Pašti, Igor A.

Link to this page

Authority KeyName Variants
392b110b-9f34-4288-b135-cc9868b652d5
  • Pašti, Igor A. (2)
Projects

Author's Bibliography

Design of Nanostructured Materials By Electrochemical Approaches: [Invited]

Rafailović, Lidija D.; Gammer, Christoph; Trišović, Tomislav Lj.; Rentenberger, Christian; Jovanović, Aleksandar Z; Pašti, Igor A.; Gutić, Sanjin; Karnthaler, H. Peter

(The Electrochemical Society, 2021)

TY  - CONF
AU  - Rafailović, Lidija D.
AU  - Gammer, Christoph
AU  - Trišović, Tomislav Lj.
AU  - Rentenberger, Christian
AU  - Jovanović, Aleksandar Z
AU  - Pašti, Igor A.
AU  - Gutić, Sanjin
AU  - Karnthaler, H. Peter
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12385
AB  - The discovery of nanostructured materials led to ground-breaking findings and significant technological advancement in recent years and is therefore attracting continuous attention from both, academia, and industry for a variety of structural and functional applications [1]. To design nanostructured materials with new functionalities, we combine electrochemical and electroless chemical synthesis with structural studies on different length scales including transmission electron microscopy. The possibility to produce nanostructured metals containing nanoscaled twins, both growth twins and deformation twins, is considered as a promising approach for the synthesis of novel high-performance materials in recent years [1]. Unfortunately, the phenomenon of twinning occurs only in certain metals, such as copper and until recently, it seemed impossible to make aluminium with a high density of grown-in twins. In the present work, we demonstrate the use of electrodeposition as synthesis method to make Al layers with a high density of genuine growth twins [2]. This unexpected result demonstrates a versatile and cost-effective nanoengineering technique for the formation of pure Al layers with a high density of twins. The atomic structure of a twin in aluminium is shown in a transmission electron microscopy image (cf. Fig. 1). In high density, these symmetric lattice imperfections can yield a material that shows good electrical properties, high hardness and good deformability. In addition, we show that electrochemical synthesis approaches can be used to create high surface area functionalized foams and ordered nanostructures for potential sensing and energy-related applications [3-6].
PB  - The Electrochemical Society
C3  - ECS Meeting Abstracts
C3  - International Journal of Sustainable Energy Planning and Management
T1  - Design of Nanostructured Materials By Electrochemical Approaches: [Invited]
SP  - 694
EP  - 694
VL  - MA2021-02
IS  - 18
DO  - 10.1149/MA2021-0218694mtgabs
UR  - https://hdl.handle.net/21.15107/rcub_dais_12385
ER  - 
@conference{
author = "Rafailović, Lidija D. and Gammer, Christoph and Trišović, Tomislav Lj. and Rentenberger, Christian and Jovanović, Aleksandar Z and Pašti, Igor A. and Gutić, Sanjin and Karnthaler, H. Peter",
year = "2021",
