Škapin, Srečo Davor

Link to this page

Authority KeyName Variants
orcid::0000-0001-8071-0421
  • Škapin, Srečo Davor (98)
Projects
Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them Sinteza funkcionalnih materijala sa kontrolisanom strukturom na molekularnom i nano nivou
United States National Institutes of Health (NIH) / National Institute of Dental and Craniofacial Research (NIDCR), Grant K99-DE021416 Magnetic and radionuclide labeled nanostructured materials for medical applications
Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia “Nanostructured and mesoporous functional materials with enhanced solar light driven photocatalytic activity” for 2018–2019 Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia, Project 451-03-1251/2012-09/06
Investigation of intermetallics and semiconductors and possible application in renewable energy sources Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)
Lithium-ion batteries and fuel cells - research and development Nanostructured multifunctional materials and nanocomposites
Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia Croatian Science Foundation, IP-2016- 06-224
Croatian-Serbian bilateral project 2016/17 Oxide-based environmentally-friendly porous materials for genotoxic substances removal
Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes Serbian Academy of Sciences and Arts, Project F-190

Author's Bibliography

Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Marković, Smilja

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d
UR  - https://dais.sanu.ac.rs/123456789/9544
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry
SP  - 22078
EP  - 22095
VL  - 22
IS  - 38
DO  - 10.1039/D0CP03377D
ER  - 
@article{
author = "Rajić, Vladimir and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Marković, Smilja",
year = "2020",
url = "https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d, https://dais.sanu.ac.rs/123456789/9544",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22078-22095",
volume = "22",
number = "38",
doi = "10.1039/D0CP03377D"
}
Rajić, V., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković Častvan, I.,& Marković, S. (2020). Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry.
Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(38), 22078-22095.
https://doi.org/10.1039/D0CP03377D
Rajić V, Stojković Simatović I, Veselinović L, Belošević Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković Častvan I, Marković S. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. Physical Chemistry Chemical Physics. 2020;22(38):22078-22095
Rajić Vladimir, Stojković Simatović Ivana, Veselinović Ljiljana, Belošević Čavor Jelena, Novaković Mirjana, Popović Maja, Škapin Srečo Davor, Mojović Miloš, Stojadinović Stevan, Rac Vladislav, Janković Častvan Ivona, Marković Smilja, "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry" Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/D0CP03377D .

Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Marković, Smilja

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d
UR  - https://dais.sanu.ac.rs/123456789/9543
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry
SP  - 22078
EP  - 22095
VL  - 22
IS  - 38
DO  - 10.1039/D0CP03377D
ER  - 
@article{
author = "Rajić, Vladimir and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Marković, Smilja",
year = "2020",
url = "https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d, https://dais.sanu.ac.rs/123456789/9543",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22078-22095",
volume = "22",
number = "38",
doi = "10.1039/D0CP03377D"
}
Rajić, V., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković Častvan, I.,& Marković, S. (2020). Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry.
Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(38), 22078-22095.
https://doi.org/10.1039/D0CP03377D
Rajić V, Stojković Simatović I, Veselinović L, Belošević Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković Častvan I, Marković S. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. Physical Chemistry Chemical Physics. 2020;22(38):22078-22095
Rajić Vladimir, Stojković Simatović Ivana, Veselinović Ljiljana, Belošević Čavor Jelena, Novaković Mirjana, Popović Maja, Škapin Srečo Davor, Mojović Miloš, Stojadinović Stevan, Rac Vladislav, Janković Častvan Ivona, Marković Smilja, "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry" Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/D0CP03377D .

Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents

Ignjatović, Nenad; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana; Lazić, Snežana; Marković, Smilja; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6676
AB  - Hydroxyapatite (HAp) has been widely used as bone reconstruction materials due to their similarity to bone tissue. The improvement of HAp properties was achieved by doping its crystal lattice with different ions. Lanthanides, i.e. Rare Earth Elements (RE) are also suitable for doping HAp. The aim of the presented research was to investigate the possibility of creating lumino-magnetic particles of HAp doped with gadolinium (Gd3+) ions and co-doped with ytterbium/thulium (Yb3+/Tm3+) or europium (Eu3+) ions for potential use in multimodal imaging (MI). Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), and lumino-magnetic HAp:Gd/Yb/Tm (Ca4.85Gd0.03Yb0.1Tm0.02(PO4)3(OH)) and HAp:Gd/Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) particles were synthesized using emulsification process and hydrothermal processing. All synthesized particles had an elongated shape and exhibited a paramagnetic behavior. Reduction of the unit cell volume as a result of replacement of Ca2+ ions by ions with a smaller ionic radius (Gd3+, Yb3+, Tm3+, Eu3+) confirmed by using XRD and Rietveld refined plots. The energy band gap values of the synthesized samples range from 4.93 to 3.18 eV and decrease in the following order: HAp:Gd >HAp>HAp:Gd/Eu>HAp:Gd/Yb/Tm. The results of photoluminescence emission spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu particles showed characteristic transitions of Tm3+ and Eu3+, respectively.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents
SP  - 76
EP  - 76
ER  - 
@conference{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana and Lazić, Snežana and Marković, Smilja and Uskoković, Dragan",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6676",
abstract = "Hydroxyapatite (HAp) has been widely used as bone reconstruction materials due to their similarity to bone tissue. The improvement of HAp properties was achieved by doping its crystal lattice with different ions. Lanthanides, i.e. Rare Earth Elements (RE) are also suitable for doping HAp. The aim of the presented research was to investigate the possibility of creating lumino-magnetic particles of HAp doped with gadolinium (Gd3+) ions and co-doped with ytterbium/thulium (Yb3+/Tm3+) or europium (Eu3+) ions for potential use in multimodal imaging (MI). Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), and lumino-magnetic HAp:Gd/Yb/Tm (Ca4.85Gd0.03Yb0.1Tm0.02(PO4)3(OH)) and HAp:Gd/Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) particles were synthesized using emulsification process and hydrothermal processing. All synthesized particles had an elongated shape and exhibited a paramagnetic behavior. Reduction of the unit cell volume as a result of replacement of Ca2+ ions by ions with a smaller ionic radius (Gd3+, Yb3+, Tm3+, Eu3+) confirmed by using XRD and Rietveld refined plots. The energy band gap values of the synthesized samples range from 4.93 to 3.18 eV and decrease in the following order: HAp:Gd >HAp>HAp:Gd/Eu>HAp:Gd/Yb/Tm. The results of photoluminescence emission spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu particles showed characteristic transitions of Tm3+ and Eu3+, respectively.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents",
pages = "76-76"
}
Ignjatović, N., Mančić, L., Vuković, M., Stojanović, Z. S., Nikolić, M. G., Škapin, S. D., Jovanović, S., Veselinović, L., Lazić, S., Marković, S.,& Uskoković, D. (2019). Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents.
Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 76-76.
Ignjatović N, Mančić L, Vuković M, Stojanović ZS, Nikolić MG, Škapin SD, Jovanović S, Veselinović L, Lazić S, Marković S, Uskoković D. Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents. Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:76-76
Ignjatović Nenad, Mančić Lidija, Vuković Marina, Stojanović Zoran S., Nikolić Marko G., Škapin Srečo Davor, Jovanović Sonja, Veselinović Ljiljana, Lazić Snežana, Marković Smilja, Uskoković Dragan, "Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents" Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):76-76

Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging

Ignjatović, Nenad; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana; Uskoković, Vuk; Lazić, Snežana; Marković, Smilja; Lazarević, Miloš M.; Uskoković, Dragan

(Springer Nature, 2019)

TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana
AU  - Uskoković, Vuk
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Lazarević, Miloš M.
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://www.nature.com/articles/s41598-019-52885-0
UR  - http://dais.sanu.ac.rs/123456789/6950
AB  - Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.
PB  - Springer Nature
T2  - Scientific Reports
T1  - Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging
SP  - 1
EP  - 15
VL  - 9
IS  - 1
DO  - 10.1038/s41598-019-52885-0
ER  - 
@article{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana and Uskoković, Vuk and Lazić, Snežana and Marković, Smilja and Lazarević, Miloš M. and Uskoković, Dragan",
year = "2019",
url = "https://www.nature.com/articles/s41598-019-52885-0, http://dais.sanu.ac.rs/123456789/6950",
abstract = "Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.",
publisher = "Springer Nature",
journal = "Scientific Reports",
title = "Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging",
pages = "1-15",
volume = "9",
number = "1",
doi = "10.1038/s41598-019-52885-0"
}
Ignjatović, N., Mančić, L., Vuković, M., Stojanović, Z., Nikolić, M. G., Škapin, S. D., Jovanović, S., Veselinović, L., Uskoković, V., Lazić, S., Marković, S., Lazarević, M. M.,& Uskoković, D. (2019). Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging.
Scientific Reports
Springer Nature., 9(1), 1-15.
https://doi.org/10.1038/s41598-019-52885-0
Ignjatović N, Mančić L, Vuković M, Stojanović Z, Nikolić MG, Škapin SD, Jovanović S, Veselinović L, Uskoković V, Lazić S, Marković S, Lazarević MM, Uskoković D. Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Scientific Reports. 2019;9(1):1-15
Ignjatović Nenad, Mančić Lidija, Vuković Marina, Stojanović Zoran, Nikolić Marko G., Škapin Srečo Davor, Jovanović Sonja, Veselinović Ljiljana, Uskoković Vuk, Lazić Snežana, Marković Smilja, Lazarević Miloš M., Uskoković Dragan, "Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging" Scientific Reports, 9, no. 1 (2019):1-15,
https://doi.org/10.1038/s41598-019-52885-0 .
1
23
13
23

Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties

Marković, Smilja; Stojković Simatović, Ivana; Ahmetović, Sanita; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Škapin, Srečo Davor; Bajuk Bogdanović, Danica; Janković Častvan, Ivona; Uskoković, Dragan

(Royal Society of Chemistry, 2019)

