Milošević, Sanja S.

Link to this page

Authority KeyName Variants
orcid::0000-0002-4705-1177
  • Milošević, Sanja S. (4)
  • Milošević Govedarović, Sanja (2)
Projects

Author's Bibliography

The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites

Pantić, Tijana; Milanović, Igor; Lukić, Miodrag J.; Grbović Novaković, Jasmina; Kurko, Sandra; Biliškov, Nikola; Milošević Govedarović, Sanja

(Elsevier, 2020)

TY  - JOUR
AU  - Pantić, Tijana
AU  - Milanović, Igor
AU  - Lukić, Miodrag J.
AU  - Grbović Novaković, Jasmina
AU  - Kurko, Sandra
AU  - Biliškov, Nikola
AU  - Milošević Govedarović, Sanja
PY  - 2020
UR  - http://www.sciencedirect.com/science/article/pii/S0360319919327685
UR  - http://dais.sanu.ac.rs/123456789/6455
AB  - The influence of different milling conditions obtained using two high-energy mills on hydrogen desorption from MgH2-WO3 composites was investigated. The morphology, particle and crystallite size were studied as a function of milling speed, vial's volume, and ball-to-powder ratio. The vial's fill level, the number, and type of milling balls and additive's content kept constant. Changes in morphology and microstructure were correlated to desorption properties of materials. Higher milling speed reduced particle size but, there is no significant crystallite size reduction. On the other hand, additive distribution is similar regardless of the energy input. It has been noticed that different energy input on milling blend, which is the result of combined effects of above-mentioned factors, reflects on desorption temperature but not on the kinetics of desorption. In fact, desorption mechanism changes from 2D to 3D growth with constant nucleation rate, despite obtained changes in microstructure or chemical composition of the material.
PB  - Elsevier
T2  - International Journal of Hydrogen Energy
T1  - The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites
SP  - 7901
EP  - 7911
VL  - 45
IS  - 14
DO  - 10.1016/j.ijhydene.2019.07.167
ER  - 
@article{
author = "Pantić, Tijana and Milanović, Igor and Lukić, Miodrag J. and Grbović Novaković, Jasmina and Kurko, Sandra and Biliškov, Nikola and Milošević Govedarović, Sanja",
year = "2020",
url = "http://www.sciencedirect.com/science/article/pii/S0360319919327685, http://dais.sanu.ac.rs/123456789/6455",
abstract = "The influence of different milling conditions obtained using two high-energy mills on hydrogen desorption from MgH2-WO3 composites was investigated. The morphology, particle and crystallite size were studied as a function of milling speed, vial's volume, and ball-to-powder ratio. The vial's fill level, the number, and type of milling balls and additive's content kept constant. Changes in morphology and microstructure were correlated to desorption properties of materials. Higher milling speed reduced particle size but, there is no significant crystallite size reduction. On the other hand, additive distribution is similar regardless of the energy input. It has been noticed that different energy input on milling blend, which is the result of combined effects of above-mentioned factors, reflects on desorption temperature but not on the kinetics of desorption. In fact, desorption mechanism changes from 2D to 3D growth with constant nucleation rate, despite obtained changes in microstructure or chemical composition of the material.",
publisher = "Elsevier",
journal = "International Journal of Hydrogen Energy",
title = "The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites",
pages = "7901-7911",
volume = "45",
number = "14",
doi = "10.1016/j.ijhydene.2019.07.167"
}
Pantić, T., Milanović, I., Lukić, M. J., Grbović Novaković, J., Kurko, S., Biliškov, N.,& Milošević Govedarović, S. (2020). The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites.
International Journal of Hydrogen Energy
Elsevier., 45(14), 7901-7911.
https://doi.org/10.1016/j.ijhydene.2019.07.167
Pantić T, Milanović I, Lukić MJ, Grbović Novaković J, Kurko S, Biliškov N, Milošević Govedarović S. The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites. International Journal of Hydrogen Energy. 2020;45(14):7901-7911
Pantić Tijana, Milanović Igor, Lukić Miodrag J., Grbović Novaković Jasmina, Kurko Sandra, Biliškov Nikola, Milošević Govedarović Sanja, "The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites" International Journal of Hydrogen Energy, 45, no. 14 (2020):7901-7911,
https://doi.org/10.1016/j.ijhydene.2019.07.167 .
1
1
1