abstract = "The discovery of nanostructured materials led to ground-breaking findings and significant technological advancement in recent years and is therefore attracting continuous attention from both, academia, and industry for a variety of structural and functional applications [1]. To design nanostructured materials with new functionalities, we combine electrochemical and electroless chemical synthesis with structural studies on different length scales including transmission electron microscopy. The possibility to produce nanostructured metals containing nanoscaled twins, both growth twins and deformation twins, is considered as a promising approach for the synthesis of novel high-performance materials in recent years [1]. Unfortunately, the phenomenon of twinning occurs only in certain metals, such as copper and until recently, it seemed impossible to make aluminium with a high density of grown-in twins. In the present work, we demonstrate the use of electrodeposition as synthesis method to make Al layers with a high density of genuine growth twins [2]. This unexpected result demonstrates a versatile and cost-effective nanoengineering technique for the formation of pure Al layers with a high density of twins. The atomic structure of a twin in aluminium is shown in a transmission electron microscopy image (cf. Fig. 1). In high density, these symmetric lattice imperfections can yield a material that shows good electrical properties, high hardness and good deformability. In addition, we show that electrochemical synthesis approaches can be used to create high surface area functionalized foams and ordered nanostructures for potential sensing and energy-related applications [3-6].",
publisher = "The Electrochemical Society",
journal = "ECS Meeting Abstracts, International Journal of Sustainable Energy Planning and Management",
title = "Design of Nanostructured Materials By Electrochemical Approaches: [Invited]",
pages = "694-694",
volume = "MA2021-02",
number = "18",
doi = "10.1149/MA2021-0218694mtgabs",
url = "https://hdl.handle.net/21.15107/rcub_dais_12385"
}
Rafailović, L. D., Gammer, C., Trišović, T. Lj., Rentenberger, C., Jovanović, A. Z., Pašti, I. A., Gutić, S.,& Karnthaler, H. P.. (2021). Design of Nanostructured Materials By Electrochemical Approaches: [Invited]. in ECS Meeting Abstracts
The Electrochemical Society., MA2021-02(18), 694-694.
https://doi.org/10.1149/MA2021-0218694mtgabs
https://hdl.handle.net/21.15107/rcub_dais_12385
Rafailović LD, Gammer C, Trišović TL, Rentenberger C, Jovanović AZ, Pašti IA, Gutić S, Karnthaler HP. Design of Nanostructured Materials By Electrochemical Approaches: [Invited]. in ECS Meeting Abstracts. 2021;MA2021-02(18):694-694.
doi:10.1149/MA2021-0218694mtgabs
https://hdl.handle.net/21.15107/rcub_dais_12385 .
Rafailović, Lidija D., Gammer, Christoph, Trišović, Tomislav Lj., Rentenberger, Christian, Jovanović, Aleksandar Z, Pašti, Igor A., Gutić, Sanjin, Karnthaler, H. Peter, "Design of Nanostructured Materials By Electrochemical Approaches: [Invited]" in ECS Meeting Abstracts, MA2021-02, no. 18 (2021):694-694,
https://doi.org/10.1149/MA2021-0218694mtgabs .,
https://hdl.handle.net/21.15107/rcub_dais_12385 .

