Veličković, Ana V.

Link to this page

Authority KeyName Variants
aa52deb3-ecd0-4831-a269-7f2210845baf
  • Veličković, Ana V. (3)
Projects

Author's Bibliography

Supplementary data for the article: Todorović, Zoran B., Dragan Z. Troter, Dušica R. Đokić-Stojanović, Ana V. Veličković, Jelena M. Avramović, Olivera S. Stamenković, Ljiljana M. Veselinović, and Vlada B. Veljković. 2019. “Optimization of CaO-Catalyzed Sunflower Oil Methanolysis with Crude Biodiesel as a Cosolvent.” Fuel 237 (February): 903–10. https://doi.org/10.1016/j.fuel.2018.10.056

Todorović, Zoran B.; Troter, Dragan Z.; Đokić-Stojanović, Dušica R.; Veličković, Ana V.; Avramović, Jelena M.; Stamenković, Olivera S.; Veselinović, Ljiljana; Veljković, Vlada B.

(2019)

TY  - DATA
AU  - Todorović, Zoran B.
AU  - Troter, Dragan Z.
AU  - Đokić-Stojanović, Dušica R.
AU  - Veličković, Ana V.
AU  - Avramović, Jelena M.
AU  - Stamenković, Olivera S.
AU  - Veselinović, Ljiljana
AU  - Veljković, Vlada B.
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/4071
AB  - Figure S1. Variation of FAME content during the sunflower oil methanolysis with CaO as a 
catalyst and crude biodiesel as a cosolvent; Figure S2. XRD patterns of the calcined CaO used as a catalyst in combination with different 
amounts of crude biodiesel as a cosolvent. XRD pattern of the calcined CaO not used in the 
reaction was also provided for comparison.
T2  - Fuel
T1  - Supplementary data for the article: Todorović, Zoran B., Dragan Z. Troter, Dušica R. Đokić-Stojanović, Ana V. Veličković, Jelena M. Avramović, Olivera S. Stamenković, Ljiljana M. Veselinović, and Vlada B. Veljković. 2019. “Optimization of CaO-Catalyzed Sunflower Oil Methanolysis with Crude Biodiesel as a Cosolvent.” Fuel 237 (February): 903–10. https://doi.org/10.1016/j.fuel.2018.10.056
UR  - https://hdl.handle.net/21.15107/rcub_dais_4071
ER  - 
@misc{
author = "Todorović, Zoran B. and Troter, Dragan Z. and Đokić-Stojanović, Dušica R. and Veličković, Ana V. and Avramović, Jelena M. and Stamenković, Olivera S. and Veselinović, Ljiljana and Veljković, Vlada B.",
year = "2019",
abstract = "Figure S1. Variation of FAME content during the sunflower oil methanolysis with CaO as a 
catalyst and crude biodiesel as a cosolvent; Figure S2. XRD patterns of the calcined CaO used as a catalyst in combination with different 
