Nenadović, Miloš

Link to this page

Authority KeyName Variants
9b235001-0c56-4ab5-a29d-68f9816cd8c4
  • Nenadović, Miloš (1)
  • Nenadović, Miloš T. (1)
Projects

Author's Bibliography

Structural and chemical properties of thermally treated geopolymer samples

Kljajević, Ljiljana M.; Nenadović, Snežana S.; Nenadović, Miloš T.; Bundaleski, Nenad K.; Todorović, Bratislav Ž.; Pavlović, Vladimir B.; Rakočević, Zlatko

(Elsevier, 2017)

TY  - JOUR
AU  - Kljajević, Ljiljana M.
AU  - Nenadović, Snežana S.
AU  - Nenadović, Miloš T.
AU  - Bundaleski, Nenad K.
AU  - Todorović, Bratislav Ž.
AU  - Pavlović, Vladimir B.
AU  - Rakočević, Zlatko
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/2374
AB  - This article presents the results of the compositional, structural and morphological study of geopolymers synthesized from metakaolin and an alkali activator. The study involved the investigation of the structural and chemical properties of the geopolymer, in addition to thermally treated geopolymers up to 600 and 900 °C. The precursor of the geopolymer, and the geopolymer samples before and after the thermal treatment, were investigated by Fourier transformation infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and SEM analysis. The corrected average value of the ratio of silicon and aluminum in the geopolymer samples (SiGP:Al) is about 1.46, which suggests that the obtained geopolymer samples represent a mixture of roughly equal amounts of sialate and sialate-siloxo units. Annealing the geopolymer samples at 600 °C decreases the amount of Si-ONa bonds and induces the cross-linking of polymer changes. At the same time, other sodium containing alumino-silicate phases are created. The thermal treatment at 900 °C leads to a considerable reduction of oxygen and particularly sodium, followed by significant morphological changes i.e. formation of a complex porous structure. Additionally, a new semicrystaline phase appears. Both XRD and XPS results imply that this new phase may be nepheline and it is plausible that this phase begins to nucleate at temperatures below 900 °C.
PB  - Elsevier
T2  - Ceramics International
T1  - Structural and chemical properties of thermally treated geopolymer samples
SP  - 6700
SP  - 6700
EP  - 6708
EP  - 6708
VL  - 43
VL  - 43
IS  - 9
IS  - 9
DO  - 10.1016/j.ceramint.2017.02.066
UR  - https://hdl.handle.net/21.15107/rcub_dais_2374
ER  - 
@article{
author = "Kljajević, Ljiljana M. and Nenadović, Snežana S. and Nenadović, Miloš T. and Bundaleski, Nenad K. and Todorović, Bratislav Ž. and Pavlović, Vladimir B. and Rakočević, Zlatko",
year = "2017",
abstract = "This article presents the results of the compositional, structural and morphological study of geopolymers synthesized from metakaolin and an alkali activator. The study involved the investigation of the structural and chemical properties of the geopolymer, in addition to thermally treated geopolymers up to 600 and 900 °C. The precursor of the geopolymer, and the geopolymer samples before and after the thermal treatment, were investigated by Fourier transformation infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and SEM analysis. The corrected average value of the ratio of silicon and aluminum in the geopolymer samples (SiGP:Al) is about 1.46, which suggests that the obtained geopolymer samples represent a mixture of roughly equal amounts of sialate and sialate-siloxo units. Annealing the geopolymer samples at 600 °C decreases the amount of Si-ONa bonds and induces the cross-linking of polymer changes. At the same time, other sodium containing alumino-silicate phases are created. The thermal treatment at 900 °C leads to a considerable reduction of oxygen and particularly sodium, followed by significant morphological changes i.e. formation of a complex porous structure. Additionally, a new semicrystaline phase appears. Both XRD and XPS results imply that this new phase may be nepheline and it is plausible that this phase begins to nucleate at temperatures below 900 °C.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Structural and chemical properties of thermally treated geopolymer samples",
pages = "6700-6700-6708-6708",
volume = "43, 43",
number = "9, 9",
doi = "10.1016/j.ceramint.2017.02.066",
url = "https://hdl.handle.net/21.15107/rcub_dais_2374"
}
Kljajević, L. M., Nenadović, S. S., Nenadović, M. T., Bundaleski, N. K., Todorović, B. Ž., Pavlović, V. B.,& Rakočević, Z.. (2017). Structural and chemical properties of thermally treated geopolymer samples. in Ceramics International
Elsevier., 43(9), 6700-6708.
https://doi.org/10.1016/j.ceramint.2017.02.066
https://hdl.handle.net/21.15107/rcub_dais_2374
Kljajević LM, Nenadović SS, Nenadović MT, Bundaleski NK, Todorović BŽ, Pavlović VB, Rakočević Z. Structural and chemical properties of thermally treated geopolymer samples. in Ceramics International. 2017;43(9):6700-6708.
doi:10.1016/j.ceramint.2017.02.066
https://hdl.handle.net/21.15107/rcub_dais_2374 .
Kljajević, Ljiljana M., Nenadović, Snežana S., Nenadović, Miloš T., Bundaleski, Nenad K., Todorović, Bratislav Ž., Pavlović, Vladimir B., Rakočević, Zlatko, "Structural and chemical properties of thermally treated geopolymer samples" in Ceramics International, 43, no. 9 (2017):6700-6708,
https://doi.org/10.1016/j.ceramint.2017.02.066 .,
https://hdl.handle.net/21.15107/rcub_dais_2374 .
110
66
113

