Marković, Bojana

Link to this page

Authority KeyName Variants
413fd2aa-bbd5-4ab3-9ae2-6d4921b7a3ea
  • Marković, Bojana (7)

Author's Bibliography

Forensic science and fractal nature analysis

Mitić, Vojislav V.; Lazović, Goran; Radosavljevic-Mihajlovic, Ana S.; Milosević, Dusan; Marković, Bojana; Simeunović, Dragan; Vlahović, Branislav

(World Scientific Pub Co Pte Ltd, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Radosavljevic-Mihajlovic, Ana S.
AU  - Milosević, Dusan
AU  - Marković, Bojana
AU  - Simeunović, Dragan
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12393
AB  - Forensic photography, also referred to as crime scene photography, is an activity that records the initial appearance of the crime scene and physical evidence in order to provide a permanent record for the court. Nowadays, we cannot imagine a crime scene investigation without photographic evidence. Crime or accident scene photographs can often be reanalyzed in cold cases or when the images need to be enlarged to show critical details. Fractals are rough or fragmented geometric shapes that can be subdivided into parts, each of which is a reduced copy of the whole. Fractal dimension (FD) is an important fractal geometry feature. There are many applications of fractals in various forensic fields, including image processing, image analysis, texture segmentation, shape classification, and identifying the image features such as roughness and smoothness of an image. Fractal analysis is applicable in forensic archeology and paleontology, as well. The damaged image can be reviewed, analyzed, and reconstructed by fractal nature analysis.
PB  - World Scientific Pub Co Pte Ltd
T2  - Modern Physics Letters B
T1  - Forensic science and fractal nature analysis
VL  - 35
IS  - 32
DO  - 10.1142/S0217984921504935
UR  - https://hdl.handle.net/21.15107/rcub_dais_12393
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Radosavljevic-Mihajlovic, Ana S. and Milosević, Dusan and Marković, Bojana and Simeunović, Dragan and Vlahović, Branislav",
year = "2021",
abstract = "Forensic photography, also referred to as crime scene photography, is an activity that records the initial appearance of the crime scene and physical evidence in order to provide a permanent record for the court. Nowadays, we cannot imagine a crime scene investigation without photographic evidence. Crime or accident scene photographs can often be reanalyzed in cold cases or when the images need to be enlarged to show critical details. Fractals are rough or fragmented geometric shapes that can be subdivided into parts, each of which is a reduced copy of the whole. Fractal dimension (FD) is an important fractal geometry feature. There are many applications of fractals in various forensic fields, including image processing, image analysis, texture segmentation, shape classification, and identifying the image features such as roughness and smoothness of an image. Fractal analysis is applicable in forensic archeology and paleontology, as well. The damaged image can be reviewed, analyzed, and reconstructed by fractal nature analysis.",
publisher = "World Scientific Pub Co Pte Ltd",
journal = "Modern Physics Letters B",
title = "Forensic science and fractal nature analysis",
volume = "35",
number = "32",
doi = "10.1142/S0217984921504935",
url = "https://hdl.handle.net/21.15107/rcub_dais_12393"
}
Mitić, V. V., Lazović, G., Radosavljevic-Mihajlovic, A. S., Milosević, D., Marković, B., Simeunović, D.,& Vlahović, B.. (2021). Forensic science and fractal nature analysis. in Modern Physics Letters B
World Scientific Pub Co Pte Ltd., 35(32).
https://doi.org/10.1142/S0217984921504935
https://hdl.handle.net/21.15107/rcub_dais_12393
Mitić VV, Lazović G, Radosavljevic-Mihajlovic AS, Milosević D, Marković B, Simeunović D, Vlahović B. Forensic science and fractal nature analysis. in Modern Physics Letters B. 2021;35(32).
doi:10.1142/S0217984921504935
https://hdl.handle.net/21.15107/rcub_dais_12393 .
Mitić, Vojislav V., Lazović, Goran, Radosavljevic-Mihajlovic, Ana S., Milosević, Dusan, Marković, Bojana, Simeunović, Dragan, Vlahović, Branislav, "Forensic science and fractal nature analysis" in Modern Physics Letters B, 35, no. 32 (2021),
https://doi.org/10.1142/S0217984921504935 .,
https://hdl.handle.net/21.15107/rcub_dais_12393 .

