Đorđević, Verica

Link to this page

Authority KeyName Variants
820dd0bc-2d97-4878-97ae-18d1dba0923e
  • Đorđević, Verica (8)
Projects

Author's Bibliography

Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid

Batinić, Petar M.; Đorđević, Verica; Obradović, Nataša S.; Krstić, Aleksandar D.; Stevanović, Sanja; Balanč, Bojana; Marković, Smilja; Pjanović, Rada; Mijin, Dušan; Bugarski, Branko

(Wiley, 2023)

TY  - JOUR
AU  - Batinić, Petar M.
AU  - Đorđević, Verica
AU  - Obradović, Nataša S.
AU  - Krstić, Aleksandar D.
AU  - Stevanović, Sanja
AU  - Balanč, Bojana
AU  - Marković, Smilja
AU  - Pjanović, Rada
AU  - Mijin, Dušan
AU  - Bugarski, Branko
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/16165
AB  - Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.
PB  - Wiley
T2  - European Journal of Lipid Science and Technology
T1  - Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid
SP  - 2200169
VL  - 125
IS  - 7
DO  - 10.1002/ejlt.202200169
UR  - https://hdl.handle.net/21.15107/rcub_dais_16165
ER  - 
@article{
author = "Batinić, Petar M. and Đorđević, Verica and Obradović, Nataša S. and Krstić, Aleksandar D. and Stevanović, Sanja and Balanč, Bojana and Marković, Smilja and Pjanović, Rada and Mijin, Dušan and Bugarski, Branko",
year = "2023",
abstract = "Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.",
publisher = "Wiley",
journal = "European Journal of Lipid Science and Technology",
title = "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid",
pages = "2200169",
volume = "125",
number = "7",
doi = "10.1002/ejlt.202200169",
url = "https://hdl.handle.net/21.15107/rcub_dais_16165"
}
Batinić, P. M., Đorđević, V., Obradović, N. S., Krstić, A. D., Stevanović, S., Balanč, B., Marković, S., Pjanović, R., Mijin, D.,& Bugarski, B.. (2023). Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology
Wiley., 125(7), 2200169.
https://doi.org/10.1002/ejlt.202200169
https://hdl.handle.net/21.15107/rcub_dais_16165
Batinić PM, Đorđević V, Obradović NS, Krstić AD, Stevanović S, Balanč B, Marković S, Pjanović R, Mijin D, Bugarski B. Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology. 2023;125(7):2200169.
doi:10.1002/ejlt.202200169
https://hdl.handle.net/21.15107/rcub_dais_16165 .
Batinić, Petar M., Đorđević, Verica, Obradović, Nataša S., Krstić, Aleksandar D., Stevanović, Sanja, Balanč, Bojana, Marković, Smilja, Pjanović, Rada, Mijin, Dušan, Bugarski, Branko, "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid" in European Journal of Lipid Science and Technology, 125, no. 7 (2023):2200169,
https://doi.org/10.1002/ejlt.202200169 .,
https://hdl.handle.net/21.15107/rcub_dais_16165 .
1
1

Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid

Batinić, Petar M.; Đorđević, Verica; Obradović, Nataša S.; Krstić, Aleksandar D.; Stevanović, Sanja; Balanč, Bojana; Marković, Smilja; Pjanović, Rada; Mijin, Dušan; Bugarski, Branko

(Wiley, 2023)

