Ranđelović, Marjan

Link to this page

Authority KeyName Variants
53cf44e6-a711-4d3f-a1cf-ebd08db0e71e
  • Ranđelović, Marjan (4)
Projects

Author's Bibliography

Characterization and photocatalytic activity of newly synthesized Er and Yb doped SrGd2O4 nanophosphorus

Stamenković, Tijana; Ranđelović, Marjan; Čebela, Maria; Vuković, Marina; Dinić, Ivana; Mančić, Lidija; Lojpur, Vesna

(Belgrade : Institut za multidisciplinarna istraživanja, 2023)

TY  - CONF
AU  - Stamenković, Tijana
AU  - Ranđelović, Marjan
AU  - Čebela, Maria
AU  - Vuković, Marina
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Lojpur, Vesna
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14662
AB  - The aim of this research was to investigate for the first-time photocatalytic degradation of methylene blue over SrGd2O4 powders co-doped with constant Er3+ (0.5 at.%) and different Yb3+ (1, 2.5 and 5 at.%) concentrations. Samples were successfully prepared via sol-gel assisted combustion method. They exhibit photoluminescence properties which are manifested as red emission at 661 nm (4F9/2 → 4I15/2) and two green emissions at 551 and 523 nm (4S3/2 → 4I15/2 and 2H11/2 → 4I15/2). X-ray Powder Diffraction pattern proved that all samples crystallize as a pure orthorhombic phase. Scanning electron microscopy was used for morphology characterization and it revealed the existence of porous agglomerated round-shaped particles. Energy dispersive X-ray spectroscopy showed the presence of dopant ions and even distribution of all constituting elements. To calculate the energy band gap, UV-VIS diffuse reflectance spectroscopy was performed and a value of 4.3 eV was obtained, as well as the four additional values from the bands at lower energies. Photocatalytic degradation of methylene blue was monitored using UV-VIS absorption spectroscopy. Obtained results were promising since after 4 h of exposure to the simulating Sun irradiation, more than 50% of the starting dye concentration was mineralized.
PB  - Belgrade : Institut za multidisciplinarna istraživanja
C3  - Programme and the Book of Abstracts / 7th Conference of The Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023 Belgrade, Serbia
T1  - Characterization and photocatalytic activity of newly synthesized Er and Yb doped SrGd2O4 nanophosphorus
UR  - https://hdl.handle.net/21.15107/rcub_dais_14662
ER  - 
@conference{
author = "Stamenković, Tijana and Ranđelović, Marjan and Čebela, Maria and Vuković, Marina and Dinić, Ivana and Mančić, Lidija and Lojpur, Vesna",
year = "2023",
abstract = "The aim of this research was to investigate for the first-time photocatalytic degradation of methylene blue over SrGd2O4 powders co-doped with constant Er3+ (0.5 at.%) and different Yb3+ (1, 2.5 and 5 at.%) concentrations. Samples were successfully prepared via sol-gel assisted combustion method. They exhibit photoluminescence properties which are manifested as red emission at 661 nm (4F9/2 → 4I15/2) and two green emissions at 551 and 523 nm (4S3/2 → 4I15/2 and 2H11/2 → 4I15/2). X-ray Powder Diffraction pattern proved that all samples crystallize as a pure orthorhombic phase. Scanning electron microscopy was used for morphology characterization and it revealed the existence of porous agglomerated round-shaped particles. Energy dispersive X-ray spectroscopy showed the presence of dopant ions and even distribution of all constituting elements. To calculate the energy band gap, UV-VIS diffuse reflectance spectroscopy was performed and a value of 4.3 eV was obtained, as well as the four additional values from the bands at lower energies. Photocatalytic degradation of methylene blue was monitored using UV-VIS absorption spectroscopy. Obtained results were promising since after 4 h of exposure to the simulating Sun irradiation, more than 50% of the starting dye concentration was mineralized.",
publisher = "Belgrade : Institut za multidisciplinarna istraživanja",
journal = "Programme and the Book of Abstracts / 7th Conference of The Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023 Belgrade, Serbia",
title = "Characterization and photocatalytic activity of newly synthesized Er and Yb doped SrGd2O4 nanophosphorus",
url = "https://hdl.handle.net/21.15107/rcub_dais_14662"
}
Stamenković, T., Ranđelović, M., Čebela, M., Vuković, M., Dinić, I., Mančić, L.,& Lojpur, V.. (2023). Characterization and photocatalytic activity of newly synthesized Er and Yb doped SrGd2O4 nanophosphorus. in Programme and the Book of Abstracts / 7th Conference of The Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023 Belgrade, Serbia
Belgrade : Institut za multidisciplinarna istraživanja..
https://hdl.handle.net/21.15107/rcub_dais_14662
Stamenković T, Ranđelović M, Čebela M, Vuković M, Dinić I, Mančić L, Lojpur V. Characterization and photocatalytic activity of newly synthesized Er and Yb doped SrGd2O4 nanophosphorus. in Programme and the Book of Abstracts / 7th Conference of The Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023 Belgrade, Serbia. 2023;.
https://hdl.handle.net/21.15107/rcub_dais_14662 .
Stamenković, Tijana, Ranđelović, Marjan, Čebela, Maria, Vuković, Marina, Dinić, Ivana, Mančić, Lidija, Lojpur, Vesna, "Characterization and photocatalytic activity of newly synthesized Er and Yb doped SrGd2O4 nanophosphorus" in Programme and the Book of Abstracts / 7th Conference of The Serbian Society for Ceramic Materials, 7CSCS-2023, June 14-16, 2023 Belgrade, Serbia (2023),
https://hdl.handle.net/21.15107/rcub_dais_14662 .