TY  - JOUR
AU  - Marković, Smilja
AU  - Stojković Simatović, Ivana
AU  - Ahmetović, Sanita
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Bajuk Bogdanović, Danica
AU  - Janković Častvan, Ivona
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra02553g
UR  - http://dais.sanu.ac.rs/123456789/6272
AB  - ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g−1, compared to ZnO (10.4 mA g−1) and ZnO/F127 photoanodes (20 mA g−1) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm−2. A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron–hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.
PB  - Royal Society of Chemistry
T2  - RSC Advances
T1  - Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties
SP  - 17165
EP  - 17178
VL  - 9
IS  - 30
DO  - 10.1039/C9RA02553G
ER  - 
@article{
author = "Marković, Smilja and Stojković Simatović, Ivana and Ahmetović, Sanita and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Škapin, Srečo Davor and Bajuk Bogdanović, Danica and Janković Častvan, Ivona and Uskoković, Dragan",
year = "2019",
url = "https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra02553g, http://dais.sanu.ac.rs/123456789/6272",
abstract = "ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g−1, compared to ZnO (10.4 mA g−1) and ZnO/F127 photoanodes (20 mA g−1) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm−2. A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron–hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.",
publisher = "Royal Society of Chemistry",
journal = "RSC Advances",
title = "Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties",
pages = "17165-17178",
volume = "9",
number = "30",
doi = "10.1039/C9RA02553G"
}
Marković, S., Stojković Simatović, I., Ahmetović, S., Veselinović, L., Stojadinović, S., Rac, V., Škapin, S. D., Bajuk Bogdanović, D., Janković Častvan, I.,& Uskoković, D. (2019). Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties.
RSC Advances
Royal Society of Chemistry., 9(30), 17165-17178.
https://doi.org/10.1039/C9RA02553G
Marković S, Stojković Simatović I, Ahmetović S, Veselinović L, Stojadinović S, Rac V, Škapin SD, Bajuk Bogdanović D, Janković Častvan I, Uskoković D. Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties. RSC Advances. 2019;9(30):17165-17178
Marković Smilja, Stojković Simatović Ivana, Ahmetović Sanita, Veselinović Ljiljana, Stojadinović Stevan, Rac Vladislav, Škapin Srečo Davor, Bajuk Bogdanović Danica, Janković Častvan Ivona, Uskoković Dragan, "Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties" RSC Advances, 9, no. 30 (2019):17165-17178,
https://doi.org/10.1039/C9RA02553G .
1
7
6
8

Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)

Marković, Smilja; Rajić, Vladimir B.; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Ivanovski, Valentin N.; Novaković, Mirjana; Škapin, Srečo Davor; Stojadinović, Stevan; Rac, Vladislav; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Marković, Smilja
AU  - Rajić, Vladimir B.
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Ivanovski, Valentin N.
AU  - Novaković, Mirjana
AU  - Škapin, Srečo Davor
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6677
AB  - Even has been under study since 1935, zinc oxide (ZnO) based materials still attract a huge scientific attention. Owing to a wide band gap energy (3.37 eV at room temperature) and a large exciton binding energy (60 meV) ZnO has a variety of application, e.g. in electronics, optoelectronics, spintronics and photocatalysis. Besides, it has been shown that zinc oxide-based materials have a great potential as photoelectrocatalysts in the processes of water splitting, yielding an increased both photocurrent density and photoconversion efficiency. However, with a band gap energy of 3.37 eV, ZnO is restricted to absorb UV light only. This restriction can be overcome by modifying optical properties of zinc oxide particles. During the years different approaches have been applied to modify the visible light photocatalytic activity of ZnO materials, for example: (1) metal and nonmetal ion doping, (2) hydrogenation, (3) the incorporation of crystalline defects in the form of vacancies and interstitials, (4) the modification of particles morphology and surface topology, etc.
In this study we employed 3d metal ion substitution to improve visible light-driven photoactivity of zinc oxide particles. We investigated the influence of Fe concentration in Zn1-xFeyO(1-x+1.5y) nanoparticles on crystal structure, textural, optical and photoelectrocatalytic properties. Zn1-xFeyO(1-x+1.5y) nanoparticles with nominally 5, 10, 15 and 20 at.% of Fe ions were synthesized by microwave processing of a precipitate. The crystal structure and phase purity of the samples were investigated by X-ray diffraction, Raman and ATR-FTIR spectroscopy. Mössbauer spectroscopy was carried out to clarify the valence state of the iron ions in the ZnO crystal structure. Effects of the iron ions concentration on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) with elemental mapping, and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. Photoelectrochemical activity of the Zn1-xFeyO(1-x+1.5y) samples as anode material was evaluated by linear sweep voltammetry in Na2SO4 electrolyte; the oxygen evolution kinetics were determined and compared. In addition, a series of first principles calculations were performed to address the influence of the iron concentration on the electronic structure of Zn1-xFeyO(1-x+1.5y) samples.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)
SP  - 54
EP  - 54
ER  - 
@conference{
author = "Marković, Smilja and Rajić, Vladimir B. and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Ivanovski, Valentin N. and Novaković, Mirjana and Škapin, Srečo Davor and Stojadinović, Stevan and Rac, Vladislav and Uskoković, Dragan",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6677",
abstract = "Even has been under study since 1935, zinc oxide (ZnO) based materials still attract a huge scientific attention. Owing to a wide band gap energy (3.37 eV at room temperature) and a large exciton binding energy (60 meV) ZnO has a variety of application, e.g. in electronics, optoelectronics, spintronics and photocatalysis. Besides, it has been shown that zinc oxide-based materials have a great potential as photoelectrocatalysts in the processes of water splitting, yielding an increased both photocurrent density and photoconversion efficiency. However, with a band gap energy of 3.37 eV, ZnO is restricted to absorb UV light only. This restriction can be overcome by modifying optical properties of zinc oxide particles. During the years different approaches have been applied to modify the visible light photocatalytic activity of ZnO materials, for example: (1) metal and nonmetal ion doping, (2) hydrogenation, (3) the incorporation of crystalline defects in the form of vacancies and interstitials, (4) the modification of particles morphology and surface topology, etc.
In this study we employed 3d metal ion substitution to improve visible light-driven photoactivity of zinc oxide particles. We investigated the influence of Fe concentration in Zn1-xFeyO(1-x+1.5y) nanoparticles on crystal structure, textural, optical and photoelectrocatalytic properties. Zn1-xFeyO(1-x+1.5y) nanoparticles with nominally 5, 10, 15 and 20 at.% of Fe ions were synthesized by microwave processing of a precipitate. The crystal structure and phase purity of the samples were investigated by X-ray diffraction, Raman and ATR-FTIR spectroscopy. Mössbauer spectroscopy was carried out to clarify the valence state of the iron ions in the ZnO crystal structure. Effects of the iron ions concentration on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) with elemental mapping, and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. Photoelectrochemical activity of the Zn1-xFeyO(1-x+1.5y) samples as anode material was evaluated by linear sweep voltammetry in Na2SO4 electrolyte; the oxygen evolution kinetics were determined and compared. In addition, a series of first principles calculations were performed to address the influence of the iron concentration on the electronic structure of Zn1-xFeyO(1-x+1.5y) samples.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)",
pages = "54-54"
}
Marković, S., Rajić, V. B., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Ivanovski, V. N., Novaković, M., Škapin, S. D., Stojadinović, S., Rac, V.,& Uskoković, D. (2019). Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y).
Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 54-54.
Marković S, Rajić VB, Stojković Simatović I, Veselinović L, Belošević Čavor J, Ivanovski VN, Novaković M, Škapin SD, Stojadinović S, Rac V, Uskoković D. Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y). Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:54-54
Marković Smilja, Rajić Vladimir B., Stojković Simatović Ivana, Veselinović Ljiljana, Belošević Čavor Jelena, Ivanovski Valentin N., Novaković Mirjana, Škapin Srečo Davor, Stojadinović Stevan, Rac Vladislav, Uskoković Dragan, "Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)" Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):54-54

Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration

Marković, Smilja; Rajić, Vladimir; Veselinović, Ljiljana; Stojković Simatović, Ivana; Belošević Čavor, Jelena; Škapin, Srečo Davor; Kovač, Janez; Nikolić, Marko G.; Uskoković, Dragan

(Budapest : [s. n.], 2019)

TY  - CONF
AU  - Marković, Smilja
AU  - Rajić, Vladimir
AU  - Veselinović, Ljiljana
AU  - Stojković Simatović, Ivana
AU  - Belošević Čavor, Jelena
AU  - Škapin, Srečo Davor
AU  - Kovač, Janez
AU  - Nikolić, Marko G.
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6997
AB  - During the last decade zinc oxide (ZnO) has attracted considerable attention as a promising material for electronic, optoelectronic and spintronic devices. ZnO has a wide bandgap (3.37 eV at room temperature) and relatively large exciton binding energy (60 meV) which enables multifunctional application. Until now ZnO-based materials have been used as UV and blue light emitters, varistors, thermistors, semiconductors, photoanodes, and other. Various approaches have been applied to improve functional properties of zinc oxide, such as: fabrication of ZnO-based heterojunction particles, particles’ surface sensitization, hydrogenation, etc. It has been found that intrinsic defects (vacancies, interstitials and antisites) in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Thus, correlation of the intrinsic defects concentration with optical and electrical properties of ZnO materials is of great importance for their further application in opto-electronic devices. In this study we investigated the influence of intrinsic defects concentration on the optical, electrical and photoelectrocatalytic properties of ZnO materials. To obtain ZnO powder with a high concentration of intrinsic defects microwave processing of precipitate was employed, while for further varying of defects concentration, the powder was thermally treated in three different atmospheres: air, argon and oxygen. The ZnO powder was uniaxially pressed (P = 100 MPa) in cylindrical compacts (R= 6 mm and h approx. 3 mm) which were sintered in different atmospheres by heating rate of 10 °/min up to 1100 °C, and with dwell time of 1 h. To study a crystal structure of ZnO samples XRD and Raman spectroscopy were used, while for microstructural investigation field emission scanning electron micrographs were recorded. Optical properties were studied using UV–Vis diffuse reflectance spectroscopy. To reveal the role of intrinsic defects in ZnO crystal lattice on functional properties, XPS, photoluminescence, electroluminescence and electrochemical impedance spectra were analyzed. A detailed analysis of the experimental results imply that a high concentration of intrinsic defects, in particular oxygen vacancies, is of the greatest importance for tunable light-emitting diode application and significant for the photoanode properties. To support our experimental observation we performed ab initio calculations based on density functional theory (DFT).
PB  - Budapest : [s. n.]
C3  - Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
T1  - Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration
SP  - 11
EP  - 11
ER  - 
@conference{
author = "Marković, Smilja and Rajić, Vladimir and Veselinović, Ljiljana and Stojković Simatović, Ivana and Belošević Čavor, Jelena and Škapin, Srečo Davor and Kovač, Janez and Nikolić, Marko G. and Uskoković, Dragan",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6997",
abstract = "During the last decade zinc oxide (ZnO) has attracted considerable attention as a promising material for electronic, optoelectronic and spintronic devices. ZnO has a wide bandgap (3.37 eV at room temperature) and relatively large exciton binding energy (60 meV) which enables multifunctional application. Until now ZnO-based materials have been used as UV and blue light emitters, varistors, thermistors, semiconductors, photoanodes, and other. Various approaches have been applied to improve functional properties of zinc oxide, such as: fabrication of ZnO-based heterojunction particles, particles’ surface sensitization, hydrogenation, etc. It has been found that intrinsic defects (vacancies, interstitials and antisites) in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Thus, correlation of the intrinsic defects concentration with optical and electrical properties of ZnO materials is of great importance for their further application in opto-electronic devices. In this study we investigated the influence of intrinsic defects concentration on the optical, electrical and photoelectrocatalytic properties of ZnO materials. To obtain ZnO powder with a high concentration of intrinsic defects microwave processing of precipitate was employed, while for further varying of defects concentration, the powder was thermally treated in three different atmospheres: air, argon and oxygen. The ZnO powder was uniaxially pressed (P = 100 MPa) in cylindrical compacts (R= 6 mm and h approx. 3 mm) which were sintered in different atmospheres by heating rate of 10 °/min up to 1100 °C, and with dwell time of 1 h. To study a crystal structure of ZnO samples XRD and Raman spectroscopy were used, while for microstructural investigation field emission scanning electron micrographs were recorded. Optical properties were studied using UV–Vis diffuse reflectance spectroscopy. To reveal the role of intrinsic defects in ZnO crystal lattice on functional properties, XPS, photoluminescence, electroluminescence and electrochemical impedance spectra were analyzed. A detailed analysis of the experimental results imply that a high concentration of intrinsic defects, in particular oxygen vacancies, is of the greatest importance for tunable light-emitting diode application and significant for the photoanode properties. To support our experimental observation we performed ab initio calculations based on density functional theory (DFT).",
publisher = "Budapest : [s. n.]",
journal = "Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest",
title = "Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration",
pages = "11-11"
}
Marković, S., Rajić, V., Veselinović, L., Stojković Simatović, I., Belošević Čavor, J., Škapin, S. D., Kovač, J., Nikolić, M. G.,& Uskoković, D. (2019). Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration.
Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
Budapest : [s. n.]., 11-11.
Marković S, Rajić V, Veselinović L, Stojković Simatović I, Belošević Čavor J, Škapin SD, Kovač J, Nikolić MG, Uskoković D. Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration. Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest. 2019;:11-11
Marković Smilja, Rajić Vladimir, Veselinović Ljiljana, Stojković Simatović Ivana, Belošević Čavor Jelena, Škapin Srečo Davor, Kovač Janez, Nikolić Marko G., Uskoković Dragan, "Tuning the optical, electrical and photoelectrocatalytic properties of Zno materials by varying of intrinsic defects concentration" Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest (2019):11-11

Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372

Jugović, Dragana; Milović, Miloš; Popović, Maja; Kusigerski, Vladan; Škapin, Srečo Davor; Rakočević, Zlatko; Mitrić, Miodrag

(2019)

TY  - BOOK
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Popović, Maja
AU  - Kusigerski, Vladan
AU  - Škapin, Srečo Davor
AU  - Rakočević, Zlatko
AU  - Mitrić, Miodrag
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/5970
T2  - Journal of Alloys and Compounds
T1  - Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372
ER  - 
@book{
author = "Jugović, Dragana and Milović, Miloš and Popović, Maja and Kusigerski, Vladan and Škapin, Srečo Davor and Rakočević, Zlatko and Mitrić, Miodrag",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/5970",
journal = "Journal of Alloys and Compounds",
title = "Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372"
}
Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S. D., Rakočević, Z.,& Mitrić, M. (2019). Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372.
Journal of Alloys and Compounds.
Jugović D, Milović M, Popović M, Kusigerski V, Škapin SD, Rakočević Z, Mitrić M. Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372. Journal of Alloys and Compounds. 2019;
Jugović Dragana, Milović Miloš, Popović Maja, Kusigerski Vladan, Škapin Srečo Davor, Rakočević Zlatko, Mitrić Miodrag, "Supplementary information for the article: Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S., Rakočević, Z., Mitrić, M., 2019. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds 774, 30–37. https://doi.org/10.1016/j.jallcom.2018.09.372" Journal of Alloys and Compounds (2019)

Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization

Bosnar, Sanja; Rac, Vladislav; Škapin, Srečo Davor; Damjanović Vasilić, Ljiljana; Marković, Smilja; Bronić, Josip; Rakić, Vesna

(Belgrade : Serbian Zeolite Association, 2019)

TY  - CONF
AU  - Bosnar, Sanja
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Damjanović Vasilić, Ljiljana
AU  - Marković, Smilja
AU  - Bronić, Josip
AU  - Rakić, Vesna
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6989
AB  - In a quest for optimal synthesis procedure of hierarchically porous zeolite by dual template method, a series of materials was prepared starting from zeolite yielding precursor with an addition of surfactant as a mesoporogen. Characterization of the obtained materials showed that all samples possess micro and mesoporous structures, which ratio depends on the amount of surfactant present in the reaction mixture. However, in the most of the samples separation of phases occurred, and crystalline zeolite phase along amorphous MCM-41 like phase were detected, except for the sample obtained from the modified precursor, where only crystalline zeolite phase was obtained, with a specific and unusual morphology. Adsorption isotherm of that sample resembles the isotherms obtained for post synthesis modified samples.
PB  - Belgrade : Serbian Zeolite Association
C3  - Proceedings of the 8th Serbian-Croatian-Slovenian Symposium on Zeolites, 3 - 5 October 2019, Belgrade, Serbia
T1  - Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization
SP  - 134
EP  - 137
ER  - 
@conference{
author = "Bosnar, Sanja and Rac, Vladislav and Škapin, Srečo Davor and Damjanović Vasilić, Ljiljana and Marković, Smilja and Bronić, Josip and Rakić, Vesna",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6989",
abstract = "In a quest for optimal synthesis procedure of hierarchically porous zeolite by dual template method, a series of materials was prepared starting from zeolite yielding precursor with an addition of surfactant as a mesoporogen. Characterization of the obtained materials showed that all samples possess micro and mesoporous structures, which ratio depends on the amount of surfactant present in the reaction mixture. However, in the most of the samples separation of phases occurred, and crystalline zeolite phase along amorphous MCM-41 like phase were detected, except for the sample obtained from the modified precursor, where only crystalline zeolite phase was obtained, with a specific and unusual morphology. Adsorption isotherm of that sample resembles the isotherms obtained for post synthesis modified samples.",
publisher = "Belgrade : Serbian Zeolite Association",
journal = "Proceedings of the 8th Serbian-Croatian-Slovenian Symposium on Zeolites, 3 - 5 October 2019, Belgrade, Serbia",
title = "Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization",
pages = "134-137"
}
Bosnar, S., Rac, V., Škapin, S. D., Damjanović Vasilić, L., Marković, S., Bronić, J.,& Rakić, V. (2019). Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization.
Proceedings of the 8th Serbian-Croatian-Slovenian Symposium on Zeolites, 3 - 5 October 2019, Belgrade, Serbia
Belgrade : Serbian Zeolite Association., 134-137.
Bosnar S, Rac V, Škapin SD, Damjanović Vasilić L, Marković S, Bronić J, Rakić V. Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization. Proceedings of the 8th Serbian-Croatian-Slovenian Symposium on Zeolites, 3 - 5 October 2019, Belgrade, Serbia. 2019;:134-137
Bosnar Sanja, Rac Vladislav, Škapin Srečo Davor, Damjanović Vasilić Ljiljana, Marković Smilja, Bronić Josip, Rakić Vesna, "Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization" Proceedings of the 8th Serbian-Croatian-Slovenian Symposium on Zeolites, 3 - 5 October 2019, Belgrade, Serbia (2019):134-137

Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Ivanovski, Valentin N.; Škapin, Srečo Davor; Dojčinović, Biljana; Uskoković, Dragan

(Elsevier, 2019)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo Davor
AU  - Dojčinović, Biljana
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/4938
AB  - A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose
SP  - 912
EP  - 919
VL  - 786
DO  - 10.1016/j.jallcom.2019.01.392
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Ivanovski, Valentin N. and Škapin, Srečo Davor and Dojčinović, Biljana and Uskoković, Dragan",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/4938",
abstract = "A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose",
pages = "912-919",
volume = "786",
doi = "10.1016/j.jallcom.2019.01.392"
}
Jugović, D., Mitrić, M., Milović, M., Ivanovski, V. N., Škapin, S. D., Dojčinović, B.,& Uskoković, D. (2019). Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose.
Journal of Alloys and Compounds
Elsevier., 786, 912-919.
https://doi.org/10.1016/j.jallcom.2019.01.392
Jugović D, Mitrić M, Milović M, Ivanovski VN, Škapin SD, Dojčinović B, Uskoković D. Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose. Journal of Alloys and Compounds. 2019;786:912-919
Jugović Dragana, Mitrić Miodrag, Milović Miloš, Ivanovski Valentin N., Škapin Srečo Davor, Dojčinović Biljana, Uskoković Dragan, "Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose" Journal of Alloys and Compounds, 786 (2019):912-919,
https://doi.org/10.1016/j.jallcom.2019.01.392 .
2
1
4

Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Ivanovski, Valentin N.; Škapin, Srečo Davor; Dojčinović, Biljana; Uskoković, Dragan

(Elsevier, 2019)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo Davor
AU  - Dojčinović, Biljana
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/4937
AB  - A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.
PB  - Elsevier
T2  - Journal of Alloys and Compounds
T1  - Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose
SP  - 912
EP  - 919
VL  - 786
DO  - 10.1016/j.jallcom.2019.01.392
ER  - 
@article{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Ivanovski, Valentin N. and Škapin, Srečo Davor and Dojčinović, Biljana and Uskoković, Dragan",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/4937",
abstract = "A new method involving the homogeneous dispersion of precursor compounds inside a methylcellulose matrix is used for the synthesis of a composite powder of Li 2 FeP 2 O 7 and carbon. The properties of carbon-containing and carbon-free powders are studied by X-ray powder diffraction (XRD) including Rietveld refinement, Mössbauer spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The structure of both powders is refined in a monoclinic framework (space group P2 1 /c). The structural refinement and Mössbauer spectroscopy reveal different degrees of partial occupancy of mixed-occupied sites by lithium. Electrochemical measurements show that the in situ formation of carbon improves capacity (90% of 1-electron theoretical capacity) through decreased charge-transfer resistance. © 2019 Elsevier B.V.",
publisher = "Elsevier",
journal = "Journal of Alloys and Compounds",
title = "Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose",
pages = "912-919",
volume = "786",
doi = "10.1016/j.jallcom.2019.01.392"
}
Jugović, D., Mitrić, M., Milović, M., Ivanovski, V. N., Škapin, S. D., Dojčinović, B.,& Uskoković, D. (2019). Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose.
Journal of Alloys and Compounds
Elsevier., 786, 912-919.
https://doi.org/10.1016/j.jallcom.2019.01.392
Jugović D, Mitrić M, Milović M, Ivanovski VN, Škapin SD, Dojčinović B, Uskoković D. Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose. Journal of Alloys and Compounds. 2019;786:912-919
Jugović Dragana, Mitrić Miodrag, Milović Miloš, Ivanovski Valentin N., Škapin Srečo Davor, Dojčinović Biljana, Uskoković Dragan, "Structural and electrochemical properties of the Li2FeP2O7/C composite prepared using soluble methylcellulose" Journal of Alloys and Compounds, 786 (2019):912-919,
https://doi.org/10.1016/j.jallcom.2019.01.392 .
2
1
4

Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder

Jugović, Dragana; Milović, Miloš; Popović, Maja; Kusigerski, Vladan; Škapin, Srečo Davor; Rakočević, Zlatko; Mitrić, Miodrag