Mechanochemical treatment and structural properties of lead adsorption on kaolinite (Rudovci, Serbia)

Nenadović, Snežana S.; Kljajević, Ljiljana M.; Nenadović, Miloš; Mirković, Miljana M.; Marković, Smilja; Rakočević, Zlatko

(2015)

TY  - JOUR
AU  - Nenadović, Snežana S.
AU  - Kljajević, Ljiljana M.
AU  - Nenadović, Miloš
AU  - Mirković, Miljana M.
AU  - Marković, Smilja
AU  - Rakočević, Zlatko
PY  - 2015
UR  - https://dais.sanu.ac.rs/123456789/3356
AB  - In the present work, remediation of lead-containing solution using raw and modified kaolinite has been presented. The micro and nanostructure of samples has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Laser diffraction and scattering (LDS), was analyzed by particle size analyzer based on laser diffraction and particle size distribution (PSD) was done. The degree of metal adsorption was evaluated analyzing the Pb(II) contaminated samples by inductively coupled plasma atomic emission spectrometry (micro- and nanostructure on immobilization efficiency correlCP AES). The results show the impact of immobilization efficiency and ation between micro- and nanostructure. The thermodynamic data (Delta HA degrees, Delta SA degrees, Delta GA degrees) are calculated from the temperature-dependent sorption isotherms. The results suggest sorption process of Pb(II) on kaolinite as spontaneous and endothermic.
T2  - Environmental Earth Sciences
T1  - Mechanochemical treatment and structural properties of lead adsorption on kaolinite (Rudovci, Serbia)
SP  - 7669
EP  - 7677
VL  - 73
IS  - 11
DO  - 10.1007/s12665-014-3941-y
UR  - https://hdl.handle.net/21.15107/rcub_dais_3356
ER  - 
@article{
author = "Nenadović, Snežana S. and Kljajević, Ljiljana M. and Nenadović, Miloš and Mirković, Miljana M. and Marković, Smilja and Rakočević, Zlatko",
year = "2015",
abstract = "In the present work, remediation of lead-containing solution using raw and modified kaolinite has been presented. The micro and nanostructure of samples has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Laser diffraction and scattering (LDS), was analyzed by particle size analyzer based on laser diffraction and particle size distribution (PSD) was done. The degree of metal adsorption was evaluated analyzing the Pb(II) contaminated samples by inductively coupled plasma atomic emission spectrometry (micro- and nanostructure on immobilization efficiency correlCP AES). The results show the impact of immobilization efficiency and ation between micro- and nanostructure. The thermodynamic data (Delta HA degrees, Delta SA degrees, Delta GA degrees) are calculated from the temperature-dependent sorption isotherms. The results suggest sorption process of Pb(II) on kaolinite as spontaneous and endothermic.",
journal = "Environmental Earth Sciences",
title = "Mechanochemical treatment and structural properties of lead adsorption on kaolinite (Rudovci, Serbia)",
pages = "7669-7677",
volume = "73",
number = "11",
doi = "10.1007/s12665-014-3941-y",
url = "https://hdl.handle.net/21.15107/rcub_dais_3356"
}
Nenadović, S. S., Kljajević, L. M., Nenadović, M., Mirković, M. M., Marković, S.,& Rakočević, Z.. (2015). Mechanochemical treatment and structural properties of lead adsorption on kaolinite (Rudovci, Serbia). in Environmental Earth Sciences, 73(11), 7669-7677.
https://doi.org/10.1007/s12665-014-3941-y
https://hdl.handle.net/21.15107/rcub_dais_3356
Nenadović SS, Kljajević LM, Nenadović M, Mirković MM, Marković S, Rakočević Z. Mechanochemical treatment and structural properties of lead adsorption on kaolinite (Rudovci, Serbia). in Environmental Earth Sciences. 2015;73(11):7669-7677.
doi:10.1007/s12665-014-3941-y
https://hdl.handle.net/21.15107/rcub_dais_3356 .
Nenadović, Snežana S., Kljajević, Ljiljana M., Nenadović, Miloš, Mirković, Miljana M., Marković, Smilja, Rakočević, Zlatko, "Mechanochemical treatment and structural properties of lead adsorption on kaolinite (Rudovci, Serbia)" in Environmental Earth Sciences, 73, no. 11 (2015):7669-7677,
https://doi.org/10.1007/s12665-014-3941-y .,
https://hdl.handle.net/21.15107/rcub_dais_3356 .
14
14
18