Fractal nature analysis in porous structured bio-ceramics

Mitić, Vojislav V.; Chen, Po-Yu; Chou, Yueh-Ying; Ilić, Ivana D.; Marković, Bojana; Lazović, Goran

(World Scientific Pub Co Pte Ltd, 2021)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Chen, Po-Yu
AU  - Chou, Yueh-Ying
AU  - Ilić, Ivana D.
AU  - Marković, Bojana
AU  - Lazović, Goran
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12394
AB  - Hydroxyapatite scaffold is a type of bio-ceramic. Its cellular design has similarities with the morphologies in nature. Therefore, it is very important to control the structure, especially the porosity, as one of the main features for bio-ceramics applications. According to some literature, freeze casting can form the shape of dendrites and remain a foam structure after ice sublimation. Ice nucleation became more heterogeneous with the aid of printing materials during freeze casting. This procedure can even improve the issue of crack formation. In this paper, we studied the mechanical properties of hydroxyapatite scaffold. We also analyzed the porosity by fractal nature characterization, and successfully reconstructed pore shape, which is important for predicting ceramic morphology. We applied SEM analysis on bio-ceramic samples, at four different magnifications for the same pore structure. This is important for fractal analysis and pores reconstruction. We calculated the fractal dimensions based on measurements. In this way, we completed the fractal characterization of porosity and confirmed possibilities for successful porous shapes reconstruction. In this paper, we confirmed, for the first time, that fractal nature can be successfully applied in the area of porous bio-ceramics.
PB  - World Scientific Pub Co Pte Ltd
T2  - Modern Physics Letters B
T1  - Fractal nature analysis in porous structured bio-ceramics
SP  - 2150318
VL  - 35
IS  - 12
DO  - 10.1142/S0217984921503188
UR  - https://hdl.handle.net/21.15107/rcub_dais_12394
ER  - 
@article{
author = "Mitić, Vojislav V. and Chen, Po-Yu and Chou, Yueh-Ying and Ilić, Ivana D. and Marković, Bojana and Lazović, Goran",
year = "2021",
abstract = "Hydroxyapatite scaffold is a type of bio-ceramic. Its cellular design has similarities with the morphologies in nature. Therefore, it is very important to control the structure, especially the porosity, as one of the main features for bio-ceramics applications. According to some literature, freeze casting can form the shape of dendrites and remain a foam structure after ice sublimation. Ice nucleation became more heterogeneous with the aid of printing materials during freeze casting. This procedure can even improve the issue of crack formation. In this paper, we studied the mechanical properties of hydroxyapatite scaffold. We also analyzed the porosity by fractal nature characterization, and successfully reconstructed pore shape, which is important for predicting ceramic morphology. We applied SEM analysis on bio-ceramic samples, at four different magnifications for the same pore structure. This is important for fractal analysis and pores reconstruction. We calculated the fractal dimensions based on measurements. In this way, we completed the fractal characterization of porosity and confirmed possibilities for successful porous shapes reconstruction. In this paper, we confirmed, for the first time, that fractal nature can be successfully applied in the area of porous bio-ceramics.",
publisher = "World Scientific Pub Co Pte Ltd",
journal = "Modern Physics Letters B",
title = "Fractal nature analysis in porous structured bio-ceramics",
pages = "2150318",
volume = "35",
number = "12",
doi = "10.1142/S0217984921503188",
url = "https://hdl.handle.net/21.15107/rcub_dais_12394"
}
Mitić, V. V., Chen, P., Chou, Y., Ilić, I. D., Marković, B.,& Lazović, G.. (2021). Fractal nature analysis in porous structured bio-ceramics. in Modern Physics Letters B
World Scientific Pub Co Pte Ltd., 35(12), 2150318.
https://doi.org/10.1142/S0217984921503188
https://hdl.handle.net/21.15107/rcub_dais_12394
Mitić VV, Chen P, Chou Y, Ilić ID, Marković B, Lazović G. Fractal nature analysis in porous structured bio-ceramics. in Modern Physics Letters B. 2021;35(12):2150318.
doi:10.1142/S0217984921503188
https://hdl.handle.net/21.15107/rcub_dais_12394 .
Mitić, Vojislav V., Chen, Po-Yu, Chou, Yueh-Ying, Ilić, Ivana D., Marković, Bojana, Lazović, Goran, "Fractal nature analysis in porous structured bio-ceramics" in Modern Physics Letters B, 35, no. 12 (2021):2150318,
https://doi.org/10.1142/S0217984921503188 .,
https://hdl.handle.net/21.15107/rcub_dais_12394 .
1
1

Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion

Aleksić, Sanja; Marković, Bojana; Mitić, Vojislav V.; Milošević, Dušan; Milošević, Mimica; Soković, Marina; Vlahović, Branislav

(World Scientific Publishing Company, 2021)

TY  - JOUR
AU  - Aleksić, Sanja
AU  - Marković, Bojana
AU  - Mitić, Vojislav V.
AU  - Milošević, Dušan
AU  - Milošević, Mimica
AU  - Soković, Marina
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://www.worldscientific.com/doi/abs/10.1142/S0218126622500748
UR  - https://dais.sanu.ac.rs/123456789/12388
AB  - Biophysical and condensed matter systems connection is of great importance nowadays due to the need for a new approach in microelectronic biodevices, biocomputers or biochips advanced development. Considering that the living and nonliving systems’ submicroparticles are identical, we can establish the biunivocally correspondent relation between these two particle systems, as a biomimetic correlation based on Brownian motion fractal nature similarities, as the integrative property. In our research, we used the experimental results of bacterial motion under the influence of energetic impulses, like music, and also some biomolecule motion data. Our goal is to define the relation between biophysical and physical particle systems, by introducing mathematical analytical forms and applying Brownian motion fractal nature characterization and fractal interpolation. This work is an advanced research in the field of new solutions for high-level microelectronic integrations, which include submicrobiosystems like part of even organic microelectronic considerations, together with some physical systems of particles in solid-state solutions as a nonorganic part. Our research is based on Brownian motion minimal joint properties within the integrated biophysical systems in the wholeness of nature.
PB  - World Scientific Publishing Company
T2  - Journal of Circuits, Systems and Computers
T1  - Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion
DO  - 10.1142/s0218126622500748
UR  - https://hdl.handle.net/21.15107/rcub_dais_12388
ER  - 
@article{
author = "Aleksić, Sanja and Marković, Bojana and Mitić, Vojislav V. and Milošević, Dušan and Milošević, Mimica and Soković, Marina and Vlahović, Branislav",
year = "2021",
abstract = "Biophysical and condensed matter systems connection is of great importance nowadays due to the need for a new approach in microelectronic biodevices, biocomputers or biochips advanced development. Considering that the living and nonliving systems’ submicroparticles are identical, we can establish the biunivocally correspondent relation between these two particle systems, as a biomimetic correlation based on Brownian motion fractal nature similarities, as the integrative property. In our research, we used the experimental results of bacterial motion under the influence of energetic impulses, like music, and also some biomolecule motion data. Our goal is to define the relation between biophysical and physical particle systems, by introducing mathematical analytical forms and applying Brownian motion fractal nature characterization and fractal interpolation. This work is an advanced research in the field of new solutions for high-level microelectronic integrations, which include submicrobiosystems like part of even organic microelectronic considerations, together with some physical systems of particles in solid-state solutions as a nonorganic part. Our research is based on Brownian motion minimal joint properties within the integrated biophysical systems in the wholeness of nature.",
publisher = "World Scientific Publishing Company",
journal = "Journal of Circuits, Systems and Computers",
title = "Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion",
doi = "10.1142/s0218126622500748",
url = "https://hdl.handle.net/21.15107/rcub_dais_12388"
}
Aleksić, S., Marković, B., Mitić, V. V., Milošević, D., Milošević, M., Soković, M.,& Vlahović, B.. (2021). Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion. in Journal of Circuits, Systems and Computers
World Scientific Publishing Company..
https://doi.org/10.1142/s0218126622500748
https://hdl.handle.net/21.15107/rcub_dais_12388
Aleksić S, Marković B, Mitić VV, Milošević D, Milošević M, Soković M, Vlahović B. Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion. in Journal of Circuits, Systems and Computers. 2021;.
doi:10.1142/s0218126622500748
https://hdl.handle.net/21.15107/rcub_dais_12388 .
Aleksić, Sanja, Marković, Bojana, Mitić, Vojislav V., Milošević, Dušan, Milošević, Mimica, Soković, Marina, Vlahović, Branislav, "Interpolation Methods Applied on Biomolecules and Condensed Matter Brownian Motion" in Journal of Circuits, Systems and Computers (2021),
https://doi.org/10.1142/s0218126622500748 .,
https://hdl.handle.net/21.15107/rcub_dais_12388 .