Modelling and simulations of nanostructures

Pašti, Igor A.; Dobrota, Ana S.; Mentus, Slavko V.

(Belgrade : SASA, 2020)

TY  - CONF
AU  - Pašti, Igor A.
AU  - Dobrota, Ana S.
AU  - Mentus, Slavko V.
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/9252
AB  - Напредак савремених технологија захтева фундаментално разумевање везе између структуре и својстава нових материјала. Методе
прорачуна и симулације показале су се као моћно средство у испитивању
ових веза, омогућавајући анализу система различитих нивоа сложености,
на различитим просторним и временским скалама, са жељеним саставом
и без икаквог ризика од контаминације. Штавише, константно повећање
рачунарских ресурса омогућило је примену неких од најнапреднијих метода
прорачуна на скали која превазилази суб-нанометарску (мали молекули и
кластери атома), која се обично сматра границом за ab initio прорачуне. Иако
се тачност таквих израчунавања приближава грешкама експеримента, овај
приступ такође омогућава (теоријску) претрагу великог броја система, што
није експериментално изводљиво, као и разумевање општих трендова који
су од великог значаја, како за теоретичаре тако и за експериментаторе. Овo
поглавље приказује искуства аутора у моделирању и симулацијама система
нанометарских димензија различите сложености, укључујући оксиде метала,
метале, угљеничне материјале, молекулске мреже и сложене каталитичке
системе.
AB  - Advancements in contemporary technologies require deep
understanding of the link between the structure and properties of novel materials. Computational methods have been proven as a powerful tool in that quest,
allowing investigation of systems of various complexity and at different spatial and
temporal scales, with a desired composition and without any risk of contamination.
Moreover, constant increase of computational power allowed the application of
some of the most advanced computational methods at the scales which overcome
sub-nanometers (small molecules and clusters of atoms), usually considered as a
limit for first principles calculations. While the accuracy of such calculations reaches the experimental one, this approach also allows for the screening of a large number of systems, which is not experimentally feasible, and also the understanding of
general trends which is of great importance for both theoreticians and experimentalists. This text will cover author’s recent experiences in modelling and simulation
of nanoscale systems of different complexity, including metal oxides, metals, carbon
materials, molecular networks and complex catalytic systems.
PB  - Belgrade : SASA
C3  - Fascinating world of nanoscience and nanotechnology
T1  - Modelling and simulations of nanostructures
T1  - Моделирање и симулација наноструктура
SP  - 251
EP  - 282
UR  - https://hdl.handle.net/21.15107/rcub_dais_9252
ER  - 
@conference{
author = "Pašti, Igor A. and Dobrota, Ana S. and Mentus, Slavko V.",
year = "2020",
abstract = "Напредак савремених технологија захтева фундаментално разумевање везе између структуре и својстава нових материјала. Методе
прорачуна и симулације показале су се као моћно средство у испитивању
ових веза, омогућавајући анализу система различитих нивоа сложености,
на различитим просторним и временским скалама, са жељеним саставом
и без икаквог ризика од контаминације. Штавише, константно повећање
рачунарских ресурса омогућило је примену неких од најнапреднијих метода
прорачуна на скали која превазилази суб-нанометарску (мали молекули и
кластери атома), која се обично сматра границом за ab initio прорачуне. Иако
се тачност таквих израчунавања приближава грешкама експеримента, овај
приступ такође омогућава (теоријску) претрагу великог броја система, што
није експериментално изводљиво, као и разумевање општих трендова који
су од великог значаја, како за теоретичаре тако и за експериментаторе. Овo
поглавље приказује искуства аутора у моделирању и симулацијама система
нанометарских димензија различите сложености, укључујући оксиде метала,
метале, угљеничне материјале, молекулске мреже и сложене каталитичке
системе., Advancements in contemporary technologies require deep
understanding of the link between the structure and properties of novel materials. Computational methods have been proven as a powerful tool in that quest,
allowing investigation of systems of various complexity and at different spatial and
temporal scales, with a desired composition and without any risk of contamination.
Moreover, constant increase of computational power allowed the application of
some of the most advanced computational methods at the scales which overcome
sub-nanometers (small molecules and clusters of atoms), usually considered as a
limit for first principles calculations. While the accuracy of such calculations reaches the experimental one, this approach also allows for the screening of a large number of systems, which is not experimentally feasible, and also the understanding of
general trends which is of great importance for both theoreticians and experimentalists. This text will cover author’s recent experiences in modelling and simulation
of nanoscale systems of different complexity, including metal oxides, metals, carbon
materials, molecular networks and complex catalytic systems.",
publisher = "Belgrade : SASA",
journal = "Fascinating world of nanoscience and nanotechnology",
title = "Modelling and simulations of nanostructures, Моделирање и симулација наноструктура",
pages = "251-282",
url = "https://hdl.handle.net/21.15107/rcub_dais_9252"
}
Pašti, I. A., Dobrota, A. S.,& Mentus, S. V.. (2020). Modelling and simulations of nanostructures. in Fascinating world of nanoscience and nanotechnology
Belgrade : SASA., 251-282.
https://hdl.handle.net/21.15107/rcub_dais_9252
Pašti IA, Dobrota AS, Mentus SV. Modelling and simulations of nanostructures. in Fascinating world of nanoscience and nanotechnology. 2020;:251-282.
https://hdl.handle.net/21.15107/rcub_dais_9252 .
Pašti, Igor A., Dobrota, Ana S., Mentus, Slavko V., "Modelling and simulations of nanostructures" in Fascinating world of nanoscience and nanotechnology (2020):251-282,
https://hdl.handle.net/21.15107/rcub_dais_9252 .