(2019)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Popović, Maja
AU  - Kusigerski, Vladan
AU  - Škapin, Srečo Davor
AU  - Rakočević, Zlatko
AU  - Mitrić, Miodrag
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0925838818336375
UR  - http://dais.sanu.ac.rs/123456789/3978
AB  - The main goal of this research has been to investigate for the first time the effects of fluorination on the crystal structure, magnetic, and electrochemical properties of the P2-type NaxCoO2 powder. Sodium cobalt oxide with a P2-type structure is synthesized by a modified solid-state reaction consisting of alternating processes of rapid heating up to 750 °C and rapid cooling to the room temperature. The obtained powder is fluorinated using a gas-solid reaction with NH4HF2 as fluorinating agent. Fluorination causes a decrease of sodium content in the parent phase with the concurrent formation of the minor phases of Na2CO3 and NaF. The structure of NaxCoO2 in both powders is refined in P63/mmc space group. The results of the Rietveld refinement combined with the findings from the XPS measurements confirm the Na0.76CoO2 and Na0.44CoO1.96F0.04 stoichiometries for the pristine and fluorinated powders, respectively, which indicates that 4 at.% of fluorine ions per formula unit are incorporated in the structure. Preliminary electrochemical investigations have revealed an improved charge/discharge performance. The influence of fluorination on morphology and magnetic properties has also been examined.
T2  - Journal of Alloys and Compounds
T1  - Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder
SP  - 30
EP  - 37
VL  - 774
DO  - 10.1016/j.jallcom.2018.09.372
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Popović, Maja and Kusigerski, Vladan and Škapin, Srečo Davor and Rakočević, Zlatko and Mitrić, Miodrag",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0925838818336375, http://dais.sanu.ac.rs/123456789/3978",
abstract = "The main goal of this research has been to investigate for the first time the effects of fluorination on the crystal structure, magnetic, and electrochemical properties of the P2-type NaxCoO2 powder. Sodium cobalt oxide with a P2-type structure is synthesized by a modified solid-state reaction consisting of alternating processes of rapid heating up to 750 °C and rapid cooling to the room temperature. The obtained powder is fluorinated using a gas-solid reaction with NH4HF2 as fluorinating agent. Fluorination causes a decrease of sodium content in the parent phase with the concurrent formation of the minor phases of Na2CO3 and NaF. The structure of NaxCoO2 in both powders is refined in P63/mmc space group. The results of the Rietveld refinement combined with the findings from the XPS measurements confirm the Na0.76CoO2 and Na0.44CoO1.96F0.04 stoichiometries for the pristine and fluorinated powders, respectively, which indicates that 4 at.% of fluorine ions per formula unit are incorporated in the structure. Preliminary electrochemical investigations have revealed an improved charge/discharge performance. The influence of fluorination on morphology and magnetic properties has also been examined.",
journal = "Journal of Alloys and Compounds",
title = "Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder",
pages = "30-37",
volume = "774",
doi = "10.1016/j.jallcom.2018.09.372"
}
Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S. D., Rakočević, Z.,& Mitrić, M. (2019). Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder.
Journal of Alloys and Compounds, 774, 30-37.
https://doi.org/10.1016/j.jallcom.2018.09.372
Jugović D, Milović M, Popović M, Kusigerski V, Škapin SD, Rakočević Z, Mitrić M. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds. 2019;774:30-37
Jugović Dragana, Milović Miloš, Popović Maja, Kusigerski Vladan, Škapin Srečo Davor, Rakočević Zlatko, Mitrić Miodrag, "Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder" Journal of Alloys and Compounds, 774 (2019):30-37,
https://doi.org/10.1016/j.jallcom.2018.09.372 .
7
8
7

The structure and electrochemical properties of fayalite Fe2SiO4

Jugović, Dragana; Mitrić, Miodrag; Milović, Miloš; Ivanovski, Valentin N.; Škapin, Srečo Davor; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Jugović, Dragana
AU  - Mitrić, Miodrag
AU  - Milović, Miloš
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo Davor
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6674
AB  - Fayalite has been found various applications in many fields. Here is presented its use as anode material for lithium ion batteries. The syntheses of Fe2SiO4 and its composite with carbon are conducted through solid-state reaction at 850 °C under inert atmosphere of argon, using cheap and abundant precursors (Fe(NO3)3×9H2O and amorphous silica). Citric acid served as carbon source. The phase-purity of synthesized powders is checked by X-ray powder diffraction. The crystal structure of the powders is refined in orthorhombic Pbnm space group. Half-cell configuration, with lithium metal as counter electrode and fayalite as working electrode, is used for electrochemical measurements: galvanostatic cycling and electrochemical impedance spectroscopy.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - The structure and electrochemical properties of fayalite Fe2SiO4
SP  - 47
EP  - 47
ER  - 
@conference{
author = "Jugović, Dragana and Mitrić, Miodrag and Milović, Miloš and Ivanovski, Valentin N. and Škapin, Srečo Davor and Uskoković, Dragan",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6674",
abstract = "Fayalite has been found various applications in many fields. Here is presented its use as anode material for lithium ion batteries. The syntheses of Fe2SiO4 and its composite with carbon are conducted through solid-state reaction at 850 °C under inert atmosphere of argon, using cheap and abundant precursors (Fe(NO3)3×9H2O and amorphous silica). Citric acid served as carbon source. The phase-purity of synthesized powders is checked by X-ray powder diffraction. The crystal structure of the powders is refined in orthorhombic Pbnm space group. Half-cell configuration, with lithium metal as counter electrode and fayalite as working electrode, is used for electrochemical measurements: galvanostatic cycling and electrochemical impedance spectroscopy.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "The structure and electrochemical properties of fayalite Fe2SiO4",
pages = "47-47"
}
Jugović, D., Mitrić, M., Milović, M., Ivanovski, V. N., Škapin, S. D.,& Uskoković, D. (2019). The structure and electrochemical properties of fayalite Fe2SiO4.
Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 47-47.
Jugović D, Mitrić M, Milović M, Ivanovski VN, Škapin SD, Uskoković D. The structure and electrochemical properties of fayalite Fe2SiO4. Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:47-47
Jugović Dragana, Mitrić Miodrag, Milović Miloš, Ivanovski Valentin N., Škapin Srečo Davor, Uskoković Dragan, "The structure and electrochemical properties of fayalite Fe2SiO4" Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):47-47

Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder

Jugović, Dragana; Milović, Miloš; Popović, Maja; Kusigerski, Vladan; Škapin, Srečo Davor; Rakočević, Zlatko; Mitrić, Miodrag

(2019)

TY  - JOUR
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Popović, Maja
AU  - Kusigerski, Vladan
AU  - Škapin, Srečo Davor
AU  - Rakočević, Zlatko
AU  - Mitrić, Miodrag
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0925838818336375
UR  - http://dais.sanu.ac.rs/123456789/3980
AB  - The main goal of this research has been to investigate for the first time the effects of fluorination on the crystal structure, magnetic, and electrochemical properties of the P2-type NaxCoO2 powder. Sodium cobalt oxide with a P2-type structure is synthesized by a modified solid-state reaction consisting of alternating processes of rapid heating up to 750 °C and rapid cooling to the room temperature. The obtained powder is fluorinated using a gas-solid reaction with NH4HF2 as fluorinating agent. Fluorination causes a decrease of sodium content in the parent phase with the concurrent formation of the minor phases of Na2CO3 and NaF. The structure of NaxCoO2 in both powders is refined in P63/mmc space group. The results of the Rietveld refinement combined with the findings from the XPS measurements confirm the Na0.76CoO2 and Na0.44CoO1.96F0.04 stoichiometries for the pristine and fluorinated powders, respectively, which indicates that 4 at.% of fluorine ions per formula unit are incorporated in the structure. Preliminary electrochemical investigations have revealed an improved charge/discharge performance. The influence of fluorination on morphology and magnetic properties has also been examined.
T2  - Journal of Alloys and Compounds
T1  - Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder
SP  - 30
EP  - 37
VL  - 774
DO  - 10.1016/j.jallcom.2018.09.372
ER  - 
@article{
author = "Jugović, Dragana and Milović, Miloš and Popović, Maja and Kusigerski, Vladan and Škapin, Srečo Davor and Rakočević, Zlatko and Mitrić, Miodrag",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0925838818336375, http://dais.sanu.ac.rs/123456789/3980",
abstract = "The main goal of this research has been to investigate for the first time the effects of fluorination on the crystal structure, magnetic, and electrochemical properties of the P2-type NaxCoO2 powder. Sodium cobalt oxide with a P2-type structure is synthesized by a modified solid-state reaction consisting of alternating processes of rapid heating up to 750 °C and rapid cooling to the room temperature. The obtained powder is fluorinated using a gas-solid reaction with NH4HF2 as fluorinating agent. Fluorination causes a decrease of sodium content in the parent phase with the concurrent formation of the minor phases of Na2CO3 and NaF. The structure of NaxCoO2 in both powders is refined in P63/mmc space group. The results of the Rietveld refinement combined with the findings from the XPS measurements confirm the Na0.76CoO2 and Na0.44CoO1.96F0.04 stoichiometries for the pristine and fluorinated powders, respectively, which indicates that 4 at.% of fluorine ions per formula unit are incorporated in the structure. Preliminary electrochemical investigations have revealed an improved charge/discharge performance. The influence of fluorination on morphology and magnetic properties has also been examined.",
journal = "Journal of Alloys and Compounds",
title = "Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder",
pages = "30-37",
volume = "774",
doi = "10.1016/j.jallcom.2018.09.372"
}
Jugović, D., Milović, M., Popović, M., Kusigerski, V., Škapin, S. D., Rakočević, Z.,& Mitrić, M. (2019). Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder.
Journal of Alloys and Compounds, 774, 30-37.
https://doi.org/10.1016/j.jallcom.2018.09.372
Jugović D, Milović M, Popović M, Kusigerski V, Škapin SD, Rakočević Z, Mitrić M. Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder. Journal of Alloys and Compounds. 2019;774:30-37
Jugović Dragana, Milović Miloš, Popović Maja, Kusigerski Vladan, Škapin Srečo Davor, Rakočević Zlatko, Mitrić Miodrag, "Effects of fluorination on the structure, magnetic and electrochemical properties of the P2-type NaxCoO2 powder" Journal of Alloys and Compounds, 774 (2019):30-37,
https://doi.org/10.1016/j.jallcom.2018.09.372 .
7
8
7

Sunlight-driven Photocatalytic and Photo-electrochemical Activity of ZnO/SnO2 Composite

Marković, Smilja; Stojković Simatović, Ivana; Stanković, Ana; Škapin, Srečo Davor; Mančić, Lidija; Mentus, Slavko; Uskoković, Dragan

(Belgrade : Serbian Academy of Sciences and Arts, 2018)