Biomolecules and Brownian motion

Mitić, Vojislav V.; Marković, Bojana; Aleksić, Sanja; Milošević, Dušan; Ranđelović, Branislav; Ilić, Ivana; Manojlović, Jelena; Vlahović, Branislav

(Belgrade : Društvo za ETRAN, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Marković, Bojana
AU  - Aleksić, Sanja
AU  - Milošević, Dušan
AU  - Ranđelović, Branislav
AU  - Ilić, Ivana
AU  - Manojlović, Jelena
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://www.etran.rs/2021/wp-content/uploads/2021/08/PROGRAM_ETRAN_2021_final_b5_za_web.pdf
UR  - https://dais.sanu.ac.rs/123456789/12285
AB  - Structures and different life functions of microorganisms, like motion, are based on molecular biology processes, which comprise molecular and submolecular particles. It is very important to determine relation between molecular and microorganisms levels. The aim of our research is the analysis of Brownian motion as a general phenomenon and the consequence of structures hierarchy from molecular to microorganisms level. If we approach this idea from the aspect of biomimetic correlations at the level of the alive and nonalive matter system particles, the condensed matter particles could be considered as a part of micro, nano and molecular microorganisms structures. In this research we used the experimental results of bacterial motion influenced by different energy impulses. The important goal of this research paper is to obtain significant data regarding Brownian motion in the frame of fractal nature similarities, as an integrative property of living and nonliving systems particles processes. This opens new frontiers for submicroelectronics relations within the integrated supermicro biophysical systems. This is a potential new trend in nowadays advanced research, where we integrate the knowledges of complex relations between the electrons or other particles and their clusters as joint structures in alive and condensed matter, what could be a possible direction for new microelectronics complex biodevices and integrations.
PB  - Belgrade : Društvo za ETRAN
PB  - Beograd : Akademska misao
C3  - Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina
T1  - Biomolecules and Brownian motion
SP  - 404
EP  - 408
UR  - https://hdl.handle.net/21.15107/rcub_dais_12285
ER  - 
@conference{
author = "Mitić, Vojislav V. and Marković, Bojana and Aleksić, Sanja and Milošević, Dušan and Ranđelović, Branislav and Ilić, Ivana and Manojlović, Jelena and Vlahović, Branislav",
year = "2021",
