Radenković, Milena

Link to this page

Authority KeyName Variants
f0d5c47f-672f-488d-b730-c5a48a4f72b3
  • Radenković, Milena (2)
Projects

Author's Bibliography

Applications of biomaterials in regenerative medicine and tissue engineering – concepts and perspective

Najman, Stevo; Stojanović, Sanja; Živković, Jelena; Najdanović, Jelena; Radenković, Milena; Vasiljević, Perica; Ignjatović, Nenad

(Banja Luka : Academy of Sciences and Arts of the Republic of Srpska, 2023)

TY  - JOUR
AU  - Najman, Stevo
AU  - Stojanović, Sanja
AU  - Živković, Jelena
AU  - Najdanović, Jelena
AU  - Radenković, Milena
AU  - Vasiljević, Perica
AU  - Ignjatović, Nenad
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14751
AB  - Regenerative medicine (RM) exploits the innate potential of the human body to effectively repair and regenerate damaged tissues and organs with the help of various biomaterials. Tissue engineering (TE) makes it possible to replace damaged tissues and organs with new ones. Research in the field of biomaterials has significantly improved the area of RM and TE. Biomaterials are used as orthopedic, dental, cardiovascular implants, medical devices, in the fields of reconstructive and regenerative medicine, among others. Important preconditions for the biomaterial to be used for implantation are its biocompatibility and biofunctionality. Biomaterials should enable adhesion, migration, proliferation and differentiation of cells. The biological properties of biomaterials are a reflection of their physicochemical properties, such as internal architecture, surface characteristics and charge. Biomaterials used in tissue regeneration should mimic the natural structure of the extracellular matrix and represent a physiological microenvironment for normal cellular functions. These biomaterials should also have adequate biodegradability properties to facilitate the formation and growth of new tissue. Biomaterials for use in RM can be of natural or synthetic origin, polymers by structural properties, ceramic and composite type, and based on bioreactivity they can be bioinert or bioactive. In RM and TE, polymers of different classes, natural and synthetic, are used, which can be made as intelligent materials. The structure of hydrogels in the form of a porous network represents a good matrix for cell activity. Ceramic biomaterials based on hydroxyapatite (HAp) are selected for use in RM and TE, especially solid tissues. Properties, such as composition, particle size, material shape, porosity, surface charge, topography, etc., are relevant for the proper use of HAp materials. The properties of HAp allow modification of its structure, surface, particle size design at the micro and nano level, hybridization with polymers, metals, etc. which is very important for its applications. Designed micro-nanohybrid HAp structure is most similar to the bone structure, making the cell environment closest to natural. Bone tissue engineering (BTE) is based on the combined use of cells, osteostimulating (osteoinductive) factors and biomaterials as a scaffolds and carriers for bone regeneration and defects repair. In BTE adipose-derived mesenchymal stem cells (ADSCs) are often used that are induced in vitro towards osteogenic cells or endothelial cells, and freshly isolated stromal vascular fraction can also be used. Blood components (PRP, blood plasma or blood clot) can be included in the composition of the BTE construct as a source of osteoinductive factors. In vitro models and methods were used to examine the biocompatibility, immunomodulatory and regenerative potential of biomaterials, as well as their influence on cellular functions. After in vitro methods, and before clinical studies, various in vivo animal models are used to examine the regenerative potential of biomaterials, such as subcutaneous implantations and bone defects in tibia, femur and calvaria in experimental animals (mouse, rat, rabbit).
PB  - Banja Luka : Academy of Sciences and Arts of the Republic of Srpska
T2  - Contemporary Materials
T1  - Applications of biomaterials in regenerative medicine and tissue engineering – concepts and perspective
VL  - 14
IS  - 1
DO  - 10.7251/COMEN2301001N
UR  - https://hdl.handle.net/21.15107/rcub_dais_14751
ER  - 
@article{
author = "Najman, Stevo and Stojanović, Sanja and Živković, Jelena and Najdanović, Jelena and Radenković, Milena and Vasiljević, Perica and Ignjatović, Nenad",
year = "2023",
abstract = "Regenerative medicine (RM) exploits the innate potential of the human body to effectively repair and regenerate damaged tissues and organs with the help of various biomaterials. Tissue engineering (TE) makes it possible to replace damaged tissues and organs with new ones. Research in the field of biomaterials has significantly improved the area of RM and TE. Biomaterials are used as orthopedic, dental, cardiovascular implants, medical devices, in the fields of reconstructive and regenerative medicine, among others. Important preconditions for the biomaterial to be used for implantation are its biocompatibility and biofunctionality. Biomaterials should enable adhesion, migration, proliferation and differentiation of cells. The biological properties of biomaterials are a reflection of their physicochemical properties, such as internal architecture, surface characteristics and charge. Biomaterials used in tissue regeneration should mimic the natural structure of the extracellular matrix and represent a physiological microenvironment for normal cellular functions. These biomaterials should also have adequate biodegradability properties to facilitate the formation and growth of new tissue. Biomaterials for use in RM can be of natural or synthetic origin, polymers by structural properties, ceramic and composite type, and based on bioreactivity they can be bioinert or bioactive. In RM and TE, polymers of different classes, natural and synthetic, are used, which can be made as intelligent materials. The structure of hydrogels in the form of a porous network represents a good matrix for cell activity. Ceramic biomaterials based on hydroxyapatite (HAp) are selected for use in RM and TE, especially solid tissues. Properties, such as composition, particle size, material shape, porosity, surface charge, topography, etc., are relevant for the proper use of HAp materials. The properties of HAp allow modification of its structure, surface, particle size design at the micro and nano level, hybridization with polymers, metals, etc. which is very important for its applications. Designed micro-nanohybrid HAp structure is most similar to the bone structure, making the cell environment closest to natural. Bone tissue engineering (BTE) is based on the combined use of cells, osteostimulating (osteoinductive) factors and biomaterials as a scaffolds and carriers for bone regeneration and defects repair. In BTE adipose-derived mesenchymal stem cells (ADSCs) are often used that are induced in vitro towards osteogenic cells or endothelial cells, and freshly isolated stromal vascular fraction can also be used. Blood components (PRP, blood plasma or blood clot) can be included in the composition of the BTE construct as a source of osteoinductive factors. In vitro models and methods were used to examine the biocompatibility, immunomodulatory and regenerative potential of biomaterials, as well as their influence on cellular functions. After in vitro methods, and before clinical studies, various in vivo animal models are used to examine the regenerative potential of biomaterials, such as subcutaneous implantations and bone defects in tibia, femur and calvaria in experimental animals (mouse, rat, rabbit).",
publisher = "Banja Luka : Academy of Sciences and Arts of the Republic of Srpska",
journal = "Contemporary Materials",
title = "Applications of biomaterials in regenerative medicine and tissue engineering – concepts and perspective",
volume = "14",
number = "1",
doi = "10.7251/COMEN2301001N",
url = "https://hdl.handle.net/21.15107/rcub_dais_14751"
}
Najman, S., Stojanović, S., Živković, J., Najdanović, J., Radenković, M., Vasiljević, P.,& Ignjatović, N.. (2023). Applications of biomaterials in regenerative medicine and tissue engineering – concepts and perspective. in Contemporary Materials
Banja Luka : Academy of Sciences and Arts of the Republic of Srpska., 14(1).
https://doi.org/10.7251/COMEN2301001N
https://hdl.handle.net/21.15107/rcub_dais_14751
Najman S, Stojanović S, Živković J, Najdanović J, Radenković M, Vasiljević P, Ignjatović N. Applications of biomaterials in regenerative medicine and tissue engineering – concepts and perspective. in Contemporary Materials. 2023;14(1).
doi:10.7251/COMEN2301001N
https://hdl.handle.net/21.15107/rcub_dais_14751 .
Najman, Stevo, Stojanović, Sanja, Živković, Jelena, Najdanović, Jelena, Radenković, Milena, Vasiljević, Perica, Ignjatović, Nenad, "Applications of biomaterials in regenerative medicine and tissue engineering – concepts and perspective" in Contemporary Materials, 14, no. 1 (2023),
https://doi.org/10.7251/COMEN2301001N .,
https://hdl.handle.net/21.15107/rcub_dais_14751 .