Yb3+/Tm3+ doped SrGd2O4 as photoluminescent and photocatalytic material

Stamenković, Tijana; Ranđelović, Marjan; Dinić, Ivana; Mančić, Lidija; Lojpur, Vesna

(Belgrade : Institute of Technical Sciences of SASA, 2023)

TY  - CONF
AU  - Stamenković, Tijana
AU  - Ranđelović, Marjan
AU  - Dinić, Ivana
AU  - Mančić, Lidija
AU  - Lojpur, Vesna
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15641
AB  - In this work we present new up-conversion materials, consisted of SrGd2O4 doped with different concentration of Yb3+ (2, 4, 6 at%) ions and constant concentration of Tm3+ (1 at%), prepared by the combustion method. X-ray powder diffraction (XRPD) showed that assynthesized nanoparticles have orthorhombic structure (Pnma), assigned to the JCPDS Card No:01-072-6387. Scanning electron microscopy (SEM) revealed that obtained nanostructure is composed of porous agglomerated nanoparticles, while energy dispersive spectroscopy (EDS) confirmed presence and uniform distribution of all constituting elements accross the sample. Luminescent properties were evaluated and discovered two blue emission bands at 450 nm and 474 nm, and one red emission band at 650 nm. The sample co-doped with 4 at% Tm3+ showed the most intense photoluminescent emission, and because of that was used in the photocatalytic exiperiment. UV-VIS Diffuse Reflectance Spectroscopy was performed in order to examine materials bandgap, and value of 4.3 eV was obtained as well as the additional values from the bands at lower energies, which indicate potentially good photocatalytic properties. X-ray photoelectron spectroscopy (XPS) revealed presence of OHgroups on the surface which also have positive impact on the photocatalytic performances of the material. UV-VIS Absorption Spectroscopy was used to measure changes of the methylene blue concentration during the photocatalytic degradation process. After 4 h of exposure to the simulating Sun irradiation, the results indicate successful dye decomposition rate. Reaction parameters (MB concentration and catalyst mass) were altered in order to achieve the best photocatalytic performances of this newly synthesized materials.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia
T1  - Yb3+/Tm3+ doped SrGd2O4 as photoluminescent and photocatalytic material
SP  - 45
EP  - 45
UR  - https://hdl.handle.net/21.15107/rcub_dais_15641
ER  - 
@conference{
author = "Stamenković, Tijana and Ranđelović, Marjan and Dinić, Ivana and Mančić, Lidija and Lojpur, Vesna",
year = "2023",
abstract = "In this work we present new up-conversion materials, consisted of SrGd2O4 doped with different concentration of Yb3+ (2, 4, 6 at%) ions and constant concentration of Tm3+ (1 at%), prepared by the combustion method. X-ray powder diffraction (XRPD) showed that assynthesized nanoparticles have orthorhombic structure (Pnma), assigned to the JCPDS Card No:01-072-6387. Scanning electron microscopy (SEM) revealed that obtained nanostructure is composed of porous agglomerated nanoparticles, while energy dispersive spectroscopy (EDS) confirmed presence and uniform distribution of all constituting elements accross the sample. Luminescent properties were evaluated and discovered two blue emission bands at 450 nm and 474 nm, and one red emission band at 650 nm. The sample co-doped with 4 at% Tm3+ showed the most intense photoluminescent emission, and because of that was used in the photocatalytic exiperiment. UV-VIS Diffuse Reflectance Spectroscopy was performed in order to examine materials bandgap, and value of 4.3 eV was obtained as well as the additional values from the bands at lower energies, which indicate potentially good photocatalytic properties. X-ray photoelectron spectroscopy (XPS) revealed presence of OHgroups on the surface which also have positive impact on the photocatalytic performances of the material. UV-VIS Absorption Spectroscopy was used to measure changes of the methylene blue concentration during the photocatalytic degradation process. After 4 h of exposure to the simulating Sun irradiation, the results indicate successful dye decomposition rate. Reaction parameters (MB concentration and catalyst mass) were altered in order to achieve the best photocatalytic performances of this newly synthesized materials.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia",
title = "Yb3+/Tm3+ doped SrGd2O4 as photoluminescent and photocatalytic material",
pages = "45-45",
url = "https://hdl.handle.net/21.15107/rcub_dais_15641"
}
Stamenković, T., Ranđelović, M., Dinić, I., Mančić, L.,& Lojpur, V.. (2023). Yb3+/Tm3+ doped SrGd2O4 as photoluminescent and photocatalytic material. in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 45-45.
https://hdl.handle.net/21.15107/rcub_dais_15641
Stamenković T, Ranđelović M, Dinić I, Mančić L, Lojpur V. Yb3+/Tm3+ doped SrGd2O4 as photoluminescent and photocatalytic material. in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia. 2023;:45-45.
https://hdl.handle.net/21.15107/rcub_dais_15641 .
Stamenković, Tijana, Ranđelović, Marjan, Dinić, Ivana, Mančić, Lidija, Lojpur, Vesna, "Yb3+/Tm3+ doped SrGd2O4 as photoluminescent and photocatalytic material" in Program and the Book of abstracts / Twenty-first Young Researchers' Conference Materials Science and Engineering, November 29 – December 1, 2023, Belgrade, Serbia (2023):45-45,
https://hdl.handle.net/21.15107/rcub_dais_15641 .