The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites

Pantić, Tijana; Milanović, Igor; Lukić, Miodrag J.; Grbović Novaković, Jasmina; Kurko, Sandra; Biliškov, Nikola; Milošević Govedarović, Sanja

(Elsevier, 2020)

TY  - JOUR
AU  - Pantić, Tijana
AU  - Milanović, Igor
AU  - Lukić, Miodrag J.
AU  - Grbović Novaković, Jasmina
AU  - Kurko, Sandra
AU  - Biliškov, Nikola
AU  - Milošević Govedarović, Sanja
PY  - 2020
UR  - http://www.sciencedirect.com/science/article/pii/S0360319919327685
UR  - http://dais.sanu.ac.rs/123456789/8963
AB  - The influence of different milling conditions obtained using two high-energy mills on hydrogen desorption from MgH2-WO3 composites was investigated. The morphology, particle and crystallite size were studied as a function of milling speed, vial's volume, and ball-to-powder ratio. The vial's fill level, the number, and type of milling balls and additive's content kept constant. Changes in morphology and microstructure were correlated to desorption properties of materials. Higher milling speed reduced particle size but, there is no significant crystallite size reduction. On the other hand, additive distribution is similar regardless of the energy input. It has been noticed that different energy input on milling blend, which is the result of combined effects of above-mentioned factors, reflects on desorption temperature but not on the kinetics of desorption. In fact, desorption mechanism changes from 2D to 3D growth with constant nucleation rate, despite obtained changes in microstructure or chemical composition of the material.
PB  - Elsevier
T2  - International Journal of Hydrogen Energy
T1  - The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites
SP  - 7901
EP  - 7911
VL  - 45
IS  - 14
DO  - 10.1016/j.ijhydene.2019.07.167
ER  - 
@article{
author = "Pantić, Tijana and Milanović, Igor and Lukić, Miodrag J. and Grbović Novaković, Jasmina and Kurko, Sandra and Biliškov, Nikola and Milošević Govedarović, Sanja",
year = "2020",
url = "http://www.sciencedirect.com/science/article/pii/S0360319919327685, http://dais.sanu.ac.rs/123456789/8963",
abstract = "The influence of different milling conditions obtained using two high-energy mills on hydrogen desorption from MgH2-WO3 composites was investigated. The morphology, particle and crystallite size were studied as a function of milling speed, vial's volume, and ball-to-powder ratio. The vial's fill level, the number, and type of milling balls and additive's content kept constant. Changes in morphology and microstructure were correlated to desorption properties of materials. Higher milling speed reduced particle size but, there is no significant crystallite size reduction. On the other hand, additive distribution is similar regardless of the energy input. It has been noticed that different energy input on milling blend, which is the result of combined effects of above-mentioned factors, reflects on desorption temperature but not on the kinetics of desorption. In fact, desorption mechanism changes from 2D to 3D growth with constant nucleation rate, despite obtained changes in microstructure or chemical composition of the material.",
publisher = "Elsevier",
journal = "International Journal of Hydrogen Energy",
title = "The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites",
pages = "7901-7911",
volume = "45",
number = "14",
doi = "10.1016/j.ijhydene.2019.07.167"
}
Pantić, T., Milanović, I., Lukić, M. J., Grbović Novaković, J., Kurko, S., Biliškov, N.,& Milošević Govedarović, S. (2020). The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites.
International Journal of Hydrogen Energy
Elsevier., 45(14), 7901-7911.
https://doi.org/10.1016/j.ijhydene.2019.07.167
Pantić T, Milanović I, Lukić MJ, Grbović Novaković J, Kurko S, Biliškov N, Milošević Govedarović S. The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites. International Journal of Hydrogen Energy. 2020;45(14):7901-7911
Pantić Tijana, Milanović Igor, Lukić Miodrag J., Grbović Novaković Jasmina, Kurko Sandra, Biliškov Nikola, Milošević Govedarović Sanja, "The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites" International Journal of Hydrogen Energy, 45, no. 14 (2020):7901-7911,
https://doi.org/10.1016/j.ijhydene.2019.07.167 .
1
1
1

Is WO3 catalyst for hydrogen desorption?