TY  - JOUR
AU  - Batinić, Petar M.
AU  - Đorđević, Verica
AU  - Obradović, Nataša S.
AU  - Krstić, Aleksandar D.
AU  - Stevanović, Sanja
AU  - Balanč, Bojana
AU  - Marković, Smilja
AU  - Pjanović, Rada
AU  - Mijin, Dušan
AU  - Bugarski, Branko
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14283
AB  - Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.
PB  - Wiley
T2  - European Journal of Lipid Science and Technology
T1  - Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid
SP  - 2200169
VL  - 125
IS  - 7
DO  - 10.1002/ejlt.202200169
UR  - https://hdl.handle.net/21.15107/rcub_dais_14283
ER  - 
@article{
author = "Batinić, Petar M. and Đorđević, Verica and Obradović, Nataša S. and Krstić, Aleksandar D. and Stevanović, Sanja and Balanč, Bojana and Marković, Smilja and Pjanović, Rada and Mijin, Dušan and Bugarski, Branko",
year = "2023",
abstract = "Liposome-encapsulated folic acid was incorporated into the films made from sodium carboxymethyl cellulose (CMC) (2 mas%) and a mixture of carboxymethyl cellulose and solagum (9:1 w/w) using the film-forming cast solution method. Histidine was used to increase solubility for folic acid in liposomes (1-5 mg/ml), and propylene glycol was used as a film plasticizer (2.6 mas%). The obtained films (50-60 µm tick) containing 3.12-20.19 mg of folic acid per gram of film are envisaged to be used as patches for transdermal delivery of folic acid. Therefore, some physical, mechanical, release and structural attributes of the films were scrutinized. Folic acid gave yellow color to the films and contributed to stronger chemical bonds which resulted in improved strength of the film. Liposomes prolonged the release of folic acid from films to 24 h without adverse effects on mechanical properties of the films, but degraded homogeneity of the films, which could be ascribed to its agglomeration within the film matrix as revealed by AFM. According to the release at pH 5.5, the film formulation based on a blend of CMC and solagum containing 3 mg/ml liposome-encapsulated folic acid is recommended from the point of view of release kinetics determined by its solubility.  Practical application: Folic acid is effective in reducing oxidative stress levels in the skin and neutralizing the harmful free radicals and is also essential for various metabolic reactions in the body. However, the limited solubility of folic acid linked with its poor absorption in an organism, low storage stability, short half-life upon oral consumption, specific food preferences of some people, extensive liver metabolism, and pregnancy-induced vomiting point to a large potential in transdermal usage of folic acid. This has motivated us to design new multicomponent polymer-lipid systems as an alternative solution to overcome some of these drawbacks. The results obtained for these multicomponent films pointed to their potential for prolonged release of folic acid to 24 h, which can also be useful for scientists interested in encapsulating similar poorly soluble compounds in CMC patches. The finding can be also valuable information for pharmaceutical manufacturers and scientists worldwide.",
publisher = "Wiley",
journal = "European Journal of Lipid Science and Technology",
title = "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid",
pages = "2200169",
volume = "125",
number = "7",
doi = "10.1002/ejlt.202200169",
url = "https://hdl.handle.net/21.15107/rcub_dais_14283"
}
Batinić, P. M., Đorđević, V., Obradović, N. S., Krstić, A. D., Stevanović, S., Balanč, B., Marković, S., Pjanović, R., Mijin, D.,& Bugarski, B.. (2023). Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology
Wiley., 125(7), 2200169.
https://doi.org/10.1002/ejlt.202200169
https://hdl.handle.net/21.15107/rcub_dais_14283
Batinić PM, Đorđević V, Obradović NS, Krstić AD, Stevanović S, Balanč B, Marković S, Pjanović R, Mijin D, Bugarski B. Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid. in European Journal of Lipid Science and Technology. 2023;125(7):2200169.
doi:10.1002/ejlt.202200169
https://hdl.handle.net/21.15107/rcub_dais_14283 .
Batinić, Petar M., Đorđević, Verica, Obradović, Nataša S., Krstić, Aleksandar D., Stevanović, Sanja, Balanč, Bojana, Marković, Smilja, Pjanović, Rada, Mijin, Dušan, Bugarski, Branko, "Polymer‐lipid matrice based on carboxymethyl cellulose/solagum and liposomes for controlled release of folic acid" in European Journal of Lipid Science and Technology, 125, no. 7 (2023):2200169,
https://doi.org/10.1002/ejlt.202200169 .,
https://hdl.handle.net/21.15107/rcub_dais_14283 .
1

Supplementary information for the article Jonović, Marko, Jugović, Branimir, Žuža, Milena, Đorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation" in Polymers, 14, no. 13 (2022):2614, https://doi.org/10.3390/polym14132614

Jonović, Marko; Jugović, Branimir; Žuža, Milena; Đorđević, Verica; Milašinović, Nikola; Bugarski, Branko; Knežević-Jugović, Zorica

(MDPI AG, 2022)

TY  - DATA
AU  - Jonović, Marko
AU  - Jugović, Branimir
AU  - Žuža, Milena
AU  - Đorđević, Verica
AU  - Milašinović, Nikola
AU  - Bugarski, Branko
AU  - Knežević-Jugović, Zorica
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13156
AB  - Figure S1: Effects on the decolorization process: HRP-MAB size (a) AB225, (b) AV109; MAG-alginate ratio (c) AB225, (d) AV109; initial HRP concentration (e) AB225, (f) AV109; HRP-MAB mass (g) AB225, (h) AV109; initial H2O2 concentration (i) AB225, (j) AV109 and initial dye concentration (k) AB225, (l) AV109; Table S1: Reaction conditions for the optimization of decolorization process of AB225 and AV109 color
PB  - MDPI AG
T2  - Polymers
T1  - Supplementary information for the article Jonović, Marko, Jugović, Branimir, Žuža, Milena, Đorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation" in Polymers, 14, no. 13 (2022):2614, https://doi.org/10.3390/polym14132614
VL  - 14
UR  - https://hdl.handle.net/21.15107/rcub_dais_13156
ER  - 
@misc{
author = "Jonović, Marko and Jugović, Branimir and Žuža, Milena and Đorđević, Verica and Milašinović, Nikola and Bugarski, Branko and Knežević-Jugović, Zorica",
year = "2022",
abstract = "Figure S1: Effects on the decolorization process: HRP-MAB size (a) AB225, (b) AV109; MAG-alginate ratio (c) AB225, (d) AV109; initial HRP concentration (e) AB225, (f) AV109; HRP-MAB mass (g) AB225, (h) AV109; initial H2O2 concentration (i) AB225, (j) AV109 and initial dye concentration (k) AB225, (l) AV109; Table S1: Reaction conditions for the optimization of decolorization process of AB225 and AV109 color",
publisher = "MDPI AG",
journal = "Polymers",
title = "Supplementary information for the article Jonović, Marko, Jugović, Branimir, Žuža, Milena, Đorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation" in Polymers, 14, no. 13 (2022):2614, https://doi.org/10.3390/polym14132614",
volume = "14",
url = "https://hdl.handle.net/21.15107/rcub_dais_13156"
}
Jonović, M., Jugović, B., Žuža, M., Đorđević, V., Milašinović, N., Bugarski, B.,& Knežević-Jugović, Z.. (2022). Supplementary information for the article Jonović, Marko, Jugović, Branimir, Žuža, Milena, Đorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation" in Polymers, 14, no. 13 (2022):2614, https://doi.org/10.3390/polym14132614. in Polymers
MDPI AG., 14.
https://hdl.handle.net/21.15107/rcub_dais_13156
Jonović M, Jugović B, Žuža M, Đorđević V, Milašinović N, Bugarski B, Knežević-Jugović Z. Supplementary information for the article Jonović, Marko, Jugović, Branimir, Žuža, Milena, Đorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation" in Polymers, 14, no. 13 (2022):2614, https://doi.org/10.3390/polym14132614. in Polymers. 2022;14.
https://hdl.handle.net/21.15107/rcub_dais_13156 .
Jonović, Marko, Jugović, Branimir, Žuža, Milena, Đorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Supplementary information for the article Jonović, Marko, Jugović, Branimir, Žuža, Milena, Đorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation" in Polymers, 14, no. 13 (2022):2614, https://doi.org/10.3390/polym14132614" in Polymers, 14 (2022),
https://hdl.handle.net/21.15107/rcub_dais_13156 .

Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation

Jonović, Marko; Jugović, Branimir; Žuža, Milena; Đorđević, Verica; Milašinović, Nikola; Bugarski, Branko; Knežević-Jugović, Zorica

(MDPI AG, 2022)

TY  - JOUR
AU  - Jonović, Marko
AU  - Jugović, Branimir
AU  - Žuža, Milena
AU  - Đorđević, Verica
AU  - Milašinović, Nikola
AU  - Bugarski, Branko
AU  - Knežević-Jugović, Zorica
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13155
AB  - The aim of this study was to investigate covalent immobilization of horseradish peroxidase (HRP) on magnetic nanoparticles (Mag) encapsulated in calcium alginate beads (MABs) for color degradation, combining easy and fast removal of biocatalyst from the reaction mixture due to its magnetic properties and strong binding due to surface alginate functional groups. MABs obtained by extrusion techniques were analyzed by optical microscopy, FEG-SEM and characterized regarding mechanical properties, magnetization and HRP binding. HRP with initial concentration of 10 mg/gcarrier was successfully covalently bonded on MABs (diameter ~1 mm, magnetite/alginate ratio 1:4), with protein loading of 8.9 mg/gcarrier, immobilization yield 96.9% and activity 32.8 U/g. Immobilized HRP on MABs (HRP-MABs) was then used to catalyze degradation of two anthraquinonic dyes, Acid Blue 225 (AB225) and Acid Violet 109 (AV109), as models for wastewater pollutants. HRP-MABs decolorized 77.3% and 76.1% of AV109 and AB225, respectively after 15 min under optimal conditions (0.097 mM H2O2, 200 mg of HRP-MABs (8.9 mg/gcarrier), 0.08 and 0.1 g/mg beads/dye ratio for AV109 and AB225, respectively). Biocatalyst was used for 7 repeated cycles retaining 75% and 51% of initial activity for AB225 and AV109, respectively, showing potential for use in large scale applications for colored wastewater treatment.
PB  - MDPI AG
T2  - Polymers
T1  - Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation
SP  - 2614
VL  - 14
IS  - 13
DO  - 10.3390/polym14132614
UR  - https://hdl.handle.net/21.15107/rcub_dais_13155
ER  - 
@article{
author = "Jonović, Marko and Jugović, Branimir and Žuža, Milena and Đorđević, Verica and Milašinović, Nikola and Bugarski, Branko and Knežević-Jugović, Zorica",
year = "2022",
abstract = "The aim of this study was to investigate covalent immobilization of horseradish peroxidase (HRP) on magnetic nanoparticles (Mag) encapsulated in calcium alginate beads (MABs) for color degradation, combining easy and fast removal of biocatalyst from the reaction mixture due to its magnetic properties and strong binding due to surface alginate functional groups. MABs obtained by extrusion techniques were analyzed by optical microscopy, FEG-SEM and characterized regarding mechanical properties, magnetization and HRP binding. HRP with initial concentration of 10 mg/gcarrier was successfully covalently bonded on MABs (diameter ~1 mm, magnetite/alginate ratio 1:4), with protein loading of 8.9 mg/gcarrier, immobilization yield 96.9% and activity 32.8 U/g. Immobilized HRP on MABs (HRP-MABs) was then used to catalyze degradation of two anthraquinonic dyes, Acid Blue 225 (AB225) and Acid Violet 109 (AV109), as models for wastewater pollutants. HRP-MABs decolorized 77.3% and 76.1% of AV109 and AB225, respectively after 15 min under optimal conditions (0.097 mM H2O2, 200 mg of HRP-MABs (8.9 mg/gcarrier), 0.08 and 0.1 g/mg beads/dye ratio for AV109 and AB225, respectively). Biocatalyst was used for 7 repeated cycles retaining 75% and 51% of initial activity for AB225 and AV109, respectively, showing potential for use in large scale applications for colored wastewater treatment.",
publisher = "MDPI AG",
journal = "Polymers",
title = "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation",
pages = "2614",
volume = "14",
number = "13",
doi = "10.3390/polym14132614",
url = "https://hdl.handle.net/21.15107/rcub_dais_13155"
}
Jonović, M., Jugović, B., Žuža, M., Đorđević, V., Milašinović, N., Bugarski, B.,& Knežević-Jugović, Z.. (2022). Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation. in Polymers
MDPI AG., 14(13), 2614.
https://doi.org/10.3390/polym14132614
https://hdl.handle.net/21.15107/rcub_dais_13155
Jonović M, Jugović B, Žuža M, Đorđević V, Milašinović N, Bugarski B, Knežević-Jugović Z. Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation. in Polymers. 2022;14(13):2614.
doi:10.3390/polym14132614
https://hdl.handle.net/21.15107/rcub_dais_13155 .
Jonović, Marko, Jugović, Branimir, Žuža, Milena, Đorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation" in Polymers, 14, no. 13 (2022):2614,
https://doi.org/10.3390/polym14132614 .,
https://hdl.handle.net/21.15107/rcub_dais_13155 .
6
6

Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins

Jonović, Marko; Žuža, Milena; Đorđević, Verica; Šekuljica, Nataša; Milivojević, Milan; Jugović, Branimir; Bugarski, Branko; Knežević Jugović, Zorica

(Basel : Multidisciplinary Digital Publishing Institute (MDPI), 2021)

TY  - JOUR
AU  - Jonović, Marko
AU  - Žuža, Milena
AU  - Đorđević, Verica
AU  - Šekuljica, Nataša
AU  - Milivojević, Milan
AU  - Jugović, Branimir
AU  - Bugarski, Branko
AU  - Knežević Jugović, Zorica
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12087
AB  - Enzymatic hydrolysis of food proteins is convenient method to improve their functional properties and physiological activity. Herein, the successful covalent attachment of alcalase on alginate micron and submicron beads using the carbodiimide based chemistry reaction and the subsequent application of the beads for egg white and soy proteins hydrolysis were studied. In addition to the electrostatic extrusion technique (EE) previously used by others, the potential utilization of a novel ultrasonic spray atomization technique without drying (UA) and with drying (UAD) for alginate submicron beads production has been attempted. The immobilization parameters were optimized on microbeads obtained by EE technique (803 +/- 23 mu m) with respect to enzyme loading and alcalase activity. UA and UAD techniques resulted in much smaller particles (607 +/- 103 nm and 394 +/- 51 nm in diameter, respectively), enabling even higher enzyme loading of 671.6 +/- 4 mg g(-1) on the carrier and the highest immobilized alcalase activity of 2716.1 IU g(-1) in the standard reaction. The UAD biocatalyst exhibited also better performances in the real food system based on egg white or soy proteins. It has been shown that the immobilized alcalase can be reused in seven successive soy protein hydrolysis cycles with a little decrease in the activity.
PB  - Basel : Multidisciplinary Digital Publishing Institute (MDPI)
T2  - catalysts
T1  - Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins
SP  - 305
VL  - 11
IS  - 3
DO  - 10.3390/catal11030305
UR  - https://hdl.handle.net/21.15107/rcub_dais_12087
ER  - 
@article{
author = "Jonović, Marko and Žuža, Milena and Đorđević, Verica and Šekuljica, Nataša and Milivojević, Milan and Jugović, Branimir and Bugarski, Branko and Knežević Jugović, Zorica",
year = "2021",
abstract = "Enzymatic hydrolysis of food proteins is convenient method to improve their functional properties and physiological activity. Herein, the successful covalent attachment of alcalase on alginate micron and submicron beads using the carbodiimide based chemistry reaction and the subsequent application of the beads for egg white and soy proteins hydrolysis were studied. In addition to the electrostatic extrusion technique (EE) previously used by others, the potential utilization of a novel ultrasonic spray atomization technique without drying (UA) and with drying (UAD) for alginate submicron beads production has been attempted. The immobilization parameters were optimized on microbeads obtained by EE technique (803 +/- 23 mu m) with respect to enzyme loading and alcalase activity. UA and UAD techniques resulted in much smaller particles (607 +/- 103 nm and 394 +/- 51 nm in diameter, respectively), enabling even higher enzyme loading of 671.6 +/- 4 mg g(-1) on the carrier and the highest immobilized alcalase activity of 2716.1 IU g(-1) in the standard reaction. The UAD biocatalyst exhibited also better performances in the real food system based on egg white or soy proteins. It has been shown that the immobilized alcalase can be reused in seven successive soy protein hydrolysis cycles with a little decrease in the activity.",
publisher = "Basel : Multidisciplinary Digital Publishing Institute (MDPI)",
journal = "catalysts",
title = "Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins",
pages = "305",
volume = "11",
number = "3",
doi = "10.3390/catal11030305",
url = "https://hdl.handle.net/21.15107/rcub_dais_12087"
}
Jonović, M., Žuža, M., Đorđević, V., Šekuljica, N., Milivojević, M., Jugović, B., Bugarski, B.,& Knežević Jugović, Z.. (2021). Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins. in catalysts
Basel : Multidisciplinary Digital Publishing Institute (MDPI)., 11(3), 305.
https://doi.org/10.3390/catal11030305
https://hdl.handle.net/21.15107/rcub_dais_12087
Jonović M, Žuža M, Đorđević V, Šekuljica N, Milivojević M, Jugović B, Bugarski B, Knežević Jugović Z. Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins. in catalysts. 2021;11(3):305.
doi:10.3390/catal11030305
https://hdl.handle.net/21.15107/rcub_dais_12087 .
Jonović, Marko, Žuža, Milena, Đorđević, Verica, Šekuljica, Nataša, Milivojević, Milan, Jugović, Branimir, Bugarski, Branko, Knežević Jugović, Zorica, "Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins" in catalysts, 11, no. 3 (2021):305,
https://doi.org/10.3390/catal11030305 .,
https://hdl.handle.net/21.15107/rcub_dais_12087 .
5
6