Application of Minkowski layer for microalloyed alumo-silicate ceramics grains fractal analysis

Purenović, Jelena; Mitić, Vojislav V.; Kocić, Ljubiša; Ranđelović, Marjan; Matović, Branko; Purenović, Milovan

(Belgrade : Serbian Ceramic Society, 2013)

TY  - CONF
AU  - Purenović, Jelena
AU  - Mitić, Vojislav V.
AU  - Kocić, Ljubiša
AU  - Ranđelović, Marjan
AU  - Matović, Branko
AU  - Purenović, Milovan
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/421
AB  - Porous aluminium-silicate ceramics, modified by alloying with magnesium and microalloying with alluminium belongs to a group of advanced multifunctional ceramics materials. This multiphase solid-solid system has predominantly amorphous microstructure and micro morphology. Intergranular and interphase areas are very complex, because they represent areas, where numbered processes and interactions take place, making new boundaries and regions with fractal nature. Solid contact between grains is actually very complex configuration of microcontacts with fractal nature. Fractal analysis of intergranular microstructure has included application of Minkowski layer. This layer is in correlation with fractal dimension, and defines grains contact probability. It represents convex layer of grains contour roughness and irregularity. Considering the fractal nature of intergranular contacts, it is possible to establish correlation between material electrical properties and fractal analysis, as a tool for future correlation with microstructure characterization.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
T1  - Application of Minkowski layer for microalloyed alumo-silicate ceramics grains fractal analysis
SP  - 43
EP  - 43
UR  - https://hdl.handle.net/21.15107/rcub_dais_421
ER  - 
@conference{
author = "Purenović, Jelena and Mitić, Vojislav V. and Kocić, Ljubiša and Ranđelović, Marjan and Matović, Branko and Purenović, Milovan",
year = "2013",
abstract = "Porous aluminium-silicate ceramics, modified by alloying with magnesium and microalloying with alluminium belongs to a group of advanced multifunctional ceramics materials. This multiphase solid-solid system has predominantly amorphous microstructure and micro morphology. Intergranular and interphase areas are very complex, because they represent areas, where numbered processes and interactions take place, making new boundaries and regions with fractal nature. Solid contact between grains is actually very complex configuration of microcontacts with fractal nature. Fractal analysis of intergranular microstructure has included application of Minkowski layer. This layer is in correlation with fractal dimension, and defines grains contact probability. It represents convex layer of grains contour roughness and irregularity. Considering the fractal nature of intergranular contacts, it is possible to establish correlation between material electrical properties and fractal analysis, as a tool for future correlation with microstructure characterization.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade",
title = "Application of Minkowski layer for microalloyed alumo-silicate ceramics grains fractal analysis",
pages = "43-43",
url = "https://hdl.handle.net/21.15107/rcub_dais_421"
}
Purenović, J., Mitić, V. V., Kocić, L., Ranđelović, M., Matović, B.,& Purenović, M.. (2013). Application of Minkowski layer for microalloyed alumo-silicate ceramics grains fractal analysis. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
Belgrade : Serbian Ceramic Society., 43-43.
https://hdl.handle.net/21.15107/rcub_dais_421
Purenović J, Mitić VV, Kocić L, Ranđelović M, Matović B, Purenović M. Application of Minkowski layer for microalloyed alumo-silicate ceramics grains fractal analysis. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade. 2013;:43-43.
https://hdl.handle.net/21.15107/rcub_dais_421 .
Purenović, Jelena, Mitić, Vojislav V., Kocić, Ljubiša, Ranđelović, Marjan, Matović, Branko, Purenović, Milovan, "Application of Minkowski layer for microalloyed alumo-silicate ceramics grains fractal analysis" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade (2013):43-43,
https://hdl.handle.net/21.15107/rcub_dais_421 .

