Auroux, Aline

Link to this page

Authority KeyName Variants
fcb181ad-7351-407b-b16d-9e4bf888d8a5
  • Auroux, Aline (2)
Projects

Author's Bibliography

Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study

Bosnar, Sanja; Rac, Vladislav; Stošić, Dušan; Travert, Arnaud; Postole, Georgeta; Auroux, Aline; Škapin, Srečo Davor; Damjanović-Vasilić, Ljiljana S.; Bronić, Josip; Du, Xuesen; Marković, Smilja; Pavlović, Vladimir B.; Rakić, Vesna M.

(2022)

TY  - JOUR
AU  - Bosnar, Sanja
AU  - Rac, Vladislav
AU  - Stošić, Dušan
AU  - Travert, Arnaud
AU  - Postole, Georgeta
AU  - Auroux, Aline
AU  - Škapin, Srečo Davor
AU  - Damjanović-Vasilić, Ljiljana S.
AU  - Bronić, Josip
AU  - Du, Xuesen
AU  - Marković, Smilja
AU  - Pavlović, Vladimir B.
AU  - Rakić, Vesna M.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13631
AB  - Dual templating approach, using hexadecyltrimethylammonium bromide (CTAB), was employed in an attempt to synthesize hierarchical ZSM-5 zeolite. Amount of mesoporogen and the duration of aging of the precursor were varied. Majority of the synthesis routes resulted in phase separation, yielding separate ZSM-5 and amorphous mesoporous material. The relative amounts of the two phases were dependent on the CTAB amount ratio and also significantly on the duration of precursor aging before CTAB addition. One particular combination of the two factors led to the formation of a homogeneous hierarchical form of ZSM-5 with leafy morphology, consisting of intergrown thin crystalline sheets which formed flower-like structures. The hierarchical ZSM-5 possessed significant microporous (≈95 m2/g) and highly developed mesoporous surface (≈470 m2/g), with a relatively broad distribution of mesopore sizes (<20 nm). The acidity of all samples was studied in detail. Isothermal microcalorimetry/volumetry of ammonia adsorption provided quantitative data on the number and distribution of strength of acidic sites. In situ FTIR of pyridine and collidine adsorption was used to quantify Brønsted and Lewis acid sites, and to provide information on their location - in the micropores or mesopores/external surface. The hierarchical ZSM-5 possessed both Lewis and Brønsted acidity, with Brønsted sites located mainly in the micropores. All samples were fully characterized using XRD, low temperature nitrogen adsorption, FESEM and EDS. The synthetic route used for obtaining the ZSM-5 zeolite with flower-like morphology is a simple strategy for preparing hierarchical ZSM-5 forms targeting enhanced diffusivity and accessibility of catalytically active sites.
T2  - Microporous and Mesoporous Materials
T1  - Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study
SP  - 111534
VL  - 329
DO  - 10.1016/j.micromeso.2021.111534
UR  - https://hdl.handle.net/21.15107/rcub_dais_13631
ER  - 
@article{
author = "Bosnar, Sanja and Rac, Vladislav and Stošić, Dušan and Travert, Arnaud and Postole, Georgeta and Auroux, Aline and Škapin, Srečo Davor and Damjanović-Vasilić, Ljiljana S. and Bronić, Josip and Du, Xuesen and Marković, Smilja and Pavlović, Vladimir B. and Rakić, Vesna M.",
year = "2022",