Encapsulation of resveratrol in spherical particles of food grade hydrogels

Balanč, Bojana; Trifković, Kata; Pravilović, Radoslava; Đorđević, Verica; Marković, Smilja; Nedović, Viktor; Bugarski, Branko

(Novi Sad : University of Novi Sad - Scientific Institute of Food Technology, 2017)

TY  - JOUR
AU  - Balanč, Bojana
AU  - Trifković, Kata
AU  - Pravilović, Radoslava
AU  - Đorđević, Verica
AU  - Marković, Smilja
AU  - Nedović, Viktor
AU  - Bugarski, Branko
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/11622
AB  - The paper reports about the preparation and characterization of hydrogel particles containing liposomes loaded with resveratrol as an active compound. The materials used for preparation of the particles were chosen to be suitable for food industry. Different polymer concentrations affect particles shape, size, size distribution, as well as the release kinetics of resveratrol. The diameter of particles varied from 360 to 754 μm, while the narrow size distribution was observed for all types of particles. Release studies were performed in Franz diffusion cell and the results showed the prolonged release of resveratrol from all samples, but the sample with the highest content of polymer (2.5% w/w) in particular stood out. The research provides useful information about liposomes containing active compound encapsulated in hydrogel matrices and offers the basis for its application in the food industry.
AB  - Ovaj rad daje podatke o pripremi i karakterizaciji čestica koje sadrže lipozome sa inkapsuliranom aktivnom komponentom resveratrolom. Komponente koje ulaze u sastav ovih čestica odabrane su tako da mogu jednostavno da se primene u prehrambenoj industriji. Prikazan je uticaj različitih koncentracija početnih rastvora polimera čija upotreba je dozvoljena u hrani, a samim tim i njihove viskoznosti na veličinu formiranih čestica, njihov oblik i raspodelu veličina, ali i na otpuštanje resveratrola iz ovih složenih sistema. Prečnik čestica bio je između 360 i 754 μm, dok je uska raspodela veličina detektovana u svim uzorcima. Otpuštanje resveratrola praćeno je u Francovoj difuzionoj ćeliji gde su rezultati ukazali na produženo oslobađanje resveratrola u svim uzorcima. Ipak, uzorak koji je imao najveći udeo polimera u početnom rastvoru (2,5% w/w) najsporije je otpuštao aktivnu komponentu. Ovi rezultati daju korisne podatke o kompleksnim sistemima gde je aktivna komponenta inkapsulirana u lipozome dalje obložena polimerom čime doprinose potencijalnoj aplikaciji ovih i sličnih sistema u prehrambene proizvode.
PB  - Novi Sad : University of Novi Sad - Scientific Institute of Food Technology
T2  - Food and Feed Research
T1  - Encapsulation of resveratrol in spherical particles of food grade hydrogels
SP  - 23
EP  - 29
VL  - 44
IS  - 1
DO  - 10.5937/FFR1701023B
UR  - https://hdl.handle.net/21.15107/rcub_dais_11622
ER  - 
@article{
author = "Balanč, Bojana and Trifković, Kata and Pravilović, Radoslava and Đorđević, Verica and Marković, Smilja and Nedović, Viktor and Bugarski, Branko",
year = "2017",
abstract = "The paper reports about the preparation and characterization of hydrogel particles containing liposomes loaded with resveratrol as an active compound. The materials used for preparation of the particles were chosen to be suitable for food industry. Different polymer concentrations affect particles shape, size, size distribution, as well as the release kinetics of resveratrol. The diameter of particles varied from 360 to 754 μm, while the narrow size distribution was observed for all types of particles. Release studies were performed in Franz diffusion cell and the results showed the prolonged release of resveratrol from all samples, but the sample with the highest content of polymer (2.5% w/w) in particular stood out. The research provides useful information about liposomes containing active compound encapsulated in hydrogel matrices and offers the basis for its application in the food industry., Ovaj rad daje podatke o pripremi i karakterizaciji čestica koje sadrže lipozome sa inkapsuliranom aktivnom komponentom resveratrolom. Komponente koje ulaze u sastav ovih čestica odabrane su tako da mogu jednostavno da se primene u prehrambenoj industriji. Prikazan je uticaj različitih koncentracija početnih rastvora polimera čija upotreba je dozvoljena u hrani, a samim tim i njihove viskoznosti na veličinu formiranih čestica, njihov oblik i raspodelu veličina, ali i na otpuštanje resveratrola iz ovih složenih sistema. Prečnik čestica bio je između 360 i 754 μm, dok je uska raspodela veličina detektovana u svim uzorcima. Otpuštanje resveratrola praćeno je u Francovoj difuzionoj ćeliji gde su rezultati ukazali na produženo oslobađanje resveratrola u svim uzorcima. Ipak, uzorak koji je imao najveći udeo polimera u početnom rastvoru (2,5% w/w) najsporije je otpuštao aktivnu komponentu. Ovi rezultati daju korisne podatke o kompleksnim sistemima gde je aktivna komponenta inkapsulirana u lipozome dalje obložena polimerom čime doprinose potencijalnoj aplikaciji ovih i sličnih sistema u prehrambene proizvode.",
publisher = "Novi Sad : University of Novi Sad - Scientific Institute of Food Technology",
journal = "Food and Feed Research",
title = "Encapsulation of resveratrol in spherical particles of food grade hydrogels",
pages = "23-29",
volume = "44",
number = "1",
doi = "10.5937/FFR1701023B",
url = "https://hdl.handle.net/21.15107/rcub_dais_11622"
}
Balanč, B., Trifković, K., Pravilović, R., Đorđević, V., Marković, S., Nedović, V.,& Bugarski, B.. (2017). Encapsulation of resveratrol in spherical particles of food grade hydrogels. in Food and Feed Research
Novi Sad : University of Novi Sad - Scientific Institute of Food Technology., 44(1), 23-29.
https://doi.org/10.5937/FFR1701023B
https://hdl.handle.net/21.15107/rcub_dais_11622
Balanč B, Trifković K, Pravilović R, Đorđević V, Marković S, Nedović V, Bugarski B. Encapsulation of resveratrol in spherical particles of food grade hydrogels. in Food and Feed Research. 2017;44(1):23-29.
doi:10.5937/FFR1701023B
https://hdl.handle.net/21.15107/rcub_dais_11622 .
Balanč, Bojana, Trifković, Kata, Pravilović, Radoslava, Đorđević, Verica, Marković, Smilja, Nedović, Viktor, Bugarski, Branko, "Encapsulation of resveratrol in spherical particles of food grade hydrogels" in Food and Feed Research, 44, no. 1 (2017):23-29,
https://doi.org/10.5937/FFR1701023B .,
https://hdl.handle.net/21.15107/rcub_dais_11622 .