amounts of crude biodiesel as a cosolvent. XRD pattern of the calcined CaO not used in the 
reaction was also provided for comparison.",
journal = "Fuel",
title = "Supplementary data for the article: Todorović, Zoran B., Dragan Z. Troter, Dušica R. Đokić-Stojanović, Ana V. Veličković, Jelena M. Avramović, Olivera S. Stamenković, Ljiljana M. Veselinović, and Vlada B. Veljković. 2019. “Optimization of CaO-Catalyzed Sunflower Oil Methanolysis with Crude Biodiesel as a Cosolvent.” Fuel 237 (February): 903–10. https://doi.org/10.1016/j.fuel.2018.10.056",
url = "https://hdl.handle.net/21.15107/rcub_dais_4071"
}
Todorović, Z. B., Troter, D. Z., Đokić-Stojanović, D. R., Veličković, A. V., Avramović, J. M., Stamenković, O. S., Veselinović, L.,& Veljković, V. B.. (2019). Supplementary data for the article: Todorović, Zoran B., Dragan Z. Troter, Dušica R. Đokić-Stojanović, Ana V. Veličković, Jelena M. Avramović, Olivera S. Stamenković, Ljiljana M. Veselinović, and Vlada B. Veljković. 2019. “Optimization of CaO-Catalyzed Sunflower Oil Methanolysis with Crude Biodiesel as a Cosolvent.” Fuel 237 (February): 903–10. https://doi.org/10.1016/j.fuel.2018.10.056. in Fuel.
https://hdl.handle.net/21.15107/rcub_dais_4071
Todorović ZB, Troter DZ, Đokić-Stojanović DR, Veličković AV, Avramović JM, Stamenković OS, Veselinović L, Veljković VB. Supplementary data for the article: Todorović, Zoran B., Dragan Z. Troter, Dušica R. Đokić-Stojanović, Ana V. Veličković, Jelena M. Avramović, Olivera S. Stamenković, Ljiljana M. Veselinović, and Vlada B. Veljković. 2019. “Optimization of CaO-Catalyzed Sunflower Oil Methanolysis with Crude Biodiesel as a Cosolvent.” Fuel 237 (February): 903–10. https://doi.org/10.1016/j.fuel.2018.10.056. in Fuel. 2019;.
https://hdl.handle.net/21.15107/rcub_dais_4071 .
Todorović, Zoran B., Troter, Dragan Z., Đokić-Stojanović, Dušica R., Veličković, Ana V., Avramović, Jelena M., Stamenković, Olivera S., Veselinović, Ljiljana, Veljković, Vlada B., "Supplementary data for the article: Todorović, Zoran B., Dragan Z. Troter, Dušica R. Đokić-Stojanović, Ana V. Veličković, Jelena M. Avramović, Olivera S. Stamenković, Ljiljana M. Veselinović, and Vlada B. Veljković. 2019. “Optimization of CaO-Catalyzed Sunflower Oil Methanolysis with Crude Biodiesel as a Cosolvent.” Fuel 237 (February): 903–10. https://doi.org/10.1016/j.fuel.2018.10.056" in Fuel (2019),
https://hdl.handle.net/21.15107/rcub_dais_4071 .

Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent

Todorović, Zoran B.; Troter, Dragan Z.; Đokić-Stojanović, Dušica R.; Veličković, Ana V.; Avramović, Jelena M.; Stamenković, Olivera S.; Veselinović, Ljiljana; Veljković, Vlada B.

(Elsevier, 2019)

TY  - JOUR
AU  - Todorović, Zoran B.
AU  - Troter, Dragan Z.
AU  - Đokić-Stojanović, Dušica R.
AU  - Veličković, Ana V.
AU  - Avramović, Jelena M.
AU  - Stamenković, Olivera S.
AU  - Veselinović, Ljiljana
AU  - Veljković, Vlada B.
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0016236118317691
UR  - http://dais.sanu.ac.rs/123456789/4070
AB  - Crude biodiesel was proven as a cosolvent in the methanolysis of sunflower oil catalyzed by calcined CaO. This reaction was modeled and optimized statistically in terms of reaction temperature (33.2–66.8 °C), methanol-to-oil molar ratio (3.5:1–8.5:1) and catalyst concentration (0.219–1.065 mol/L). The cosolvent loading was 10 wt% (based on oil weight). The optimum reaction conditions were found to be: the methanol-to-oil molar ratio of 7.1:1, the catalyst concentration of 0.74 mol/L and the reaction temperature 52 °C, ensuring the best esters content of 99.8%, for the reaction time of 1.5 h, which is close to the reported experimental value of 98.9%. Also, the used catalyst was recycled with no additional treatment in the further four consecutive cycles under the following reaction conditions: methanol-to-oil molar ratio 6:1, the concentration of catalyst 0.642 mol/L (only in the first run), the reaction temperature 50 °C, cosolvent-crude biodiesel loading 10 wt% to oil weight. The second recycling reaction provided the highest FAME content of 97.7% after 5 h.
PB  - Elsevier
T2  - Fuel
T1  - Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent
SP  - 903
EP  - 910
VL  - 237
DO  - 10.1016/j.fuel.2018.10.056
UR  - https://hdl.handle.net/21.15107/rcub_dais_4070
ER  - 
@article{
author = "Todorović, Zoran B. and Troter, Dragan Z. and Đokić-Stojanović, Dušica R. and Veličković, Ana V. and Avramović, Jelena M. and Stamenković, Olivera S. and Veselinović, Ljiljana and Veljković, Vlada B.",
year = "2019",
abstract = "Crude biodiesel was proven as a cosolvent in the methanolysis of sunflower oil catalyzed by calcined CaO. This reaction was modeled and optimized statistically in terms of reaction temperature (33.2–66.8 °C), methanol-to-oil molar ratio (3.5:1–8.5:1) and catalyst concentration (0.219–1.065 mol/L). The cosolvent loading was 10 wt% (based on oil weight). The optimum reaction conditions were found to be: the methanol-to-oil molar ratio of 7.1:1, the catalyst concentration of 0.74 mol/L and the reaction temperature 52 °C, ensuring the best esters content of 99.8%, for the reaction time of 1.5 h, which is close to the reported experimental value of 98.9%. Also, the used catalyst was recycled with no additional treatment in the further four consecutive cycles under the following reaction conditions: methanol-to-oil molar ratio 6:1, the concentration of catalyst 0.642 mol/L (only in the first run), the reaction temperature 50 °C, cosolvent-crude biodiesel loading 10 wt% to oil weight. The second recycling reaction provided the highest FAME content of 97.7% after 5 h.",
publisher = "Elsevier",
journal = "Fuel",
title = "Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent",
pages = "903-910",
volume = "237",
doi = "10.1016/j.fuel.2018.10.056",
url = "https://hdl.handle.net/21.15107/rcub_dais_4070"
}
Todorović, Z. B., Troter, D. Z., Đokić-Stojanović, D. R., Veličković, A. V., Avramović, J. M., Stamenković, O. S., Veselinović, L.,& Veljković, V. B.. (2019). Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent. in Fuel
Elsevier., 237, 903-910.
https://doi.org/10.1016/j.fuel.2018.10.056
https://hdl.handle.net/21.15107/rcub_dais_4070
Todorović ZB, Troter DZ, Đokić-Stojanović DR, Veličković AV, Avramović JM, Stamenković OS, Veselinović L, Veljković VB. Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent. in Fuel. 2019;237:903-910.
doi:10.1016/j.fuel.2018.10.056
https://hdl.handle.net/21.15107/rcub_dais_4070 .
Todorović, Zoran B., Troter, Dragan Z., Đokić-Stojanović, Dušica R., Veličković, Ana V., Avramović, Jelena M., Stamenković, Olivera S., Veselinović, Ljiljana, Veljković, Vlada B., "Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent" in Fuel, 237 (2019):903-910,
https://doi.org/10.1016/j.fuel.2018.10.056 .,
https://hdl.handle.net/21.15107/rcub_dais_4070 .
23
19
22

Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent

Todorović, Zoran B.; Troter, Dragan Z.; Đokić Stojanović, Dušica R.; Veličković, Ana V.; Avramović, Jelena M.; Stamenković, Olivera S.; Veselinović, Ljiljana; Veljković, Vlada B.

(Elsevier, 2019)