abstract = "Structures and different life functions of microorganisms, like motion, are based on molecular biology processes, which comprise molecular and submolecular particles. It is very important to determine relation between molecular and microorganisms levels. The aim of our research is the analysis of Brownian motion as a general phenomenon and the consequence of structures hierarchy from molecular to microorganisms level. If we approach this idea from the aspect of biomimetic correlations at the level of the alive and nonalive matter system particles, the condensed matter particles could be considered as a part of micro, nano and molecular microorganisms structures. In this research we used the experimental results of bacterial motion influenced by different energy impulses. The important goal of this research paper is to obtain significant data regarding Brownian motion in the frame of fractal nature similarities, as an integrative property of living and nonliving systems particles processes. This opens new frontiers for submicroelectronics relations within the integrated supermicro biophysical systems. This is a potential new trend in nowadays advanced research, where we integrate the knowledges of complex relations between the electrons or other particles and their clusters as joint structures in alive and condensed matter, what could be a possible direction for new microelectronics complex biodevices and integrations.",
publisher = "Belgrade : Društvo za ETRAN, Beograd : Akademska misao",
journal = "Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina",
title = "Biomolecules and Brownian motion",
pages = "404-408",
url = "https://hdl.handle.net/21.15107/rcub_dais_12285"
}
Mitić, V. V., Marković, B., Aleksić, S., Milošević, D., Ranđelović, B., Ilić, I., Manojlović, J.,& Vlahović, B.. (2021). Biomolecules and Brownian motion. in Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina
Belgrade : Društvo za ETRAN., 404-408.
https://hdl.handle.net/21.15107/rcub_dais_12285
Mitić VV, Marković B, Aleksić S, Milošević D, Ranđelović B, Ilić I, Manojlović J, Vlahović B. Biomolecules and Brownian motion. in Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina. 2021;:404-408.
https://hdl.handle.net/21.15107/rcub_dais_12285 .
Mitić, Vojislav V., Marković, Bojana, Aleksić, Sanja, Milošević, Dušan, Ranđelović, Branislav, Ilić, Ivana, Manojlović, Jelena, Vlahović, Branislav, "Biomolecules and Brownian motion" in Зборник радова ‐ 65. Конференција за електронику, телекомуникације, рачунарство, аутоматику и нуклеарну технику, Етно село Станишићи, 08‐10.09.2021. године / Proceedings of Papers – 8th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2021, Ethno willage Stanišići, Republic of Srpska, Bosnia and Herzegovina (2021):404-408,
https://hdl.handle.net/21.15107/rcub_dais_12285 .

Biomolecules and Brownian motion

Mitić, Vojislav V.; Marković, Bojana; Aleksić, Sanja; Milošević, Dušan; Ranđelović, Branislav; Ilić, Ivana; Manojlović, Jelena; Vlahović, Branislav