Pantić, Tijana; Milanović, Igor; Lukić, Miodrag J.; Grbović Novaković, Jasmina; Kurko, Sandra; Biliškov, Nikola; Milošević, Sanja S.

(Belgrade : Institute of Technical Sciences of SASA, 2017)

TY  - CONF
AU  - Pantić, Tijana
AU  - Milanović, Igor
AU  - Lukić, Miodrag J.
AU  - Grbović Novaković, Jasmina
AU  - Kurko, Sandra
AU  - Biliškov, Nikola
AU  - Milošević, Sanja S.
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15451
AB  - Magnesium hydride, as hydrogen storage material, meets the requirements such as high gravimetric hydrogen capacity (7,6 wt%), low cost and weight, abundance and H2 absorption/desorption cycling possibility. Given that the oxide additives show the good impact on desorption properties, mechanical milling of MgH2 with addition of 5, 10 and 15% wt. WO3 was performed. The microstructure and morphology of composites were analysed by XRD, PSD and SEM and correlated to hydrogen desorption properties which have been investigated by DSC. The results have shown that WO3 has a positive effect on the desorption kinetics as well as on the change of the desorption mechanism.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
T1  - Is WO3 catalyst for hydrogen desorption?
SP  - 50
EP  - 50
ER  - 
@conference{
author = "Pantić, Tijana and Milanović, Igor and Lukić, Miodrag J. and Grbović Novaković, Jasmina and Kurko, Sandra and Biliškov, Nikola and Milošević, Sanja S.",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/15451",
abstract = "Magnesium hydride, as hydrogen storage material, meets the requirements such as high gravimetric hydrogen capacity (7,6 wt%), low cost and weight, abundance and H2 absorption/desorption cycling possibility. Given that the oxide additives show the good impact on desorption properties, mechanical milling of MgH2 with addition of 5, 10 and 15% wt. WO3 was performed. The microstructure and morphology of composites were analysed by XRD, PSD and SEM and correlated to hydrogen desorption properties which have been investigated by DSC. The results have shown that WO3 has a positive effect on the desorption kinetics as well as on the change of the desorption mechanism.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia",
title = "Is WO3 catalyst for hydrogen desorption?",
pages = "50-50"
}
Pantić, T., Milanović, I., Lukić, M. J., Grbović Novaković, J., Kurko, S., Biliškov, N.,& Milošević, S. S. (2017). Is WO3 catalyst for hydrogen desorption?.
Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 50-50.
Pantić T, Milanović I, Lukić MJ, Grbović Novaković J, Kurko S, Biliškov N, Milošević SS. Is WO3 catalyst for hydrogen desorption?. Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia. 2017;:50-50
Pantić Tijana, Milanović Igor, Lukić Miodrag J., Grbović Novaković Jasmina, Kurko Sandra, Biliškov Nikola, Milošević Sanja S., "Is WO3 catalyst for hydrogen desorption?" Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia (2017):50-50

Influence of ageing of milled clay and its composite with TiO2on the heavy metal adsorption characteristics

Đukić, Anđelka B.; Kumrić, Ksenija R.; Vukelić, Nikola S.; Stojanović, Zoran S.; Stojmenović, Marija D.; Milošević, Sanja S.; Matović, Ljiljana Lj.

