Postole, Georgeta

Link to this page

Authority KeyName Variants
c26e1f6a-e46e-4dc3-9835-e0d48b0d011a
  • Postole, Georgeta (1)
Projects
No records found.

Author's Bibliography

Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent

Obradović, Nina; Filipović, Suzana; Rusmirović, Jelena; Postole, Georgeta; Marinković, Aleksandar; Radić, Danka; Rakić, Vesna M.; Pavlović, Vladimir B.; Auroux, Aline

(Belgrade : International Institute for the Science of Sintering, 2017)

TY  - JOUR
AU  - Obradović, Nina
AU  - Filipović, Suzana
AU  - Rusmirović, Jelena
AU  - Postole, Georgeta
AU  - Marinković, Aleksandar
AU  - Radić, Danka
AU  - Rakić, Vesna M.
AU  - Pavlović, Vladimir B.
AU  - Auroux, Aline
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/2384
AB  - In this paper, synthesis of porous wollastonite-based ceramics was reported. Ceramic precursor, methylhydrocyclosiloxane, together with micro-sized CaCO3, was used as starting material. After 20 min of ultrasound treatment, and calcination at 250 oC for 30 min, yeast as a pore-forming agent was added to the as-obtained powders. Sintering regime was set up based on the results obtained by differential thermal analysis. Prepared mixture was pressed into pallets and sintered at 900 oC for 1 h. After the sintering regime, porous wollastonite-based ceramics was obtained. The phase composition of the sintered samples as well as microstructures was analyzed by X-ray diffraction method and SEM. In a batch test, the influence of pH, contact time and initial ion concentration on adsorption efficiency of As+5, Cr+6, and phosphate ions on synthesized wollastonite-based ceramics were studied. Time-dependent adsorption was best described by pseudo-second-order kinetic model and Weber-Morris model that predicted intra-particle diffusion as a rate-controlling step of overall process. High adsorption capacities 39.97, 21.87, and 15.29 mgg-1 were obtained for As+5, Cr+6, and phosphate ions, respectively.
PB  - Belgrade : International Institute for the Science of Sintering
T2  - Science of Sintering
T1  - Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent
SP  - 235
EP  - 246
VL  - 49
IS  - 3
DO  - 10.2298/SOS1703235O
UR  - https://hdl.handle.net/21.15107/rcub_dais_2384
ER  - 
@article{
author = "Obradović, Nina and Filipović, Suzana and Rusmirović, Jelena and Postole, Georgeta and Marinković, Aleksandar and Radić, Danka and Rakić, Vesna M. and Pavlović, Vladimir B. and Auroux, Aline",
year = "2017",
abstract = "In this paper, synthesis of porous wollastonite-based ceramics was reported. Ceramic precursor, methylhydrocyclosiloxane, together with micro-sized CaCO3, was used as starting material. After 20 min of ultrasound treatment, and calcination at 250 oC for 30 min, yeast as a pore-forming agent was added to the as-obtained powders. Sintering regime was set up based on the results obtained by differential thermal analysis. Prepared mixture was pressed into pallets and sintered at 900 oC for 1 h. After the sintering regime, porous wollastonite-based ceramics was obtained. The phase composition of the sintered samples as well as microstructures was analyzed by X-ray diffraction method and SEM. In a batch test, the influence of pH, contact time and initial ion concentration on adsorption efficiency of As+5, Cr+6, and phosphate ions on synthesized wollastonite-based ceramics were studied. Time-dependent adsorption was best described by pseudo-second-order kinetic model and Weber-Morris model that predicted intra-particle diffusion as a rate-controlling step of overall process. High adsorption capacities 39.97, 21.87, and 15.29 mgg-1 were obtained for As+5, Cr+6, and phosphate ions, respectively.",
publisher = "Belgrade : International Institute for the Science of Sintering",
journal = "Science of Sintering",
title = "Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent",
pages = "235-246",
volume = "49",
number = "3",
doi = "10.2298/SOS1703235O",
url = "https://hdl.handle.net/21.15107/rcub_dais_2384"
}
Obradović, N., Filipović, S., Rusmirović, J., Postole, G., Marinković, A., Radić, D., Rakić, V. M., Pavlović, V. B.,& Auroux, A.. (2017). Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent. in Science of Sintering
Belgrade : International Institute for the Science of Sintering., 49(3), 235-246.
https://doi.org/10.2298/SOS1703235O
https://hdl.handle.net/21.15107/rcub_dais_2384
Obradović N, Filipović S, Rusmirović J, Postole G, Marinković A, Radić D, Rakić VM, Pavlović VB, Auroux A. Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent. in Science of Sintering. 2017;49(3):235-246.
doi:10.2298/SOS1703235O
https://hdl.handle.net/21.15107/rcub_dais_2384 .
Obradović, Nina, Filipović, Suzana, Rusmirović, Jelena, Postole, Georgeta, Marinković, Aleksandar, Radić, Danka, Rakić, Vesna M., Pavlović, Vladimir B., Auroux, Aline, "Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent" in Science of Sintering, 49, no. 3 (2017):235-246,
https://doi.org/10.2298/SOS1703235O .,
https://hdl.handle.net/21.15107/rcub_dais_2384 .
2
2
5