(Belgrade : ETRAN, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Marković, Bojana
AU  - Aleksić, Sanja
AU  - Milošević, Dušan
AU  - Ranđelović, Branislav
AU  - Ilić, Ivana
AU  - Manojlović, Jelena
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://www.etran.rs/2021/wp-content/uploads/2021/08/PROGRAM_ETRAN_2021_final_b5_za_web.pdf
UR  - https://dais.sanu.ac.rs/123456789/11919
AB  - Structures and different life functions of microorganisms, like motion, are based on molecular biology processes, which comprise molecular and submolecular particles. It is very important to determine relation between molecular and microorganisms levels. The aim of our research is the analysis of Brownian motion as a general phenomenon and the consequence of structures hierarchy from molecular to microorganisms level. If we approach this idea from the aspect of biomimetic correlations at the level of the alive and nonalive matter system particles, the condensed matter particles could be considered as a part of micro, nano and molecular microorganisms structures. In this research we used the experimental results of bacterial motion influenced by different energy impulses. The important goal of this research paper is to obtain significant data regarding Brownian motion in the frame of fractal nature similarities, as an integrative property of living and nonliving systems particles processes. This opens new frontiers for submicroelectronics relations within the integrated supermicro biophysical systems. This is a potential new trend in nowadays advanced research, where we integrate the knowledges of complex relations between the electrons or other particles and their clusters as joint structures in alive and condensed matter, what could be a possible direction for new microelectronics complex biodevices and integrations.
PB  - Belgrade : ETRAN
C3  - Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina
T1  - Biomolecules and Brownian motion
SP  - 31
EP  - 31
UR  - https://hdl.handle.net/21.15107/rcub_dais_11919
ER  - 
@conference{
author = "Mitić, Vojislav V. and Marković, Bojana and Aleksić, Sanja and Milošević, Dušan and Ranđelović, Branislav and Ilić, Ivana and Manojlović, Jelena and Vlahović, Branislav",
year = "2021",
abstract = "Structures and different life functions of microorganisms, like motion, are based on molecular biology processes, which comprise molecular and submolecular particles. It is very important to determine relation between molecular and microorganisms levels. The aim of our research is the analysis of Brownian motion as a general phenomenon and the consequence of structures hierarchy from molecular to microorganisms level. If we approach this idea from the aspect of biomimetic correlations at the level of the alive and nonalive matter system particles, the condensed matter particles could be considered as a part of micro, nano and molecular microorganisms structures. In this research we used the experimental results of bacterial motion influenced by different energy impulses. The important goal of this research paper is to obtain significant data regarding Brownian motion in the frame of fractal nature similarities, as an integrative property of living and nonliving systems particles processes. This opens new frontiers for submicroelectronics relations within the integrated supermicro biophysical systems. This is a potential new trend in nowadays advanced research, where we integrate the knowledges of complex relations between the electrons or other particles and their clusters as joint structures in alive and condensed matter, what could be a possible direction for new microelectronics complex biodevices and integrations.",
publisher = "Belgrade : ETRAN",
journal = "Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina",
title = "Biomolecules and Brownian motion",
pages = "31-31",
url = "https://hdl.handle.net/21.15107/rcub_dais_11919"
}
Mitić, V. V., Marković, B., Aleksić, S., Milošević, D., Ranđelović, B., Ilić, I., Manojlović, J.,& Vlahović, B.. (2021). Biomolecules and Brownian motion. in Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina
Belgrade : ETRAN., 31-31.
https://hdl.handle.net/21.15107/rcub_dais_11919
Mitić VV, Marković B, Aleksić S, Milošević D, Ranđelović B, Ilić I, Manojlović J, Vlahović B. Biomolecules and Brownian motion. in Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina. 2021;:31-31.
https://hdl.handle.net/21.15107/rcub_dais_11919 .
Mitić, Vojislav V., Marković, Bojana, Aleksić, Sanja, Milošević, Dušan, Ranđelović, Branislav, Ilić, Ivana, Manojlović, Jelena, Vlahović, Branislav, "Biomolecules and Brownian motion" in Zbornik apstrakta i program 65. konferencije ETRAN i 8. konferencije IcETRAN, Etno selo Stanišići, Republika Srpska, 8-10. septembra 2021. godine = Proceedings of Abstracts and Program 8th Conference IcETRAN in conjunction with the 65th ETRAN Conference, Etno village Stanišići, Republic of Srpska, Bosnia and Herzegovina (2021):31-31,
https://hdl.handle.net/21.15107/rcub_dais_11919 .

Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods

Mitić, Vojislav V.; Ranđelović, Branislav; Ribar, Srđan; Milošević, Dušan; Soković, Marina; Marković, Bojana; Fecht, Hans-Jörg; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2021)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Ranđelović, Branislav
AU  - Ribar, Srđan
AU  - Milošević, Dušan
AU  - Soković, Marina
AU  - Marković, Bojana
AU  - Fecht, Hans-Jörg
AU  - Vlahović, Branislav
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/11908
AB  - There are a lot of recently published research papers regarding representing nanostructures and biomimetic materials, using simple but powerful mathematical methods. In most of them, fractal theory, graph theory and neural networks are used. Having in mind variety of those methods, but in the same time complementarity and compatibility, they became very useful tool, and we named it “Holly Trinity” of mathematical approach in nanostructures. In this research we give an overview on interesting results in modelling nanostructures and their electrochemical and magnetic parameters, using those very actual and “easy to use” methods: fractal theory, graph theory and neural networks. We also compare them, in order to conclude about areas of their most useful applications.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
T1  - Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods
SP  - 43
EP  - 43
UR  - https://hdl.handle.net/21.15107/rcub_dais_11908
ER  - 
@conference{
author = "Mitić, Vojislav V. and Ranđelović, Branislav and Ribar, Srđan and Milošević, Dušan and Soković, Marina and Marković, Bojana and Fecht, Hans-Jörg and Vlahović, Branislav",
year = "2021",
abstract = "There are a lot of recently published research papers regarding representing nanostructures and biomimetic materials, using simple but powerful mathematical methods. In most of them, fractal theory, graph theory and neural networks are used. Having in mind variety of those methods, but in the same time complementarity and compatibility, they became very useful tool, and we named it “Holly Trinity” of mathematical approach in nanostructures. In this research we give an overview on interesting results in modelling nanostructures and their electrochemical and magnetic parameters, using those very actual and “easy to use” methods: fractal theory, graph theory and neural networks. We also compare them, in order to conclude about areas of their most useful applications.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021",
title = "Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods",
pages = "43-43",
url = "https://hdl.handle.net/21.15107/rcub_dais_11908"
}
Mitić, V. V., Ranđelović, B., Ribar, S., Milošević, D., Soković, M., Marković, B., Fecht, H.,& Vlahović, B.. (2021). Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021
Belgrade : Serbian Ceramic Society., 43-43.
https://hdl.handle.net/21.15107/rcub_dais_11908
Mitić VV, Ranđelović B, Ribar S, Milošević D, Soković M, Marković B, Fecht H, Vlahović B. Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021. 2021;:43-43.
https://hdl.handle.net/21.15107/rcub_dais_11908 .
Mitić, Vojislav V., Ranđelović, Branislav, Ribar, Srđan, Milošević, Dušan, Soković, Marina, Marković, Bojana, Fecht, Hans-Jörg, Vlahović, Branislav, "Fractals, Graphs and Neural Networks: The Holly Trinity of Nanostructures - An Overview and Comparison of Methods" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application IX : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 20-21. September 2021 (2021):43-43,
https://hdl.handle.net/21.15107/rcub_dais_11908 .

Optimization of the preparation of novel polymer/clay nanocomposites

Marković, Bojana; Stefanović, Ivan S.; Popović, Aleksandar R.; Ignjatović, Nenad; Nastasović, Aleksandra