TY  - CONF
AU  - Marković, Smilja
AU  - Stojković Simatović, Ivana
AU  - Stanković, Ana
AU  - Škapin, Srečo Davor
AU  - Mančić, Lidija
AU  - Mentus, Slavko
AU  - Uskoković, Dragan
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3631
AB  - Due to their high photoactivity, photostability, chemical inertness, simple syntheses procedures as well as low cost, semiconductor materials such as TiO2, ZnO, V2O5, and SnO2, are recognized as materials with a great potential for photoelectrochemical and photocatalytic applications. In particular, they can be used as photoanode in the process of photoelectrolysis of water, or to initiate decomposition of different organic or biological pollutants in water under light irradiation. Which wavelength of light will be absorbed depends on the semiconductor band gap; semiconductors with a wide band gap (> 3 eV) can absorb light in the UV range only, while those with a narrow band gap (< 3 eV) can be activated by visible light. Current trend in photo(electro)catalysis is to develop efficient semiconductors which can be activated by absorbing natural sunlight. During the years, various approaches have been developed to modify optical properties of semiconductors thus to be capable to absorb sunlight, for example: the incorporation of transition metal ions or defects into the crystal structure, the particles’ surface sensitization, hydrogenation, coupling of semiconductors with different band gap energies, etc.
PB  - Belgrade : Serbian Academy of Sciences and Arts
C3  - Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia
T1  - Sunlight-driven Photocatalytic and Photo-electrochemical Activity of ZnO/SnO2 Composite
SP  - 151
EP  - 153
ER  - 
@conference{
author = "Marković, Smilja and Stojković Simatović, Ivana and Stanković, Ana and Škapin, Srečo Davor and Mančić, Lidija and Mentus, Slavko and Uskoković, Dragan",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3631",
abstract = "Due to their high photoactivity, photostability, chemical inertness, simple syntheses procedures as well as low cost, semiconductor materials such as TiO2, ZnO, V2O5, and SnO2, are recognized as materials with a great potential for photoelectrochemical and photocatalytic applications. In particular, they can be used as photoanode in the process of photoelectrolysis of water, or to initiate decomposition of different organic or biological pollutants in water under light irradiation. Which wavelength of light will be absorbed depends on the semiconductor band gap; semiconductors with a wide band gap (> 3 eV) can absorb light in the UV range only, while those with a narrow band gap (< 3 eV) can be activated by visible light. Current trend in photo(electro)catalysis is to develop efficient semiconductors which can be activated by absorbing natural sunlight. During the years, various approaches have been developed to modify optical properties of semiconductors thus to be capable to absorb sunlight, for example: the incorporation of transition metal ions or defects into the crystal structure, the particles’ surface sensitization, hydrogenation, coupling of semiconductors with different band gap energies, etc.",
publisher = "Belgrade : Serbian Academy of Sciences and Arts",
journal = "Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia",
title = "Sunlight-driven Photocatalytic and Photo-electrochemical Activity of ZnO/SnO2 Composite",
pages = "151-153"
}
Marković, S., Stojković Simatović, I., Stanković, A., Škapin, S. D., Mančić, L., Mentus, S.,& Uskoković, D. (2018). Sunlight-driven Photocatalytic and Photo-electrochemical Activity of ZnO/SnO2 Composite.
Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia
Belgrade : Serbian Academy of Sciences and Arts., 151-153.
Marković S, Stojković Simatović I, Stanković A, Škapin SD, Mančić L, Mentus S, Uskoković D. Sunlight-driven Photocatalytic and Photo-electrochemical Activity of ZnO/SnO2 Composite. Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia. 2018;:151-153
Marković Smilja, Stojković Simatović Ivana, Stanković Ana, Škapin Srečo Davor, Mančić Lidija, Mentus Slavko, Uskoković Dragan, "Sunlight-driven Photocatalytic and Photo-electrochemical Activity of ZnO/SnO2 Composite" Program and Book of Abstracts / First International Conference on Electron Microscopy of Nanostructures ELMINA 2018, August 27-29, 2018, Belgrade, Serbia (2018):151-153

Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine

Ignjatović, Nenad; Mančić, Lidija; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Veselinović, Ljiljana; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2018)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Veselinović, Ljiljana
AU  - Uskoković, Dragan
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3663
AB  - Composite biomaterials based on nano hydroxyapatite (HAp) are the subject of numerous studies in reconstructive medicine. Multifunctional and nanoparticulate systems based on HAp and biodegradable polymers are successfully designed as systems for controlled and systemic drug delivery suitable for use in reconstructive medicine. Thanks to the stability and flexibility of the apatite structure, Ca ions can be replaced with various elements (Zn, Sr, Mg, Co, etc.). Doping the apatite structure enables potential application of this material in preventive medicine, too. Multimodal imaging (MI) is a new and promising technique for improved diagnosis and it is patient-friendly because it saves time. MI has recently attracted much attention due to the advantageous combination of various imaging modalities, such as computer tomography (CT), photoluminescence (PL) and magnetic resonance imaging (MRI). For such a promising approach, we devised new multimodal contrast agents using the doping of a HAp matrix with rare earth (RE) ions. Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), down-converting HAp:Gd,Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) and up-converting HAp:Gd,Yb/Tm (Ca4.85 Gd0.03Yb0.1Tm0.02(PO4)3(OH)) were synthesized using a hydrothermal procedure. Morphological and structural characteristics of the particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectrometry (EDX), photoluminescence (PL), Fourier Transform Infrared (FTIR) and diffuse reflectance spectroscopy (DRS). The results show that needle-like nano- or microparticles were obtained in all systems. Their phase composition and uniform distribution of dopants were confirmed by the structural refinement of the XRPD data, change in the band gap, and luminescence spectra recorded using different excitation sources (λ= 370, 394 and 977 nm).
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
T1  - Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine
SP  - 130
EP  - 130
ER  - 
@conference{
author = "Ignjatović, Nenad and Mančić, Lidija and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Veselinović, Ljiljana and Uskoković, Dragan",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3663",
abstract = "Composite biomaterials based on nano hydroxyapatite (HAp) are the subject of numerous studies in reconstructive medicine. Multifunctional and nanoparticulate systems based on HAp and biodegradable polymers are successfully designed as systems for controlled and systemic drug delivery suitable for use in reconstructive medicine. Thanks to the stability and flexibility of the apatite structure, Ca ions can be replaced with various elements (Zn, Sr, Mg, Co, etc.). Doping the apatite structure enables potential application of this material in preventive medicine, too. Multimodal imaging (MI) is a new and promising technique for improved diagnosis and it is patient-friendly because it saves time. MI has recently attracted much attention due to the advantageous combination of various imaging modalities, such as computer tomography (CT), photoluminescence (PL) and magnetic resonance imaging (MRI). For such a promising approach, we devised new multimodal contrast agents using the doping of a HAp matrix with rare earth (RE) ions. Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), down-converting HAp:Gd,Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) and up-converting HAp:Gd,Yb/Tm (Ca4.85 Gd0.03Yb0.1Tm0.02(PO4)3(OH)) were synthesized using a hydrothermal procedure. Morphological and structural characteristics of the particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectrometry (EDX), photoluminescence (PL), Fourier Transform Infrared (FTIR) and diffuse reflectance spectroscopy (DRS). The results show that needle-like nano- or microparticles were obtained in all systems. Their phase composition and uniform distribution of dopants were confirmed by the structural refinement of the XRPD data, change in the band gap, and luminescence spectra recorded using different excitation sources (λ= 370, 394 and 977 nm).",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018",
title = "Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine",
pages = "130-130"
}
Ignjatović, N., Mančić, L., Stojanović, Z. S., Nikolić, M. G., Škapin, S. D., Veselinović, L.,& Uskoković, D. (2018). Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine.
Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
Belgrade : Materials Research Society of Serbia., 130-130.
Ignjatović N, Mančić L, Stojanović ZS, Nikolić MG, Škapin SD, Veselinović L, Uskoković D. Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine. Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018. 2018;:130-130
Ignjatović Nenad, Mančić Lidija, Stojanović Zoran S., Nikolić Marko G., Škapin Srečo Davor, Veselinović Ljiljana, Uskoković Dragan, "Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine" Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018 (2018):130-130

Lanthanide doped hydroxyapatite for multimodal imaging

Dinić, Ivana; Vuković, Marina; Ignjatović, Nenad; Stojanović, Zoran S.; Škapin, Srečo Davor; Veselinović, Ljiljana; Mančić, Lidija

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Dinić, Ivana
AU  - Vuković, Marina
AU  - Ignjatović, Nenad
AU  - Stojanović, Zoran S.
AU  - Škapin, Srečo Davor
AU  - Veselinović, Ljiljana
AU  - Mančić, Lidija
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4118
AB  - Lantanide dual-doped hydroxyapatite (HaP:Ln) is currently the subject of numerous studies in reconstructive medicine. Designed in form of hybrid nanoparticles which have magnetic and luminescent properties HaP:Ln (where Ln=Gd/Eu or Gd/Yb/Tm) is capable to enhance signal detection. Beside it, due biodegradable properties it is suitable for use in bone tissue engineering and target drug delivery. For such a promising approach, doping of a HAp matrix is performed with Gd/Eu and Gd/Yb/Tm during hydrothermal synthesis using EDTA as chelating agent. Morphological and structural characteristics of the particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared (FTIR) and photoluminescence (PL). The results show that needle-like nano- or micro- particles were obtained in all systems. Their phase composition and uniform distribution of dopants were confirmed by the structural refinement of the XRPD data and luminescence response from Eu and Tb (λex = 370, 394 and 977 nm).
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Lanthanide doped hydroxyapatite for multimodal imaging
SP  - 71
EP  - 71
ER  - 
@conference{
author = "Dinić, Ivana and Vuković, Marina and Ignjatović, Nenad and Stojanović, Zoran S. and Škapin, Srečo Davor and Veselinović, Ljiljana and Mančić, Lidija",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4118",
abstract = "Lantanide dual-doped hydroxyapatite (HaP:Ln) is currently the subject of numerous studies in reconstructive medicine. Designed in form of hybrid nanoparticles which have magnetic and luminescent properties HaP:Ln (where Ln=Gd/Eu or Gd/Yb/Tm) is capable to enhance signal detection. Beside it, due biodegradable properties it is suitable for use in bone tissue engineering and target drug delivery. For such a promising approach, doping of a HAp matrix is performed with Gd/Eu and Gd/Yb/Tm during hydrothermal synthesis using EDTA as chelating agent. Morphological and structural characteristics of the particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared (FTIR) and photoluminescence (PL). The results show that needle-like nano- or micro- particles were obtained in all systems. Their phase composition and uniform distribution of dopants were confirmed by the structural refinement of the XRPD data and luminescence response from Eu and Tb (λex = 370, 394 and 977 nm).",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Lanthanide doped hydroxyapatite for multimodal imaging",
pages = "71-71"
}
Dinić, I., Vuković, M., Ignjatović, N., Stojanović, Z. S., Škapin, S. D., Veselinović, L.,& Mančić, L. (2018). Lanthanide doped hydroxyapatite for multimodal imaging.
Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 71-71.
Dinić I, Vuković M, Ignjatović N, Stojanović ZS, Škapin SD, Veselinović L, Mančić L. Lanthanide doped hydroxyapatite for multimodal imaging. Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:71-71
Dinić Ivana, Vuković Marina, Ignjatović Nenad, Stojanović Zoran S., Škapin Srečo Davor, Veselinović Ljiljana, Mančić Lidija, "Lanthanide doped hydroxyapatite for multimodal imaging" Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):71-71

CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties

Marković, Smilja; Stojković Simatović, Ivana; Ahmetović, Sanita; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Škapin, Srečo Davor; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2018)