TY  - JOUR
AU  - Todorović, Zoran B.
AU  - Troter, Dragan Z.
AU  - Đokić Stojanović, Dušica R.
AU  - Veličković, Ana V.
AU  - Avramović, Jelena M.
AU  - Stamenković, Olivera S.
AU  - Veselinović, Ljiljana
AU  - Veljković, Vlada B.
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0016236118317691
UR  - http://dais.sanu.ac.rs/123456789/4069
AB  - Crude biodiesel was proven as a cosolvent in the methanolysis of sunflower oil catalyzed by calcined CaO. This reaction was modeled and optimized statistically in terms of reaction temperature (33.2–66.8 °C), methanol-to-oil molar ratio (3.5:1–8.5:1) and catalyst concentration (0.219–1.065 mol/L). The cosolvent loading was 10 wt% (based on oil weight). The optimum reaction conditions were found to be: the methanol-to-oil molar ratio of 7.1:1, the catalyst concentration of 0.74 mol/L and the reaction temperature 52 °C, ensuring the best esters content of 99.8%, for the reaction time of 1.5 h, which is close to the reported experimental value of 98.9%. Also, the used catalyst was recycled with no additional treatment in the further four consecutive cycles under the following reaction conditions: methanol-to-oil molar ratio 6:1, the concentration of catalyst 0.642 mol/L (only in the first run), the reaction temperature 50 °C, cosolvent-crude biodiesel loading 10 wt% to oil weight. The second recycling reaction provided the highest FAME content of 97.7% after 5 h.
PB  - Elsevier
T2  - Fuel
T1  - Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent
SP  - 903
EP  - 910
VL  - 237
DO  - 10.1016/j.fuel.2018.10.056
UR  - https://hdl.handle.net/21.15107/rcub_dais_4069
ER  - 
@article{
author = "Todorović, Zoran B. and Troter, Dragan Z. and Đokić Stojanović, Dušica R. and Veličković, Ana V. and Avramović, Jelena M. and Stamenković, Olivera S. and Veselinović, Ljiljana and Veljković, Vlada B.",
year = "2019",
abstract = "Crude biodiesel was proven as a cosolvent in the methanolysis of sunflower oil catalyzed by calcined CaO. This reaction was modeled and optimized statistically in terms of reaction temperature (33.2–66.8 °C), methanol-to-oil molar ratio (3.5:1–8.5:1) and catalyst concentration (0.219–1.065 mol/L). The cosolvent loading was 10 wt% (based on oil weight). The optimum reaction conditions were found to be: the methanol-to-oil molar ratio of 7.1:1, the catalyst concentration of 0.74 mol/L and the reaction temperature 52 °C, ensuring the best esters content of 99.8%, for the reaction time of 1.5 h, which is close to the reported experimental value of 98.9%. Also, the used catalyst was recycled with no additional treatment in the further four consecutive cycles under the following reaction conditions: methanol-to-oil molar ratio 6:1, the concentration of catalyst 0.642 mol/L (only in the first run), the reaction temperature 50 °C, cosolvent-crude biodiesel loading 10 wt% to oil weight. The second recycling reaction provided the highest FAME content of 97.7% after 5 h.",
publisher = "Elsevier",
journal = "Fuel",
title = "Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent",
pages = "903-910",
volume = "237",
doi = "10.1016/j.fuel.2018.10.056",
url = "https://hdl.handle.net/21.15107/rcub_dais_4069"
}
Todorović, Z. B., Troter, D. Z., Đokić Stojanović, D. R., Veličković, A. V., Avramović, J. M., Stamenković, O. S., Veselinović, L.,& Veljković, V. B.. (2019). Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent. in Fuel
Elsevier., 237, 903-910.
https://doi.org/10.1016/j.fuel.2018.10.056
https://hdl.handle.net/21.15107/rcub_dais_4069
Todorović ZB, Troter DZ, Đokić Stojanović DR, Veličković AV, Avramović JM, Stamenković OS, Veselinović L, Veljković VB. Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent. in Fuel. 2019;237:903-910.
doi:10.1016/j.fuel.2018.10.056
https://hdl.handle.net/21.15107/rcub_dais_4069 .
Todorović, Zoran B., Troter, Dragan Z., Đokić Stojanović, Dušica R., Veličković, Ana V., Avramović, Jelena M., Stamenković, Olivera S., Veselinović, Ljiljana, Veljković, Vlada B., "Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent" in Fuel, 237 (2019):903-910,
https://doi.org/10.1016/j.fuel.2018.10.056 .,
https://hdl.handle.net/21.15107/rcub_dais_4069 .
23
19
22