-842
Vujković Milica, Jugović Dragana, Mitrić Miodrag, Stojković Ivana, Cvjetićanin Nikola, Mentus Slavko, "The LiFe(1-x)VxPO4/C Composite Synthesized by Gel-Combustion Method, with Improved Rate Capability and Cycle Life in Aerated Aqueous Solutions" Electrochimica Acta, 109 (2013):835-842,
https://doi.org/10.1016/j.electacta.2013.07.219 .
19
23
22

The incorporation of vanadium into olivine LiFePO4/C: improvement of lithium intercalation from both organic and aqueous electrolyte

Vujković, Milica; Jugović, Dragana; Mitrić, Miodrag; Stojković Simatović, Ivana; Cvjetićanin, Nikola; Mentus, Slavko

(Belgrade : Materials Research Society of Serbia, 2013)

TY  - CONF
AU  - Vujković, Milica
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Stojković Simatović, Ivana
AU  - Cvjetićanin, Nikola
AU  - Mentus, Slavko
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/407
AB  - The simple and fast (malonic acid+glycine)-assisted gel-combustion process, followed by a heat treatment at 750oC under reductive atmosphere, is found to be a very effective way for the synthesis of (V-doped LiFePO4)/C composites. The Rietveld refinement confirms that vanadium incorporation into olivine structure was accompanied by the formation of iron phosphide conducting phase. The coulombic capacity and rate capability of (V-doped LiFePO4)/C composite, in both organic and aqueous electrolyte solutions, were significantly improved relative to an undoped sample, as revealed by both galvanostatic cycling and cyclic voltammetry. The average discharging capacities of ~5mol.%V-doped LiFePO4/C composite in an aqueous LiNO3 solution were 91, 73 and 35 mAh g-1 at 1, 10 and 100 C, respectively, with no perceivable capacity fade upon 100 charging/discharging cycles.
PB  - Belgrade : Materials Research Society of Serbia
C3  - The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts
T1  - The incorporation of vanadium into olivine LiFePO4/C: improvement of lithium intercalation from both organic and aqueous electrolyte
SP  - 101
EP  - 101
ER  - 
@conference{
author = "Vujković, Milica and Jugović, Dragana and Mitrić, Miodrag and Stojković Simatović, Ivana and Cvjetićanin, Nikola and Mentus, Slavko",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/407",
abstract = "The simple and fast (malonic acid+glycine)-assisted gel-combustion process, followed by a heat treatment at 750oC under reductive atmosphere, is found to be a very effective way for the synthesis of (V-doped LiFePO4)/C composites. The Rietveld refinement confirms that vanadium incorporation into olivine structure was accompanied by the formation of iron phosphide conducting phase. The coulombic capacity and rate capability of (V-doped LiFePO4)/C composite, in both organic and aqueous electrolyte solutions, were significantly improved relative to an undoped sample, as revealed by both galvanostatic cycling and cyclic voltammetry. The average discharging capacities of ~5mol.%V-doped LiFePO4/C composite in an aqueous LiNO3 solution were 91, 73 and 35 mAh g-1 at 1, 10 and 100 C, respectively, with no perceivable capacity fade upon 100 charging/discharging cycles.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts",
title = "The incorporation of vanadium into olivine LiFePO4/C: improvement of lithium intercalation from both organic and aqueous electrolyte",
pages = "101-101"
}
Vujković, M., Jugović, D., Mitrić, M., Stojković Simatović, I., Cvjetićanin, N.,& Mentus, S. (2013). The incorporation of vanadium into olivine LiFePO4/C: improvement of lithium intercalation from both organic and aqueous electrolyte.
The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts
Belgrade : Materials Research Society of Serbia., 101-101.
Vujković M, Jugović D, Mitrić M, Stojković Simatović I, Cvjetićanin N, Mentus S. The incorporation of vanadium into olivine LiFePO4/C: improvement of lithium intercalation from both organic and aqueous electrolyte. The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts. 2013;:101-101
Vujković Milica, Jugović Dragana, Mitrić Miodrag, Stojković Simatović Ivana, Cvjetićanin Nikola, Mentus Slavko, "The incorporation of vanadium into olivine LiFePO4/C: improvement of lithium intercalation from both organic and aqueous electrolyte" The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts (2013):101-101