Stojković Šimatović, Ivana

Link to this page

Authority KeyName Variants
7b9246d4-5102-491e-b20f-b94b01b7af63
  • Stojković Šimatović, Ivana (1)

Author's Bibliography

The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries

Rakočević, Lazar; Štrbac, Svetlana; Potočnik, Jelena; Popović, Maja; Jugović, Dragana; Stojković Šimatović, Ivana

(Elsevier, 2021)

TY  - JOUR
AU  - Rakočević, Lazar
AU  - Štrbac, Svetlana
AU  - Potočnik, Jelena
AU  - Popović, Maja
AU  - Jugović, Dragana
AU  - Stojković Šimatović, Ivana
PY  - 2021
AB  - Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 ◦C, while 3-D tunnel structured Na0⋅4MnO2 and Na0⋅44MnO2, both with rod-like morphology, were obtained at 800 ◦C and 900 ◦C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0⋅44MnO2 obtained at 900 ◦C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.
PB  - Elsevier
T2  - Ceramics International
T1  - The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries
SP  - 4595
EP  - 4603
VL  - 47
IS  - 4
DO  - 10.1016/j.ceramint.2020.10.025
UR  - https://hdl.handle.net/21.15107/rcub_dais_11229
ER  - 
@article{
author = "Rakočević, Lazar and Štrbac, Svetlana and Potočnik, Jelena and Popović, Maja and Jugović, Dragana and Stojković Šimatović, Ivana",
year = "2021",
abstract = "Cathodic material for sodium-ion rechargeable batteries based on NaxMnO2 were synthesized by glycine nitrate method and subsequent annealing at high temperatures. Different crystal structures with different morphologies were obtained depending on the annealing temperature: hexagonal layeredα-Na0.7MnO2.05 nanoplates were obtained at 850 ◦C, while 3-D tunnel structured Na0⋅4MnO2 and Na0⋅44MnO2, both with rod-like morphology, were obtained at 800 ◦C and 900 ◦C, respectively. The investigations of the electrochemical behavior of obtained cathodic materials in aqueous NaNO3 solution have shown that Na0⋅44MnO2 obtained at 900 ◦C has shown the best battery performance. Its initial discharge capacities are 123.5 mA h/g, 113.2 mA h/g, and 102.0 mA h/g at the high current densities of 1000, 2000 and 5000 mA/g, respectively.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries",
pages = "4595-4603",
volume = "47",
number = "4",
doi = "10.1016/j.ceramint.2020.10.025",
url = "https://hdl.handle.net/21.15107/rcub_dais_11229"
}
Rakočević, L., Štrbac, S., Potočnik, J., Popović, M., Jugović, D.,& Stojković Šimatović, I. (2021). The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries.
Ceramics International
Elsevier., 47(4), 4595-4603.
https://doi.org/10.1016/j.ceramint.2020.10.025
Rakočević L, Štrbac S, Potočnik J, Popović M, Jugović D, Stojković Šimatović I. The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. Ceramics International. 2021;47(4):4595-4603.
doi:10.1016/j.ceramint.2020.10.025.
Rakočević Lazar, Štrbac Svetlana, Potočnik Jelena, Popović Maja, Jugović Dragana, Stojković Šimatović Ivana, "The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries" Ceramics International, 47, no. 4 (2021):4595-4603,
https://doi.org/10.1016/j.ceramint.2020.10.025 .