Želatin kao nosač za isporuku polifenolnih komponenata

Jovanović, Aleksandra; Đorđević, Verica; Lević, Steva; Marković, Smilja; Pavlović, Vladimir B.; Nedović, Viktor; Bugarski, Branko

(Belgrade : Union of Engineers and Technicians of Serbia, 2017)

TY  - JOUR
AU  - Jovanović, Aleksandra
AU  - Đorđević, Verica
AU  - Lević, Steva
AU  - Marković, Smilja
AU  - Pavlović, Vladimir B.
AU  - Nedović, Viktor
AU  - Bugarski, Branko
PY  - 2017
UR  - http://www.ncbi.nlm.nih.gov/pubmed/0040-21761705633J
UR  - https://dais.sanu.ac.rs/123456789/11623
AB  - In the present study, the influence of different encapsulation techniques (lyophilization and spray drying) on gelatin, as a carrier system for delivery of polyphenols compounds, on wild thyme extracts and on encapsulated extracts was investigated. FTIR analyses has shown the presence of carbohydrates, polysaccharides, polyphenols, flavonoids, monoterpenes and carboxylates in the dried extracts, while FTIR spectrum of the encapsulated extracts has shown almost exclusively gelatin-based stripes, indicating the efficient encapsulation of the active ingredients of the extracts and therefore their protection. Scanning electron microscopy has shown that the lyophilization process produced irregularly shaped particles, while spray drying formed spherical and pseudo-spherical particles with rough surface. Using the method of diffraction of laser light, it has been found that spray dried encapsulate possessed significantly lower particle size and significantly better uniformity in comparison to the lyophilized sample. According to the results obtained in differential scanning calorimetry, endothermic peak of lyophilized gelatin encapsulate appeared at higher temperature, thus it can be concluded that lyophilized sample was more thermostable than spray dried parallel. Additionally, the values of enthalpy of gelatin encapsulates were significantly higher compared to pure extracts, which confirmed the presence of stabilizing interactions between the encapsulated components and a carrier.
AB  - U prikazanoj studiji ispitan je uticaj različitih metoda inkapsulacije (liofilizacije i sprej sušenja) na želatin, kao nosač polifenolnih komponenata, na ekstrakte majčine dušice i na njihove želatinske inkapsulate. FTIR analiza je pokazala prisustvo ugljenih hidrata, polisaharida, polifenolnih komponenata, flavonoida, monoterpena i karboksilata u osušenim ekstraktima, dok su FTIR spektri inkapsulata pokazali isključivo trake koje potiču od želatina, što ukazuje na efikasno obavijanje aktivnih komponenata ekstrakata i samim tim njihovu zaštitu. Skenirajuća elektronska mikroskopija je pokazala da proces liofilizacije daje čestice nepravilnog oblika, dok se sprej sušenjem formiraju male čestice sferičnog i pseudo-sferičnog oblika, sa neravnom površinom. Primenom difrakcije laserske svetlosti utvrđeno je da veličina čestica sprej osušenog inkapsulata ima značajno manju vrednost i da je uniformnost značajno veća nego kod liofilizovane paralele. Ispitivanjem termičkih karakteristika, primenom diferencijalne skenirajuće kalorimetrije, pokazano je da se kod liofilizovanog želatinskog inkapsulata endotermni pik nalazi na višoj temperaturi, te se može zaključiti da je pomenuti uzorak termički stabilniji u odnosu na sprej osušen. Dodatno, vrednosti promene entalpije želatinskih inkapsulata ekstrakata bile su značajno veće nego kod čistih ekstrakata, što svedoči o prisustvu stabilizirajućih interakcija između inkapsuliranih komponenata i nosača.
PB  - Belgrade : Union of Engineers and Technicians of Serbia
T2  - Tehnika
T1  - Želatin kao nosač za isporuku polifenolnih komponenata
T1  - Gelatin as a carrier system for delivery of polyphenols compounds
SP  - 633
EP  - 639
VL  - 72
IS  - 5
DO  - 10.5937/tehnika1705633J
UR  - https://hdl.handle.net/21.15107/rcub_dais_11623
ER  - 
@article{
author = "Jovanović, Aleksandra and Đorđević, Verica and Lević, Steva and Marković, Smilja and Pavlović, Vladimir B. and Nedović, Viktor and Bugarski, Branko",
year = "2017",