(Belgrade : Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Marković, Bojana
AU  - Stefanović, Ivan S.
AU  - Popović, Aleksandar R.
AU  - Ignjatović, Nenad
AU  - Nastasović, Aleksandra
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7007
AB  - Recent advances in material technologies have resulted in the preparation of novel polymer/clay composites with improved thermal, mechanical, optoelectronic/ magnetic properties and increased biodegradability [1]. In this study, six samples of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) nanocomposites with organically-modified montmorillonite clay Cloisite 30B® (C30B), were prepared via suspension copolymerization. In order to obtain nanocomposites with fine spherical beads of regular shape and satisfying thermal stability the optimization of the synthesis conditions was performed. Firstly, the influence of the poly(N-vinyl pyrrolidone) (PVP) quantity in the aqueous phase was varied (1, 3 and 5 wt.%) at a constant stirring rate of 250 rpm and constant clay content C30B (10 wt.%). In the second phase of the optimization of the preparation, samples with a constant composition of the composite reaction mixture (5 wt.% PVP and 10 wt.% C30B) at a stirring rate of 250, 325 and 400 rpm, were prepared. According to the obtained results, it was concluded that the optimal conditions for preparation of these composites are 5 wt.% of PVP and 400 rpm. The prepared nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) in air. The structure of the prepared nanocomposites was confirmed with FTIR spectroscopy. According to the obtained SEM microphotographs the fine spherical beads, with desired size and homogeneous morphology, were prepared. Furthermore, SEM analysis was also showed that clay nanoparticles are homogeneously dispersed both inside surface and cross-section area. The incorporation of C30B clay increased the thermal stability of the prepared polymer/clay nanocomposites in comparison to the pure PGME copolymer.
PB  - Belgrade : Institute for Multidisciplinary Research
C3  - Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - Optimization of the preparation of novel polymer/clay nanocomposites
SP  - 114
EP  - 114
UR  - https://hdl.handle.net/21.15107/rcub_dais_7007
ER  - 
@conference{
author = "Marković, Bojana and Stefanović, Ivan S. and Popović, Aleksandar R. and Ignjatović, Nenad and Nastasović, Aleksandra",
year = "2019",
abstract = "Recent advances in material technologies have resulted in the preparation of novel polymer/clay composites with improved thermal, mechanical, optoelectronic/ magnetic properties and increased biodegradability [1]. In this study, six samples of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) nanocomposites with organically-modified montmorillonite clay Cloisite 30B® (C30B), were prepared via suspension copolymerization. In order to obtain nanocomposites with fine spherical beads of regular shape and satisfying thermal stability the optimization of the synthesis conditions was performed. Firstly, the influence of the poly(N-vinyl pyrrolidone) (PVP) quantity in the aqueous phase was varied (1, 3 and 5 wt.%) at a constant stirring rate of 250 rpm and constant clay content C30B (10 wt.%). In the second phase of the optimization of the preparation, samples with a constant composition of the composite reaction mixture (5 wt.% PVP and 10 wt.% C30B) at a stirring rate of 250, 325 and 400 rpm, were prepared. According to the obtained results, it was concluded that the optimal conditions for preparation of these composites are 5 wt.% of PVP and 400 rpm. The prepared nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) in air. The structure of the prepared nanocomposites was confirmed with FTIR spectroscopy. According to the obtained SEM microphotographs the fine spherical beads, with desired size and homogeneous morphology, were prepared. Furthermore, SEM analysis was also showed that clay nanoparticles are homogeneously dispersed both inside surface and cross-section area. The incorporation of C30B clay increased the thermal stability of the prepared polymer/clay nanocomposites in comparison to the pure PGME copolymer.",
publisher = "Belgrade : Institute for Multidisciplinary Research",
journal = "Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "Optimization of the preparation of novel polymer/clay nanocomposites",
pages = "114-114",
url = "https://hdl.handle.net/21.15107/rcub_dais_7007"
}
Marković, B., Stefanović, I. S., Popović, A. R., Ignjatović, N.,& Nastasović, A.. (2019). Optimization of the preparation of novel polymer/clay nanocomposites. in Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
Belgrade : Institute for Multidisciplinary Research., 114-114.
https://hdl.handle.net/21.15107/rcub_dais_7007
Marković B, Stefanović IS, Popović AR, Ignjatović N, Nastasović A. Optimization of the preparation of novel polymer/clay nanocomposites. in Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:114-114.
https://hdl.handle.net/21.15107/rcub_dais_7007 .
Marković, Bojana, Stefanović, Ivan S., Popović, Aleksandar R., Ignjatović, Nenad, Nastasović, Aleksandra, "Optimization of the preparation of novel polymer/clay nanocomposites" in Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia (2019):114-114,
https://hdl.handle.net/21.15107/rcub_dais_7007 .