(Elsevier, 2015)

TY  - JOUR
AU  - Đukić, Anđelka B.
AU  - Kumrić, Ksenija R.
AU  - Vukelić, Nikola S.
AU  - Stojanović, Zoran S.
AU  - Stojmenović, Marija D.
AU  - Milošević, Sanja S.
AU  - Matović, Ljiljana Lj.
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/3526
AB  - The aim of the present study was to investigate the effect of ageing of mechanochemically synthesized clay and its TiO2composite on the simultaneous removal of Pb(II), Cd(II), Cu(II) and Zn(II) ions from acidic aqueous solutions. The effect of different ageing times on sorption behavior of 1, 2, 10 and 19 h milled clays, as well as the clay composite with 20 wt% of amorphous TiO2(TiO2,a), was investigated. Ageing of the milled clays has stronger influence on the removal of Zn(II) and Cd(II) than on the removal of Pb(II) and Cu(II) ions. Ageing is particularly pronounced for the samples milled for 1, 2 and 10 h (which lost enhanced sorption properties after 3 months of ageing), and less pronounced for the samples milled longer period of time, 19 h (which retained sorption properties until 6 months). After these periods of time sorption capacities became nearly the same as the sorption capacities of the raw (unmilled) clay. The different responses on the ageing process of milled clays and composite are a consequence of microstructural changes such as recrystallization of montmorillonite phase and decrease in particle sizes. Slower ageing of composite compare to the milled clays can be related to the stabilization effect of TiO2particles which are dispersed in the clay matrix thus preventing recrystallization of the sample particles. Only a slight tendency towards the formation of agglomerations was noticed after 12 months of ageing. © 2014 Elsevier Ltd and Techna Group S.r.l.
PB  - Elsevier
T2  - Ceramics International
T1  - Influence of ageing of milled clay and its composite with TiO2on the heavy metal adsorption characteristics
SP  - 5129
EP  - 5137
VL  - 41
IS  - 3
DO  - 10.1016/j.ceramint.2014.12.085
ER  - 
@article{
author = "Đukić, Anđelka B. and Kumrić, Ksenija R. and Vukelić, Nikola S. and Stojanović, Zoran S. and Stojmenović, Marija D. and Milošević, Sanja S. and Matović, Ljiljana Lj.",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/3526",
abstract = "The aim of the present study was to investigate the effect of ageing of mechanochemically synthesized clay and its TiO2composite on the simultaneous removal of Pb(II), Cd(II), Cu(II) and Zn(II) ions from acidic aqueous solutions. The effect of different ageing times on sorption behavior of 1, 2, 10 and 19 h milled clays, as well as the clay composite with 20 wt% of amorphous TiO2(TiO2,a), was investigated. Ageing of the milled clays has stronger influence on the removal of Zn(II) and Cd(II) than on the removal of Pb(II) and Cu(II) ions. Ageing is particularly pronounced for the samples milled for 1, 2 and 10 h (which lost enhanced sorption properties after 3 months of ageing), and less pronounced for the samples milled longer period of time, 19 h (which retained sorption properties until 6 months). After these periods of time sorption capacities became nearly the same as the sorption capacities of the raw (unmilled) clay. The different responses on the ageing process of milled clays and composite are a consequence of microstructural changes such as recrystallization of montmorillonite phase and decrease in particle sizes. Slower ageing of composite compare to the milled clays can be related to the stabilization effect of TiO2particles which are dispersed in the clay matrix thus preventing recrystallization of the sample particles. Only a slight tendency towards the formation of agglomerations was noticed after 12 months of ageing. © 2014 Elsevier Ltd and Techna Group S.r.l.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Influence of ageing of milled clay and its composite with TiO2on the heavy metal adsorption characteristics",
pages = "5129-5137",
volume = "41",
number = "3",
doi = "10.1016/j.ceramint.2014.12.085"
}
Đukić, A. B., Kumrić, K. R., Vukelić, N. S., Stojanović, Z. S., Stojmenović, M. D., Milošević, S. S.,& Matović, L. Lj. (2015). Influence of ageing of milled clay and its composite with TiO2on the heavy metal adsorption characteristics.
Ceramics International
Elsevier., 41(3), 5129-5137.
https://doi.org/10.1016/j.ceramint.2014.12.085
Đukić AB, Kumrić KR, Vukelić NS, Stojanović ZS, Stojmenović MD, Milošević SS, Matović LL. Influence of ageing of milled clay and its composite with TiO2on the heavy metal adsorption characteristics. Ceramics International. 2015;41(3):5129-5137
Đukić Anđelka B., Kumrić Ksenija R., Vukelić Nikola S., Stojanović Zoran S., Stojmenović Marija D., Milošević Sanja S., Matović Ljiljana Lj., "Influence of ageing of milled clay and its composite with TiO2on the heavy metal adsorption characteristics" Ceramics International, 41, no. 3 (2015):5129-5137,
https://doi.org/10.1016/j.ceramint.2014.12.085 .
14
14
17