abstract = "Dual templating approach, using hexadecyltrimethylammonium bromide (CTAB), was employed in an attempt to synthesize hierarchical ZSM-5 zeolite. Amount of mesoporogen and the duration of aging of the precursor were varied. Majority of the synthesis routes resulted in phase separation, yielding separate ZSM-5 and amorphous mesoporous material. The relative amounts of the two phases were dependent on the CTAB amount ratio and also significantly on the duration of precursor aging before CTAB addition. One particular combination of the two factors led to the formation of a homogeneous hierarchical form of ZSM-5 with leafy morphology, consisting of intergrown thin crystalline sheets which formed flower-like structures. The hierarchical ZSM-5 possessed significant microporous (≈95 m2/g) and highly developed mesoporous surface (≈470 m2/g), with a relatively broad distribution of mesopore sizes (<20 nm). The acidity of all samples was studied in detail. Isothermal microcalorimetry/volumetry of ammonia adsorption provided quantitative data on the number and distribution of strength of acidic sites. In situ FTIR of pyridine and collidine adsorption was used to quantify Brønsted and Lewis acid sites, and to provide information on their location - in the micropores or mesopores/external surface. The hierarchical ZSM-5 possessed both Lewis and Brønsted acidity, with Brønsted sites located mainly in the micropores. All samples were fully characterized using XRD, low temperature nitrogen adsorption, FESEM and EDS. The synthetic route used for obtaining the ZSM-5 zeolite with flower-like morphology is a simple strategy for preparing hierarchical ZSM-5 forms targeting enhanced diffusivity and accessibility of catalytically active sites.",
journal = "Microporous and Mesoporous Materials",
title = "Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study",
pages = "111534",
volume = "329",
doi = "10.1016/j.micromeso.2021.111534",
url = "https://hdl.handle.net/21.15107/rcub_dais_13631"
}
Bosnar, S., Rac, V., Stošić, D., Travert, A., Postole, G., Auroux, A., Škapin, S. D., Damjanović-Vasilić, L. S., Bronić, J., Du, X., Marković, S., Pavlović, V. B.,& Rakić, V. M.. (2022). Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study. in Microporous and Mesoporous Materials, 329, 111534.
https://doi.org/10.1016/j.micromeso.2021.111534
https://hdl.handle.net/21.15107/rcub_dais_13631
Bosnar S, Rac V, Stošić D, Travert A, Postole G, Auroux A, Škapin SD, Damjanović-Vasilić LS, Bronić J, Du X, Marković S, Pavlović VB, Rakić VM. Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study. in Microporous and Mesoporous Materials. 2022;329:111534.
doi:10.1016/j.micromeso.2021.111534
https://hdl.handle.net/21.15107/rcub_dais_13631 .
Bosnar, Sanja, Rac, Vladislav, Stošić, Dušan, Travert, Arnaud, Postole, Georgeta, Auroux, Aline, Škapin, Srečo Davor, Damjanović-Vasilić, Ljiljana S., Bronić, Josip, Du, Xuesen, Marković, Smilja, Pavlović, Vladimir B., Rakić, Vesna M., "Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study" in Microporous and Mesoporous Materials, 329 (2022):111534,
https://doi.org/10.1016/j.micromeso.2021.111534 .,
https://hdl.handle.net/21.15107/rcub_dais_13631 .
3
13
1
12

Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent

Obradović, Nina; Filipović, Suzana; Rusmirović, Jelena; Postole, Georgeta; Marinković, Aleksandar; Radić, Danka; Rakić, Vesna M.; Pavlović, Vladimir B.; Auroux, Aline

(Belgrade : International Institute for the Science of Sintering, 2017)

TY  - JOUR
AU  - Obradović, Nina
AU  - Filipović, Suzana
AU  - Rusmirović, Jelena
AU  - Postole, Georgeta
AU  - Marinković, Aleksandar
AU  - Radić, Danka
AU  - Rakić, Vesna M.
AU  - Pavlović, Vladimir B.
AU  - Auroux, Aline
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/2384
AB  - In this paper, synthesis of porous wollastonite-based ceramics was reported. Ceramic precursor, methylhydrocyclosiloxane, together with micro-sized CaCO3, was used as starting material. After 20 min of ultrasound treatment, and calcination at 250 oC for 30 min, yeast as a pore-forming agent was added to the as-obtained powders. Sintering regime was set up based on the results obtained by differential thermal analysis. Prepared mixture was pressed into pallets and sintered at 900 oC for 1 h. After the sintering regime, porous wollastonite-based ceramics was obtained. The phase composition of the sintered samples as well as microstructures was analyzed by X-ray diffraction method and SEM. In a batch test, the influence of pH, contact time and initial ion concentration on adsorption efficiency of As+5, Cr+6, and phosphate ions on synthesized wollastonite-based ceramics were studied. Time-dependent adsorption was best described by pseudo-second-order kinetic model and Weber-Morris model that predicted intra-particle diffusion as a rate-controlling step of overall process. High adsorption capacities 39.97, 21.87, and 15.29 mgg-1 were obtained for As+5, Cr+6, and phosphate ions, respectively.
PB  - Belgrade : International Institute for the Science of Sintering
T2  - Science of Sintering
T1  - Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent
SP  - 235
EP  - 246
VL  - 49
IS  - 3
DO  - 10.2298/SOS1703235O
UR  - https://hdl.handle.net/21.15107/rcub_dais_2384
ER  - 
@article{
author = "Obradović, Nina and Filipović, Suzana and Rusmirović, Jelena and Postole, Georgeta and Marinković, Aleksandar and Radić, Danka and Rakić, Vesna M. and Pavlović, Vladimir B. and Auroux, Aline",
year = "2017",
abstract = "In this paper, synthesis of porous wollastonite-based ceramics was reported. Ceramic precursor, methylhydrocyclosiloxane, together with micro-sized CaCO3, was used as starting material. After 20 min of ultrasound treatment, and calcination at 250 oC for 30 min, yeast as a pore-forming agent was added to the as-obtained powders. Sintering regime was set up based on the results obtained by differential thermal analysis. Prepared mixture was pressed into pallets and sintered at 900 oC for 1 h. After the sintering regime, porous wollastonite-based ceramics was obtained. The phase composition of the sintered samples as well as microstructures was analyzed by X-ray diffraction method and SEM. In a batch test, the influence of pH, contact time and initial ion concentration on adsorption efficiency of As+5, Cr+6, and phosphate ions on synthesized wollastonite-based ceramics were studied. Time-dependent adsorption was best described by pseudo-second-order kinetic model and Weber-Morris model that predicted intra-particle diffusion as a rate-controlling step of overall process. High adsorption capacities 39.97, 21.87, and 15.29 mgg-1 were obtained for As+5, Cr+6, and phosphate ions, respectively.",
publisher = "Belgrade : International Institute for the Science of Sintering",
journal = "Science of Sintering",
title = "Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent",
pages = "235-246",
volume = "49",
number = "3",
doi = "10.2298/SOS1703235O",
url = "https://hdl.handle.net/21.15107/rcub_dais_2384"
}
Obradović, N., Filipović, S., Rusmirović, J., Postole, G., Marinković, A., Radić, D., Rakić, V. M., Pavlović, V. B.,& Auroux, A.. (2017). Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent. in Science of Sintering
Belgrade : International Institute for the Science of Sintering., 49(3), 235-246.
https://doi.org/10.2298/SOS1703235O
https://hdl.handle.net/21.15107/rcub_dais_2384
Obradović N, Filipović S, Rusmirović J, Postole G, Marinković A, Radić D, Rakić VM, Pavlović VB, Auroux A. Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent. in Science of Sintering. 2017;49(3):235-246.
doi:10.2298/SOS1703235O
https://hdl.handle.net/21.15107/rcub_dais_2384 .
Obradović, Nina, Filipović, Suzana, Rusmirović, Jelena, Postole, Georgeta, Marinković, Aleksandar, Radić, Danka, Rakić, Vesna M., Pavlović, Vladimir B., Auroux, Aline, "Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent" in Science of Sintering, 49, no. 3 (2017):235-246,
https://doi.org/10.2298/SOS1703235O .,
https://hdl.handle.net/21.15107/rcub_dais_2384 .
4
2
6