abstract = "In the present study, the influence of different encapsulation techniques (lyophilization and spray drying) on gelatin, as a carrier system for delivery of polyphenols compounds, on wild thyme extracts and on encapsulated extracts was investigated. FTIR analyses has shown the presence of carbohydrates, polysaccharides, polyphenols, flavonoids, monoterpenes and carboxylates in the dried extracts, while FTIR spectrum of the encapsulated extracts has shown almost exclusively gelatin-based stripes, indicating the efficient encapsulation of the active ingredients of the extracts and therefore their protection. Scanning electron microscopy has shown that the lyophilization process produced irregularly shaped particles, while spray drying formed spherical and pseudo-spherical particles with rough surface. Using the method of diffraction of laser light, it has been found that spray dried encapsulate possessed significantly lower particle size and significantly better uniformity in comparison to the lyophilized sample. According to the results obtained in differential scanning calorimetry, endothermic peak of lyophilized gelatin encapsulate appeared at higher temperature, thus it can be concluded that lyophilized sample was more thermostable than spray dried parallel. Additionally, the values of enthalpy of gelatin encapsulates were significantly higher compared to pure extracts, which confirmed the presence of stabilizing interactions between the encapsulated components and a carrier., U prikazanoj studiji ispitan je uticaj različitih metoda inkapsulacije (liofilizacije i sprej sušenja) na želatin, kao nosač polifenolnih komponenata, na ekstrakte majčine dušice i na njihove želatinske inkapsulate. FTIR analiza je pokazala prisustvo ugljenih hidrata, polisaharida, polifenolnih komponenata, flavonoida, monoterpena i karboksilata u osušenim ekstraktima, dok su FTIR spektri inkapsulata pokazali isključivo trake koje potiču od želatina, što ukazuje na efikasno obavijanje aktivnih komponenata ekstrakata i samim tim njihovu zaštitu. Skenirajuća elektronska mikroskopija je pokazala da proces liofilizacije daje čestice nepravilnog oblika, dok se sprej sušenjem formiraju male čestice sferičnog i pseudo-sferičnog oblika, sa neravnom površinom. Primenom difrakcije laserske svetlosti utvrđeno je da veličina čestica sprej osušenog inkapsulata ima značajno manju vrednost i da je uniformnost značajno veća nego kod liofilizovane paralele. Ispitivanjem termičkih karakteristika, primenom diferencijalne skenirajuće kalorimetrije, pokazano je da se kod liofilizovanog želatinskog inkapsulata endotermni pik nalazi na višoj temperaturi, te se može zaključiti da je pomenuti uzorak termički stabilniji u odnosu na sprej osušen. Dodatno, vrednosti promene entalpije želatinskih inkapsulata ekstrakata bile su značajno veće nego kod čistih ekstrakata, što svedoči o prisustvu stabilizirajućih interakcija između inkapsuliranih komponenata i nosača.",
publisher = "Belgrade : Union of Engineers and Technicians of Serbia",
journal = "Tehnika",
title = "Želatin kao nosač za isporuku polifenolnih komponenata, Gelatin as a carrier system for delivery of polyphenols compounds",
pages = "633-639",
volume = "72",
number = "5",
doi = "10.5937/tehnika1705633J",
url = "https://hdl.handle.net/21.15107/rcub_dais_11623"
}
Jovanović, A., Đorđević, V., Lević, S., Marković, S., Pavlović, V. B., Nedović, V.,& Bugarski, B.. (2017). Želatin kao nosač za isporuku polifenolnih komponenata. in Tehnika
Belgrade : Union of Engineers and Technicians of Serbia., 72(5), 633-639.
https://doi.org/10.5937/tehnika1705633J
https://hdl.handle.net/21.15107/rcub_dais_11623
Jovanović A, Đorđević V, Lević S, Marković S, Pavlović VB, Nedović V, Bugarski B. Želatin kao nosač za isporuku polifenolnih komponenata. in Tehnika. 2017;72(5):633-639.
doi:10.5937/tehnika1705633J
https://hdl.handle.net/21.15107/rcub_dais_11623 .
Jovanović, Aleksandra, Đorđević, Verica, Lević, Steva, Marković, Smilja, Pavlović, Vladimir B., Nedović, Viktor, Bugarski, Branko, "Želatin kao nosač za isporuku polifenolnih komponenata" in Tehnika, 72, no. 5 (2017):633-639,
https://doi.org/10.5937/tehnika1705633J .,
https://hdl.handle.net/21.15107/rcub_dais_11623 .

Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes

Balanč, Bojana; Trifković, Kata; Đorđević, Verica; Marković, Smilja; Pjanović, Rada; Nedović, Viktor; Bugarski, Branko

(Elsevier, 2016)

TY  - JOUR
AU  - Balanč, Bojana
AU  - Trifković, Kata
AU  - Đorđević, Verica
AU  - Marković, Smilja
AU  - Pjanović, Rada
AU  - Nedović, Viktor
AU  - Bugarski, Branko
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/15455
AB  - We reported the design of liposome-loaded Ca-alginate microspheres as a drug delivery system for controlled release of resveratrol. The effect of admixed sucrose and chitosan coating was assessed in terms of physicochemical, thermal and release properties of liposome-in alginate systems with encapsulated resveratrol. The diameter of liposomes produced by proliposome method increased from 412 to 471 nm with addition of sucrose as a cryoprotectant. DSC analysis revealed that phospolipids interact with each other while forming the lipid bilayer and that resveratrol was incorporated within the lipid bilayer, causing destabilizing effect in the two temperature regions (137–202 °C and 240–270 °C). Liposomes were entrapped within polymer network and remained intact as determined by SEM cross-sectional observation of the microbeads. Liposomes interfered with the thermal behavior of alginate in the temperature region above 220 °C. The presence of liposomes decreased the strength of the beads in comparison to placebo beads, according to mechanical tests on compression. Release studies performed in Franz diffusion cell showed the overall resistance to mass transfer one order of magnitude higher (106 s/m) than the resistance ascribed solely to the liposomal membrane. The chitosan coating, visible as a dense surface layer (∼7 μm thick) in dry state, caused decrease in encapsulation efficiency of resveratrol (85% vs. 91%) and in size of the particles (d50 of 387 vs. 440 μm); the chitosan also caused weakening of the polymer matrix, but increased resistance to drug diffusion (11.4 × 105 s/m) in comparison to the uncoated alginate-liposome formulation (9.1 × 105 s/m).
PB  - Elsevier
T2  - Food Hydrocolloids
T1  - Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes
SP  - 832
EP  - 842
VL  - 61
DO  - 10.1016/j.foodhyd.2016.07.005
UR  - https://hdl.handle.net/21.15107/rcub_dais_15455
ER  - 
@article{
author = "Balanč, Bojana and Trifković, Kata and Đorđević, Verica and Marković, Smilja and Pjanović, Rada and Nedović, Viktor and Bugarski, Branko",
year = "2016",
abstract = "We reported the design of liposome-loaded Ca-alginate microspheres as a drug delivery system for controlled release of resveratrol. The effect of admixed sucrose and chitosan coating was assessed in terms of physicochemical, thermal and release properties of liposome-in alginate systems with encapsulated resveratrol. The diameter of liposomes produced by proliposome method increased from 412 to 471 nm with addition of sucrose as a cryoprotectant. DSC analysis revealed that phospolipids interact with each other while forming the lipid bilayer and that resveratrol was incorporated within the lipid bilayer, causing destabilizing effect in the two temperature regions (137–202 °C and 240–270 °C). Liposomes were entrapped within polymer network and remained intact as determined by SEM cross-sectional observation of the microbeads. Liposomes interfered with the thermal behavior of alginate in the temperature region above 220 °C. The presence of liposomes decreased the strength of the beads in comparison to placebo beads, according to mechanical tests on compression. Release studies performed in Franz diffusion cell showed the overall resistance to mass transfer one order of magnitude higher (106 s/m) than the resistance ascribed solely to the liposomal membrane. The chitosan coating, visible as a dense surface layer (∼7 μm thick) in dry state, caused decrease in encapsulation efficiency of resveratrol (85% vs. 91%) and in size of the particles (d50 of 387 vs. 440 μm); the chitosan also caused weakening of the polymer matrix, but increased resistance to drug diffusion (11.4 × 105 s/m) in comparison to the uncoated alginate-liposome formulation (9.1 × 105 s/m).",
publisher = "Elsevier",
journal = "Food Hydrocolloids",
title = "Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes",
pages = "832-842",
volume = "61",
doi = "10.1016/j.foodhyd.2016.07.005",
url = "https://hdl.handle.net/21.15107/rcub_dais_15455"
}
Balanč, B., Trifković, K., Đorđević, V., Marković, S., Pjanović, R., Nedović, V.,& Bugarski, B.. (2016). Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. in Food Hydrocolloids
Elsevier., 61, 832-842.
https://doi.org/10.1016/j.foodhyd.2016.07.005
https://hdl.handle.net/21.15107/rcub_dais_15455
Balanč B, Trifković K, Đorđević V, Marković S, Pjanović R, Nedović V, Bugarski B. Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes. in Food Hydrocolloids. 2016;61:832-842.
doi:10.1016/j.foodhyd.2016.07.005
https://hdl.handle.net/21.15107/rcub_dais_15455 .
Balanč, Bojana, Trifković, Kata, Đorđević, Verica, Marković, Smilja, Pjanović, Rada, Nedović, Viktor, Bugarski, Branko, "Novel resveratrol delivery systems based on alginate-sucrose and alginate-chitosan microbeads containing liposomes" in Food Hydrocolloids, 61 (2016):832-842,
https://doi.org/10.1016/j.foodhyd.2016.07.005 .,
https://hdl.handle.net/21.15107/rcub_dais_15455 .
68
41
62