Surface characterisation of mechanochemicaly activated carbon cloth

Đukić, Anđelka B.; Grbović Novaković, Jasmina; Stojanović, Zoran S.; Milanović, Igor; Vujasin, Radojka; Milošević, Sanja S.; Matović, Ljiljana Lj.

(Belgrade : Materials Research Society of Serbia, 2013)

TY  - CONF
AU  - Đukić, Anđelka B.
AU  - Grbović Novaković, Jasmina
AU  - Stojanović, Zoran S.
AU  - Milanović, Igor
AU  - Vujasin, Radojka
AU  - Milošević, Sanja S.
AU  - Matović, Ljiljana Lj.
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/390
AB  - Adsorption on activated carbon cloth is an efficient procedure for removing pollutants from wastewaters, because this material possesses large specific area and high adsorption capacity. In
this study the activated carbon cloth was modified by mechanical milling in order to improve its sorption properties. The microstructure and morphology of the sample was investigated by XRD,
PSD and SEM and surface chemistry was characterized by potentiometric titrations. The result showed that microstructure and morphology was drastically changed with milling: particle sizes
reduction, agglomeration and the loss of fibrous structure occurred. These changes resulted in increase of the acidic and the base groups: the number of basic groups was increased by the factor of 11 while the number of acidic groups by the factor of 1.5.
PB  - Belgrade : Materials Research Society of Serbia
C3  - The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts
T1  - Surface characterisation of mechanochemicaly activated carbon cloth
SP  - 126
EP  - 126
ER  - 
@conference{
author = "Đukić, Anđelka B. and Grbović Novaković, Jasmina and Stojanović, Zoran S. and Milanović, Igor and Vujasin, Radojka and Milošević, Sanja S. and Matović, Ljiljana Lj.",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/390",
abstract = "Adsorption on activated carbon cloth is an efficient procedure for removing pollutants from wastewaters, because this material possesses large specific area and high adsorption capacity. In
this study the activated carbon cloth was modified by mechanical milling in order to improve its sorption properties. The microstructure and morphology of the sample was investigated by XRD,
PSD and SEM and surface chemistry was characterized by potentiometric titrations. The result showed that microstructure and morphology was drastically changed with milling: particle sizes
reduction, agglomeration and the loss of fibrous structure occurred. These changes resulted in increase of the acidic and the base groups: the number of basic groups was increased by the factor of 11 while the number of acidic groups by the factor of 1.5.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts",
title = "Surface characterisation of mechanochemicaly activated carbon cloth",
pages = "126-126"
}
Đukić, A. B., Grbović Novaković, J., Stojanović, Z. S., Milanović, I., Vujasin, R., Milošević, S. S.,& Matović, L. Lj. (2013). Surface characterisation of mechanochemicaly activated carbon cloth.
The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts
Belgrade : Materials Research Society of Serbia., 126-126.
Đukić AB, Grbović Novaković J, Stojanović ZS, Milanović I, Vujasin R, Milošević SS, Matović LL. Surface characterisation of mechanochemicaly activated carbon cloth. The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts. 2013;:126-126
Đukić Anđelka B., Grbović Novaković Jasmina, Stojanović Zoran S., Milanović Igor, Vujasin Radojka, Milošević Sanja S., Matović Ljiljana Lj., "Surface characterisation of mechanochemicaly activated carbon cloth" The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts (2013):126-126