Dielectric characterization of microalloyed alumo-silicate ceramics by using linear regression model

Purenović, Jelena; Mitić, Vojislav V.; Ranđelović, Marjan; Matović, Branko; Purenović, Milovan

(Belgrade : Serbian Ceramic Society, 2013)

TY  - CONF
AU  - Purenović, Jelena
AU  - Mitić, Vojislav V.
AU  - Ranđelović, Marjan
AU  - Matović, Branko
AU  - Purenović, Milovan
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/420
AB  - In this paper, dielectric characterization of porous alumo-silicate ceramics, modified by alloying with magnesium and microalloying with aluminum, was investigated. Microstructure investigations have revealed non-uniform and highly porous structure with broad distribution of grain size, specifically shaped grains and high degree of agglomeration. Complex multiphase system, as active microalloyed ceramics, has specific behavior under external electrical field influence. Dielectric properties (the changes of permittivity, electrical resistivity, dielectric losses and impedance) were measured in the frequency range 20 Hz – 1 MHz. All characteristics showed nonlinear distribution and complex functional dependences because of significant nonhomogeneity of active microalloyed ceramics. Values for permittivity ranged between 140 – 430. Order of magnitude for electrical resistivity was about 106 Ωm, for impedance 104 – 108 Ω, and loss tangent had values much greater than 0.05. Mathematical model of linear regression was applied on the dielectric characterization results. Consistency with experimental data was approved, since the values for correlation coefficient r and determination coefficient r2 were obtained near value 1.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
T1  - Dielectric characterization of microalloyed alumo-silicate ceramics by using linear regression model
SP  - 42
EP  - 42
UR  - https://hdl.handle.net/21.15107/rcub_dais_420
ER  - 
@conference{
author = "Purenović, Jelena and Mitić, Vojislav V. and Ranđelović, Marjan and Matović, Branko and Purenović, Milovan",
year = "2013",
abstract = "In this paper, dielectric characterization of porous alumo-silicate ceramics, modified by alloying with magnesium and microalloying with aluminum, was investigated. Microstructure investigations have revealed non-uniform and highly porous structure with broad distribution of grain size, specifically shaped grains and high degree of agglomeration. Complex multiphase system, as active microalloyed ceramics, has specific behavior under external electrical field influence. Dielectric properties (the changes of permittivity, electrical resistivity, dielectric losses and impedance) were measured in the frequency range 20 Hz – 1 MHz. All characteristics showed nonlinear distribution and complex functional dependences because of significant nonhomogeneity of active microalloyed ceramics. Values for permittivity ranged between 140 – 430. Order of magnitude for electrical resistivity was about 106 Ωm, for impedance 104 – 108 Ω, and loss tangent had values much greater than 0.05. Mathematical model of linear regression was applied on the dielectric characterization results. Consistency with experimental data was approved, since the values for correlation coefficient r and determination coefficient r2 were obtained near value 1.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade",
title = "Dielectric characterization of microalloyed alumo-silicate ceramics by using linear regression model",
pages = "42-42",
url = "https://hdl.handle.net/21.15107/rcub_dais_420"
}
Purenović, J., Mitić, V. V., Ranđelović, M., Matović, B.,& Purenović, M.. (2013). Dielectric characterization of microalloyed alumo-silicate ceramics by using linear regression model. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
Belgrade : Serbian Ceramic Society., 42-42.
https://hdl.handle.net/21.15107/rcub_dais_420
Purenović J, Mitić VV, Ranđelović M, Matović B, Purenović M. Dielectric characterization of microalloyed alumo-silicate ceramics by using linear regression model. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade. 2013;:42-42.
https://hdl.handle.net/21.15107/rcub_dais_420 .
Purenović, Jelena, Mitić, Vojislav V., Ranđelović, Marjan, Matović, Branko, Purenović, Milovan, "Dielectric characterization of microalloyed alumo-silicate ceramics by using linear regression model" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade (2013):42-42,
https://hdl.handle.net/21.15107/rcub_dais_420 .