TY  - CONF
AU  - Marković, Smilja
AU  - Stojković Simatović, Ivana
AU  - Ahmetović, Sanita
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Uskoković, Dragan
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3664
AB  - Zinc oxide-based materials have a great potential to be applied as photocatalysts in the processes of removal of organic and biological pollutants from drinking and wastewaters. A major drawback of ZnO as visible-light absorber is a band energy gap of 3.37 eV, which restricts the material to absorb UV light only. This drawback can be overcame by modifying the optical absorption properties of zinc oxide particles. Different approaches have been applied to modify the visible light photocatalytic activity of ZnO materials: (1) metal and nonmetal ion doping, (2) hydrogenation, (3) the incorporation of crystalline defects in the form of vacancies and interstitials, (4) the modification of particles morphology and surface topology, etc. In this study we investigated the influence of different surfactants on the morphology, optical properties and functionality of ZnO particles. Two different surfactants were employed during microwave processing of ZnO particles, cetyltrimethylammonium bromide (CTAB) as cationic and Pluronic F-127 as non-ionic one. The crystal structure and phase purity of the ZnO particles were determined by X-ray diffraction and Raman spectroscopy. Effects of the surfactants on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM) and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. Functionality of ZnO particles was studied due to their photocatalytic and electrochemical activities. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. Electrochemical behavior of the ZnO samples as anode material was evaluated by linear sweep voltammetry in Na2SO4 electrolyte; the oxygen evolution kinetics were determined and compared.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
T1  - CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties
SP  - 70
EP  - 70
ER  - 
@conference{
author = "Marković, Smilja and Stojković Simatović, Ivana and Ahmetović, Sanita and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Škapin, Srečo Davor and Uskoković, Dragan",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3664",
abstract = "Zinc oxide-based materials have a great potential to be applied as photocatalysts in the processes of removal of organic and biological pollutants from drinking and wastewaters. A major drawback of ZnO as visible-light absorber is a band energy gap of 3.37 eV, which restricts the material to absorb UV light only. This drawback can be overcame by modifying the optical absorption properties of zinc oxide particles. Different approaches have been applied to modify the visible light photocatalytic activity of ZnO materials: (1) metal and nonmetal ion doping, (2) hydrogenation, (3) the incorporation of crystalline defects in the form of vacancies and interstitials, (4) the modification of particles morphology and surface topology, etc. In this study we investigated the influence of different surfactants on the morphology, optical properties and functionality of ZnO particles. Two different surfactants were employed during microwave processing of ZnO particles, cetyltrimethylammonium bromide (CTAB) as cationic and Pluronic F-127 as non-ionic one. The crystal structure and phase purity of the ZnO particles were determined by X-ray diffraction and Raman spectroscopy. Effects of the surfactants on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM) and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. Functionality of ZnO particles was studied due to their photocatalytic and electrochemical activities. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. Electrochemical behavior of the ZnO samples as anode material was evaluated by linear sweep voltammetry in Na2SO4 electrolyte; the oxygen evolution kinetics were determined and compared.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018",
title = "CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties",
pages = "70-70"
}
Marković, S., Stojković Simatović, I., Ahmetović, S., Veselinović, L., Stojadinović, S., Rac, V., Škapin, S. D.,& Uskoković, D. (2018). CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties.
Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
Belgrade : Materials Research Society of Serbia., 70-70.
Marković S, Stojković Simatović I, Ahmetović S, Veselinović L, Stojadinović S, Rac V, Škapin SD, Uskoković D. CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties. Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018. 2018;:70-70
Marković Smilja, Stojković Simatović Ivana, Ahmetović Sanita, Veselinović Ljiljana, Stojadinović Stevan, Rac Vladislav, Škapin Srečo Davor, Uskoković Dragan, "CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties" Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018 (2018):70-70

Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate

Uskoković, Vuk; Marković, Smilja; Veselinović, Ljiljana; Škapin, Srečo Davor; Ignjatović, Nenad; Uskoković, Dragan

(Royal Society of Chemistry (RSC), 2018)

TY  - JOUR
AU  - Uskoković, Vuk
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Škapin, Srečo Davor
AU  - Ignjatović, Nenad
AU  - Uskoković, Dragan
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4514
AB  - Transformations between amorphous and crystalline apatite mechanistically govern some of the most essential processes in bone metabolism, including biomineralization and bone remodeling. Fundamental understanding of this phase transition can help us gain control over the formation and dissolution of boney tissues in vivo and utilize that knowledge for various therapeutic ends. Crystallization of hydroxyapatite (HAp) and two tricalcium phosphate (TCP) polymorphs from the metastable precursor, amorphous calcium phosphate (ACP) was here studied kinetically and mechanistically using thermal analyses, X-ray diffraction and Fourier-transform infrared spectroscopy. Crystallization was detected in the differential thermal analysis as the exothermic peak at 639.5 °C at the slowest heating regimen of 5 °C min−1, while a combination of different kinetics models, including Augis–Bennett, Borchardt–Daniels, Johnson–Mehl–Avrami, Kissinger, Ozawa and Piloyan, yielded activation energies in the 435–450 kJ mol−1 range. Dehydrated ACP required a significant energy input to transform to HAp, thus indirectly proving the key role that structural water plays in this process in a biological setting. The phase transformation at high temperatures involved preformed nuclei and was solely due to their 3D growth, contrasting the edge-controlled nucleation derived earlier as the mechanism of growth in the solution. Crystallization was in both cases accompanied by the formation of needle-shape crystals of HAp through aggregation of ultrafine spherical units of ACP. Relationship between crystallinity and the heating rate was detected only for the initially amorphous structure, indicating a more intense and coherent lattice ordering process in annealed ACP than in HAp. Despite that, crystallization disobeyed the rule of inverse proportionality between the thermal energy required for the relaxation of defects and the level of strain, as the recovery rate of the initially poorly crystalline HAp was higher than that of ACP.
PB  - Royal Society of Chemistry (RSC)
T2  - Physical Chemistry Chemical Physics
T1  - Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate
SP  - 29221
EP  - 29235
VL  - 20
DO  - 10.1039/C8CP06460A
ER  - 
@article{
author = "Uskoković, Vuk and Marković, Smilja and Veselinović, Ljiljana and Škapin, Srečo Davor and Ignjatović, Nenad and Uskoković, Dragan",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4514",
abstract = "Transformations between amorphous and crystalline apatite mechanistically govern some of the most essential processes in bone metabolism, including biomineralization and bone remodeling. Fundamental understanding of this phase transition can help us gain control over the formation and dissolution of boney tissues in vivo and utilize that knowledge for various therapeutic ends. Crystallization of hydroxyapatite (HAp) and two tricalcium phosphate (TCP) polymorphs from the metastable precursor, amorphous calcium phosphate (ACP) was here studied kinetically and mechanistically using thermal analyses, X-ray diffraction and Fourier-transform infrared spectroscopy. Crystallization was detected in the differential thermal analysis as the exothermic peak at 639.5 °C at the slowest heating regimen of 5 °C min−1, while a combination of different kinetics models, including Augis–Bennett, Borchardt–Daniels, Johnson–Mehl–Avrami, Kissinger, Ozawa and Piloyan, yielded activation energies in the 435–450 kJ mol−1 range. Dehydrated ACP required a significant energy input to transform to HAp, thus indirectly proving the key role that structural water plays in this process in a biological setting. The phase transformation at high temperatures involved preformed nuclei and was solely due to their 3D growth, contrasting the edge-controlled nucleation derived earlier as the mechanism of growth in the solution. Crystallization was in both cases accompanied by the formation of needle-shape crystals of HAp through aggregation of ultrafine spherical units of ACP. Relationship between crystallinity and the heating rate was detected only for the initially amorphous structure, indicating a more intense and coherent lattice ordering process in annealed ACP than in HAp. Despite that, crystallization disobeyed the rule of inverse proportionality between the thermal energy required for the relaxation of defects and the level of strain, as the recovery rate of the initially poorly crystalline HAp was higher than that of ACP.",
publisher = "Royal Society of Chemistry (RSC)",
journal = "Physical Chemistry Chemical Physics",
title = "Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate",
pages = "29221-29235",
volume = "20",
doi = "10.1039/C8CP06460A"
}
Uskoković, V., Marković, S., Veselinović, L., Škapin, S. D., Ignjatović, N.,& Uskoković, D. (2018). Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate.
Physical Chemistry Chemical Physics
Royal Society of Chemistry (RSC)., 20, 29221-29235.
https://doi.org/10.1039/C8CP06460A
Uskoković V, Marković S, Veselinović L, Škapin SD, Ignjatović N, Uskoković D. Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate. Physical Chemistry Chemical Physics. 2018;20:29221-29235
Uskoković Vuk, Marković Smilja, Veselinović Ljiljana, Škapin Srečo Davor, Ignjatović Nenad, Uskoković Dragan, "Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate" Physical Chemistry Chemical Physics, 20 (2018):29221-29235,
https://doi.org/10.1039/C8CP06460A .
27
20
27

Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate

Uskoković, Vuk; Marković, Smilja; Veselinović, Ljiljana; Škapin, Srečo Davor; Ignjatović, Nenad; Uskoković, Dragan

(Royal Society of Chemistry (RSC), 2018)