Changes in Storage Properties of Hydrides Induced by Ion Irradiation

Grbović Novaković, Jasmina; Kurko, Sandra; Rašković Lovre, Željka; Milošević, Sanja S.; Milanović, Igor; Stojanović, Zoran S.; Vujasin, Radojka; Matović, Ljiljana Lj.

(Kaunas University of Technology, 2013)

TY  - JOUR
AU  - Grbović Novaković, Jasmina
AU  - Kurko, Sandra
AU  - Rašković Lovre, Željka
AU  - Milošević, Sanja S.
AU  - Milanović, Igor
AU  - Stojanović, Zoran S.
AU  - Vujasin, Radojka
AU  - Matović, Ljiljana Lj.
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/352
AB  - The influence of structural changes caused by irradiation with different ions, their energies and fluences on sorption properties has been investigated. Results suggest that there are several mechanisms of desorption depending on defect concentration, their interaction and ordering. It has been also demonstrated that the changes in near-surface area play the crucial role in hydrogen desorption kinetics. It is confirmed that there is possibility to control the thermodynamic parameters of these systems by controlling vacancies depth profile and concentration.
PB  - Kaunas University of Technology
T2  - Materials Science MEDZIAGOTYRA
T1  - Changes in Storage Properties of Hydrides Induced by Ion Irradiation
SP  - 134
EP  - 139
VL  - 19
IS  - 2
DO  - 10.5755/j01.ms.19.2.1579
ER  - 
@article{
author = "Grbović Novaković, Jasmina and Kurko, Sandra and Rašković Lovre, Željka and Milošević, Sanja S. and Milanović, Igor and Stojanović, Zoran S. and Vujasin, Radojka and Matović, Ljiljana Lj.",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/352",
abstract = "The influence of structural changes caused by irradiation with different ions, their energies and fluences on sorption properties has been investigated. Results suggest that there are several mechanisms of desorption depending on defect concentration, their interaction and ordering. It has been also demonstrated that the changes in near-surface area play the crucial role in hydrogen desorption kinetics. It is confirmed that there is possibility to control the thermodynamic parameters of these systems by controlling vacancies depth profile and concentration.",
publisher = "Kaunas University of Technology",
journal = "Materials Science MEDZIAGOTYRA",
title = "Changes in Storage Properties of Hydrides Induced by Ion Irradiation",
pages = "134-139",
volume = "19",
number = "2",
doi = "10.5755/j01.ms.19.2.1579"
}
Grbović Novaković, J., Kurko, S., Rašković Lovre, Ž., Milošević, S. S., Milanović, I., Stojanović, Z. S., Vujasin, R.,& Matović, L. Lj. (2013). Changes in Storage Properties of Hydrides Induced by Ion Irradiation.
Materials Science MEDZIAGOTYRA
Kaunas University of Technology., 19(2), 134-139.
https://doi.org/10.5755/j01.ms.19.2.1579
Grbović Novaković J, Kurko S, Rašković Lovre Ž, Milošević SS, Milanović I, Stojanović ZS, Vujasin R, Matović LL. Changes in Storage Properties of Hydrides Induced by Ion Irradiation. Materials Science MEDZIAGOTYRA. 2013;19(2):134-139
Grbović Novaković Jasmina, Kurko Sandra, Rašković Lovre Željka, Milošević Sanja S., Milanović Igor, Stojanović Zoran S., Vujasin Radojka, Matović Ljiljana Lj., "Changes in Storage Properties of Hydrides Induced by Ion Irradiation" Materials Science MEDZIAGOTYRA, 19, no. 2 (2013):134-139,
https://doi.org/10.5755/j01.ms.19.2.1579 .
1
2
2