TY  - JOUR
AU  - Uskoković, Vuk
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Škapin, Srečo Davor
AU  - Ignjatović, Nenad
AU  - Uskoković, Dragan
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4514
UR  - http://dais.sanu.ac.rs/123456789/4554
AB  - Transformations between amorphous and crystalline apatite mechanistically govern some of the most essential processes in bone metabolism, including biomineralization and bone remodeling. Fundamental understanding of this phase transition can help us gain control over the formation and dissolution of boney tissues in vivo and utilize that knowledge for various therapeutic ends. Crystallization of hydroxyapatite (HAp) and two tricalcium phosphate (TCP) polymorphs from the metastable precursor, amorphous calcium phosphate (ACP) was here studied kinetically and mechanistically using thermal analyses, X-ray diffraction and Fourier-transform infrared spectroscopy. Crystallization was detected in the differential thermal analysis as the exothermic peak at 639.5 °C at the slowest heating regimen of 5 °C min−1, while a combination of different kinetics models, including Augis–Bennett, Borchardt–Daniels, Johnson–Mehl–Avrami, Kissinger, Ozawa and Piloyan, yielded activation energies in the 435–450 kJ mol−1 range. Dehydrated ACP required a significant energy input to transform to HAp, thus indirectly proving the key role that structural water plays in this process in a biological setting. The phase transformation at high temperatures involved preformed nuclei and was solely due to their 3D growth, contrasting the edge-controlled nucleation derived earlier as the mechanism of growth in the solution. Crystallization was in both cases accompanied by the formation of needle-shape crystals of HAp through aggregation of ultrafine spherical units of ACP. Relationship between crystallinity and the heating rate was detected only for the initially amorphous structure, indicating a more intense and coherent lattice ordering process in annealed ACP than in HAp. Despite that, crystallization disobeyed the rule of inverse proportionality between the thermal energy required for the relaxation of defects and the level of strain, as the recovery rate of the initially poorly crystalline HAp was higher than that of ACP.
PB  - Royal Society of Chemistry (RSC)
T2  - Physical Chemistry Chemical Physics
T1  - Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate
SP  - 29221
EP  - 29235
VL  - 20
DO  - 10.1039/C8CP06460A
ER  - 
@article{
author = "Uskoković, Vuk and Marković, Smilja and Veselinović, Ljiljana and Škapin, Srečo Davor and Ignjatović, Nenad and Uskoković, Dragan",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4514, http://dais.sanu.ac.rs/123456789/4554",
abstract = "Transformations between amorphous and crystalline apatite mechanistically govern some of the most essential processes in bone metabolism, including biomineralization and bone remodeling. Fundamental understanding of this phase transition can help us gain control over the formation and dissolution of boney tissues in vivo and utilize that knowledge for various therapeutic ends. Crystallization of hydroxyapatite (HAp) and two tricalcium phosphate (TCP) polymorphs from the metastable precursor, amorphous calcium phosphate (ACP) was here studied kinetically and mechanistically using thermal analyses, X-ray diffraction and Fourier-transform infrared spectroscopy. Crystallization was detected in the differential thermal analysis as the exothermic peak at 639.5 °C at the slowest heating regimen of 5 °C min−1, while a combination of different kinetics models, including Augis–Bennett, Borchardt–Daniels, Johnson–Mehl–Avrami, Kissinger, Ozawa and Piloyan, yielded activation energies in the 435–450 kJ mol−1 range. Dehydrated ACP required a significant energy input to transform to HAp, thus indirectly proving the key role that structural water plays in this process in a biological setting. The phase transformation at high temperatures involved preformed nuclei and was solely due to their 3D growth, contrasting the edge-controlled nucleation derived earlier as the mechanism of growth in the solution. Crystallization was in both cases accompanied by the formation of needle-shape crystals of HAp through aggregation of ultrafine spherical units of ACP. Relationship between crystallinity and the heating rate was detected only for the initially amorphous structure, indicating a more intense and coherent lattice ordering process in annealed ACP than in HAp. Despite that, crystallization disobeyed the rule of inverse proportionality between the thermal energy required for the relaxation of defects and the level of strain, as the recovery rate of the initially poorly crystalline HAp was higher than that of ACP.",
publisher = "Royal Society of Chemistry (RSC)",
journal = "Physical Chemistry Chemical Physics",
title = "Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate",
pages = "29221-29235",
volume = "20",
doi = "10.1039/C8CP06460A"
}
Uskoković, V., Marković, S., Veselinović, L., Škapin, S. D., Ignjatović, N.,& Uskoković, D. (2018). Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate.
Physical Chemistry Chemical Physics
Royal Society of Chemistry (RSC)., 20, 29221-29235.
https://doi.org/10.1039/C8CP06460A
Uskoković V, Marković S, Veselinović L, Škapin SD, Ignjatović N, Uskoković D. Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate. Physical Chemistry Chemical Physics. 2018;20:29221-29235
Uskoković Vuk, Marković Smilja, Veselinović Ljiljana, Škapin Srečo Davor, Ignjatović Nenad, Uskoković Dragan, "Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate" Physical Chemistry Chemical Physics, 20 (2018):29221-29235,
https://doi.org/10.1039/C8CP06460A .
27
20
27

Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing

Marković, Smilja; Stojković Simatović, Ivana; Ahmetović, Sanita; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Škapin, Srečo Davor; Uskoković, Dragan

(Belgrade : Society of Physical Chemists of Serbia, 2018)

TY  - CONF
AU  - Marković, Smilja
AU  - Stojković Simatović, Ivana
AU  - Ahmetović, Sanita
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Uskoković, Dragan
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4561
AB  - ZnO/CTAB powder was prepared by microwave processing of a precipitate with the aid of cetyltrimethylammonium bromide (CTAB). The effects of CTAB on the crystal structure, morphology, optical and photo(electro)catalytic properties of ZnO particles were studied. The results showed that CTAB did not influenced crystal structure or phase purity of ZnO. However, even low concentration of CTAB vary particles morphology; cone-like particles were prepared by processing without CTAB, while a mixture of spheroidal and plate-like ZnO particles were produced when 0.001 M CTAB was used. It was found that synthesized ZnO powders have 0.10 eV lower band gap energy then bulk ZnO (3.37 eV). A high photocatalytic activity for decolorization of methylene blue water solution was established after 2 h of sunlight irradiation; efficiency was 100 and 67% for ZnO/CTAB and ZnO, respectively. Electrochemical test showed faster oxygen evolution kinetics when ZnO/CTAB was used as anode material. Enhanced photo(electro)catalytic activities of ZnO/CTAB particles are attributed to better absorption of visible light due to both, larger dimensions and surface sensitization by CTAB.
PB  - Belgrade : Society of Physical Chemists of Serbia
C3  - Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018, Belgrade
T1  - Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing
SP  - 237
EP  - 240
ER  - 
@conference{
author = "Marković, Smilja and Stojković Simatović, Ivana and Ahmetović, Sanita and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Škapin, Srečo Davor and Uskoković, Dragan",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4561",
abstract = "ZnO/CTAB powder was prepared by microwave processing of a precipitate with the aid of cetyltrimethylammonium bromide (CTAB). The effects of CTAB on the crystal structure, morphology, optical and photo(electro)catalytic properties of ZnO particles were studied. The results showed that CTAB did not influenced crystal structure or phase purity of ZnO. However, even low concentration of CTAB vary particles morphology; cone-like particles were prepared by processing without CTAB, while a mixture of spheroidal and plate-like ZnO particles were produced when 0.001 M CTAB was used. It was found that synthesized ZnO powders have 0.10 eV lower band gap energy then bulk ZnO (3.37 eV). A high photocatalytic activity for decolorization of methylene blue water solution was established after 2 h of sunlight irradiation; efficiency was 100 and 67% for ZnO/CTAB and ZnO, respectively. Electrochemical test showed faster oxygen evolution kinetics when ZnO/CTAB was used as anode material. Enhanced photo(electro)catalytic activities of ZnO/CTAB particles are attributed to better absorption of visible light due to both, larger dimensions and surface sensitization by CTAB.",
publisher = "Belgrade : Society of Physical Chemists of Serbia",
journal = "Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018, Belgrade",
title = "Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing",
pages = "237-240"
}
Marković, S., Stojković Simatović, I., Ahmetović, S., Veselinović, L., Stojadinović, S., Rac, V., Škapin, S. D.,& Uskoković, D. (2018). Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing.
Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018, Belgrade
Belgrade : Society of Physical Chemists of Serbia., 237-240.
Marković S, Stojković Simatović I, Ahmetović S, Veselinović L, Stojadinović S, Rac V, Škapin SD, Uskoković D. Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing. Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018, Belgrade. 2018;:237-240
Marković Smilja, Stojković Simatović Ivana, Ahmetović Sanita, Veselinović Ljiljana, Stojadinović Stevan, Rac Vladislav, Škapin Srečo Davor, Uskoković Dragan, "Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing" Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018, Belgrade (2018):237-240

Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127

Ahmetović, Sanita; Stojadinović, Stevan; Rac, Vladislav; Škapin, Srečo Davor; Stojković Simatović, Ivana; Marković, Smilja

(Belgrade : Institute of Technical Sciences of SASA, 2018)

TY  - CONF
AU  - Ahmetović, Sanita
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4724
AB  - Due to its optical and electrical properties, low toxicity, chemical and physical stability, as well as inexpensiveness, zinc oxide (ZnO) based materials have a great potential to be used as photoelectrode in photo(electro)catalysis. Photo(electro)catalytic activity of ZnO materials can be improved by modification of particles morphology and surface topology. In this work, the influence of two different surfactants: cetyltrimethylammonium bromide (CTAB) and Pluronic F-127, on the crystal structure, morphology, optical and photo(electro)catalytic properties of ZnO particles, were examined. ZnO powders were synthesized by microwave processing of a precipitate which was previously prepared by "drop by drop" method in the presence of the surfactants. The crystal structure and phase purity of the ZnO particles were determined by X-ray diffraction and Raman spectroscopy. The effects of the surfactants on ZnO particles morphology were examined by the field emission scanning electron microscopy (FE-SEM). The optical properties were studied using UV-Vis diffuse reflectance and photoluminescence spectroscopy. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. It was found that synthesized ZnO powders have a significant photocatalytic activity. Electrochemical properties were studied using linear sweep voltammetry and impedance spectroscopy in Na2SO4 electrolyte. ZnO powder synthesized in the presence of CTAB (ZnO/CTAB) showed the most significant reduction of potential and the fastest kinetic of oxygen evolution.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
T1  - Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127
SP  - 66
EP  - 66
ER  - 
@conference{
author = "Ahmetović, Sanita and Stojadinović, Stevan and Rac, Vladislav and Škapin, Srečo Davor and Stojković Simatović, Ivana and Marković, Smilja",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4724",
abstract = "Due to its optical and electrical properties, low toxicity, chemical and physical stability, as well as inexpensiveness, zinc oxide (ZnO) based materials have a great potential to be used as photoelectrode in photo(electro)catalysis. Photo(electro)catalytic activity of ZnO materials can be improved by modification of particles morphology and surface topology. In this work, the influence of two different surfactants: cetyltrimethylammonium bromide (CTAB) and Pluronic F-127, on the crystal structure, morphology, optical and photo(electro)catalytic properties of ZnO particles, were examined. ZnO powders were synthesized by microwave processing of a precipitate which was previously prepared by "drop by drop" method in the presence of the surfactants. The crystal structure and phase purity of the ZnO particles were determined by X-ray diffraction and Raman spectroscopy. The effects of the surfactants on ZnO particles morphology were examined by the field emission scanning electron microscopy (FE-SEM). The optical properties were studied using UV-Vis diffuse reflectance and photoluminescence spectroscopy. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. It was found that synthesized ZnO powders have a significant photocatalytic activity. Electrochemical properties were studied using linear sweep voltammetry and impedance spectroscopy in Na2SO4 electrolyte. ZnO powder synthesized in the presence of CTAB (ZnO/CTAB) showed the most significant reduction of potential and the fastest kinetic of oxygen evolution.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia",
title = "Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127",
pages = "66-66"
}
Ahmetović, S., Stojadinović, S., Rac, V., Škapin, S. D., Stojković Simatović, I.,& Marković, S. (2018). Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127.
Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 66-66.
Ahmetović S, Stojadinović S, Rac V, Škapin SD, Stojković Simatović I, Marković S. Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127. Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia. 2018;:66-66
Ahmetović Sanita, Stojadinović Stevan, Rac Vladislav, Škapin Srečo Davor, Stojković Simatović Ivana, Marković Smilja, "Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127" Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia (2018):66-66

Structural and electrochemical study of lithium iron (II) pyrophosphate

Jugović, Dragana; Milović, Miloš; Mitrić, Miodrag; Ivanovski, Valentin N.; Škapin, Srečo Davor; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2018)

TY  - CONF
AU  - Jugović, Dragana
AU  - Milović, Miloš
AU  - Mitrić, Miodrag
AU  - Ivanovski, Valentin N.
AU  - Škapin, Srečo Davor
AU  - Uskoković, Dragan
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3632
AB  - Lithium iron(II) pyrophosphate, Li2FeP2O7, attracts attention of researchers for application as a cathode material in rechargeable lithium batteries. Li2FeP2O7 has somewhat higher voltage than commercial LiFePO4 (3.5 and 3.4 V, respectively), thus enables higher energy density, and also provides the possibility of two-electron reaction during intercalation. Within this study, pristine Li2FeP2O7 and its composite with carbon Li2FeP2O7/C were synthesized, with the carbon being formed by the pyrolysis of organic precursor in situ during formation of Li2FeP2O7 at high temperature. The polymer of methylcellulose was used as carbon source because of its ability to reversibly, depending on temperature, dissolve or gel in water. The structural, electrical and electrochemical characteristics of prepared powders were investigated by means of X-ray diffraction analysis, Mossbauer spectroscopy, impedance spectroscopy and galvanostatic charge/discharge testing. The results imply that in situ formation of carbon alters lattice parameters, decreases crystallite size, and facilitates lithium ion intercalation/deintercalation processes. The Ministry of Education, Science and Technological Development of the Republic of Serbia provided financial support for this study under Grant No. III 45004
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
T1  - Structural and electrochemical study of lithium iron (II) pyrophosphate
SP  - 68
EP  - 68
ER  - 
@conference{
author = "Jugović, Dragana and Milović, Miloš and Mitrić, Miodrag and Ivanovski, Valentin N. and Škapin, Srečo Davor and Uskoković, Dragan",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3632",
abstract = "Lithium iron(II) pyrophosphate, Li2FeP2O7, attracts attention of researchers for application as a cathode material in rechargeable lithium batteries. Li2FeP2O7 has somewhat higher voltage than commercial LiFePO4 (3.5 and 3.4 V, respectively), thus enables higher energy density, and also provides the possibility of two-electron reaction during intercalation. Within this study, pristine Li2FeP2O7 and its composite with carbon Li2FeP2O7/C were synthesized, with the carbon being formed by the pyrolysis of organic precursor in situ during formation of Li2FeP2O7 at high temperature. The polymer of methylcellulose was used as carbon source because of its ability to reversibly, depending on temperature, dissolve or gel in water. The structural, electrical and electrochemical characteristics of prepared powders were investigated by means of X-ray diffraction analysis, Mossbauer spectroscopy, impedance spectroscopy and galvanostatic charge/discharge testing. The results imply that in situ formation of carbon alters lattice parameters, decreases crystallite size, and facilitates lithium ion intercalation/deintercalation processes. The Ministry of Education, Science and Technological Development of the Republic of Serbia provided financial support for this study under Grant No. III 45004",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018",
title = "Structural and electrochemical study of lithium iron (II) pyrophosphate",
pages = "68-68"
}
Jugović, D., Milović, M., Mitrić, M., Ivanovski, V. N., Škapin, S. D.,& Uskoković, D. (2018). Structural and electrochemical study of lithium iron (II) pyrophosphate.
Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
Belgrade : Materials Research Society of Serbia., 68-68.
Jugović D, Milović M, Mitrić M, Ivanovski VN, Škapin SD, Uskoković D. Structural and electrochemical study of lithium iron (II) pyrophosphate. Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018. 2018;:68-68
Jugović Dragana, Milović Miloš, Mitrić Miodrag, Ivanovski Valentin N., Škapin Srečo Davor, Uskoković Dragan, "Structural and electrochemical study of lithium iron (II) pyrophosphate" Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018 (2018):68-68

Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine

Ignjatović, Nenad; Mančić, Lidija; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Veselinović, Ljiljana; Uskoković, Dragan

(2018)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Veselinović, Ljiljana
AU  - Uskoković, Dragan
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4064
AB  - Composite biomaterials based on nano hydroxyapatite (HAp) are the subject of numerous studies in reconstructive medicine. Multifunctional and nanoparticulate systems based on HAp and biodegradable polymers are successfully designed as systems for controlled and systemic drug delivery suitable for use in reconstructive medicine [1, 2]. Thanks to the stability and flexibility of the apatite structure, Ca ions can be replaced with various elements (Zn, Sr, Mg, Co, etc.) [3, 4]. Doping the apatite structure enables potential application of this material in preventive medicine, too. Multimodal imaging (MI) is a new and promising technique for improved diagnosis and it is patient-friendly because it saves time. MI has recently attracted much attention due to the advantageous combination of various imaging modalities, such as computer tomography, photoluminescence and magnetic resonance imaging.
T1  - Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine
ER  - 
@conference{
author = "Ignjatović, Nenad and Mančić, Lidija and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Veselinović, Ljiljana and Uskoković, Dragan",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4064",
abstract = "Composite biomaterials based on nano hydroxyapatite (HAp) are the subject of numerous studies in reconstructive medicine. Multifunctional and nanoparticulate systems based on HAp and biodegradable polymers are successfully designed as systems for controlled and systemic drug delivery suitable for use in reconstructive medicine [1, 2]. Thanks to the stability and flexibility of the apatite structure, Ca ions can be replaced with various elements (Zn, Sr, Mg, Co, etc.) [3, 4]. Doping the apatite structure enables potential application of this material in preventive medicine, too. Multimodal imaging (MI) is a new and promising technique for improved diagnosis and it is patient-friendly because it saves time. MI has recently attracted much attention due to the advantageous combination of various imaging modalities, such as computer tomography, photoluminescence and magnetic resonance imaging.",
title = "Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine"
}
Ignjatović, N., Mančić, L., Stojanović, Z. S., Nikolić, M. G., Škapin, S. D., Veselinović, L.,& Uskoković, D. (2018). Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine.
.
Ignjatović N, Mančić L, Stojanović ZS, Nikolić MG, Škapin SD, Veselinović L, Uskoković D. Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine. 2018;
Ignjatović Nenad, Mančić Lidija, Stojanović Zoran S., Nikolić Marko G., Škapin Srečo Davor, Veselinović Ljiljana, Uskoković Dragan, "Rare earth dual-doped multifunctional hydroxyapatite particles for potential application in preventive medicine" (2018)

Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite

Marković, Smilja; Stanković, Ana; Dostanić, Jasmina; Veselinović, Ljiljana; Mančić, Lidija; Škapin, Srečo Davor; Dražić, Goran; Janković Častvan, Ivona; Uskoković, Dragan

(Royal Society of Chemistry, 2017)

TY  - JOUR
AU  - Marković, Smilja
AU  - Stanković, Ana
AU  - Dostanić, Jasmina
AU  - Veselinović, Ljiljana
AU  - Mančić, Lidija
AU  - Škapin, Srečo Davor
AU  - Dražić, Goran
AU  - Janković Častvan, Ivona
AU  - Uskoković, Dragan
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/2346
AB  - Mechanical milling of commercial ZnO and SnO2 was used to produce a ZnO/SnO2 composite with a high density of surface defects; in particular, zinc interstitials (Zni) and oxygen vacancies (VO). To determine the impact of surface defects on photocatalytic activity, the relative concentration ratio of bulk defects to surface defects was modified by annealing at 400 and 700 °C. The possible application of the ZnO/SnO2 composite as a natural sunlight and UV-light driven photocatalyst was revealed via de-colorization of methylene blue. In both cases the ZnO/SnO2 composite exhibited enhanced photocatalytic activity as compared to the pristine ZnO. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), laser diffraction particle size analysis, Brunauer–Emmett–Teller, UV-Vis diffuse reflectance and photoluminescence spectroscopy. High-resolution transmission electron microscopy (HRTEM) and elemental mapping analyses were used to reveal the presence of SnO2 nanocrystallites on the surface of larger ZnO particles. The enhanced photocatalytic activity of the composite can be attributed to the synergetic effect of the surface defects and the ZnO/SnO2 heterojunction particles, which facilitated charge separation, thereby hindering the recombination of photogenerated carriers. This study draws attention to mechanical activation as an inexpensive and environmentally friendly technique for the large-scale production of the composite with an enhanced photocatalytic activity under illumination of either UV or sunlight.
PB  - Royal Society of Chemistry
T2  - RSC Advances
T1  - Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite
SP  - 42725
EP  - 42737
VL  - 7
DO  - 10.1039/C7RA06895F
ER  - 
@article{
author = "Marković, Smilja and Stanković, Ana and Dostanić, Jasmina and Veselinović, Ljiljana and Mančić, Lidija and Škapin, Srečo Davor and Dražić, Goran and Janković Častvan, Ivona and Uskoković, Dragan",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/2346",
abstract = "Mechanical milling of commercial ZnO and SnO2 was used to produce a ZnO/SnO2 composite with a high density of surface defects; in particular, zinc interstitials (Zni) and oxygen vacancies (VO). To determine the impact of surface defects on photocatalytic activity, the relative concentration ratio of bulk defects to surface defects was modified by annealing at 400 and 700 °C. The possible application of the ZnO/SnO2 composite as a natural sunlight and UV-light driven photocatalyst was revealed via de-colorization of methylene blue. In both cases the ZnO/SnO2 composite exhibited enhanced photocatalytic activity as compared to the pristine ZnO. In order to investigate the origin of the enhancement, the pristine metal oxides and composites were characterized using a variety of techniques, including X-ray diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), laser diffraction particle size analysis, Brunauer–Emmett–Teller, UV-Vis diffuse reflectance and photoluminescence spectroscopy. High-resolution transmission electron microscopy (HRTEM) and elemental mapping analyses were used to reveal the presence of SnO2 nanocrystallites on the surface of larger ZnO particles. The enhanced photocatalytic activity of the composite can be attributed to the synergetic effect of the surface defects and the ZnO/SnO2 heterojunction particles, which facilitated charge separation, thereby hindering the recombination of photogenerated carriers. This study draws attention to mechanical activation as an inexpensive and environmentally friendly technique for the large-scale production of the composite with an enhanced photocatalytic activity under illumination of either UV or sunlight.",
publisher = "Royal Society of Chemistry",
journal = "RSC Advances",
title = "Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite",
pages = "42725-42737",
volume = "7",
doi = "10.1039/C7RA06895F"
}
Marković, S., Stanković, A., Dostanić, J., Veselinović, L., Mančić, L., Škapin, S. D., Dražić, G., Janković Častvan, I.,& Uskoković, D. (2017). Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite.
RSC Advances
Royal Society of Chemistry., 7, 42725-42737.
https://doi.org/10.1039/C7RA06895F
Marković S, Stanković A, Dostanić J, Veselinović L, Mančić L, Škapin SD, Dražić G, Janković Častvan I, Uskoković D. Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite. RSC Advances. 2017;7:42725-42737
Marković Smilja, Stanković Ana, Dostanić Jasmina, Veselinović Ljiljana, Mančić Lidija, Škapin Srečo Davor, Dražić Goran, Janković Častvan Ivona, Uskoković Dragan, "Simultaneous enhancement of natural sunlight- and artificial UV-driven photocatalytic activity of a mechanically activated ZnO/SnO2 composite" RSC Advances, 7 (2017):42725-42737,
https://doi.org/10.1039/C7RA06895F .
16
14
16