Одговор ткива на различите имплантиране биоматеријале у моделима in vivo

Živković, Jelena M.; Radenković, Milena; Stojanović, Sanja; Najdanović, Jelena; Cvetković, Vladimir; Vukelić Nikolić, Marija; Vučković, Ivica; Ignjatović, Nenad; Najman, Stevo

(Banja Luka : ANURS, 2022)

TY  - CONF
AU  - Živković, Jelena M.
AU  - Radenković, Milena
AU  - Stojanović, Sanja
AU  - Najdanović, Jelena
AU  - Cvetković, Vladimir
AU  - Vukelić Nikolić, Marija
AU  - Vučković, Ivica
AU  - Ignjatović, Nenad
AU  - Najman, Stevo
PY  - 2022
UR  - http://informatikaubiomedicini.ekonferencije.com/presentation/paperpresentation/679/6441
UR  - https://dais.sanu.ac.rs/123456789/13655
AB  - Данашњи приступ репарацији и регенерацији ткива често подразумева употребу различитих биоматеријала, самостално или у комбинацији са ћелијама и/или факторима раста. Сви материјали, без обзира да ли су природног порекла или синтетисани, изазивају реакцију околног ткива након имплантације. Ова реакција подразумева низ повезаних догађаја од којих коначно зависи да ли ће имплантирани материјал бити добро прихваћен и обавити своју примарну улогу. Сваки материјал за организам представља страно тело и иницира пролазну инфламаторну реакцију, чија дужина трајања и интензитет умногоме одређују његову даљу судбину. На то утиче хемијски састав материјала, величина и облик његових гранула, порозност, компактност, као и степен биодеградабилности. Тако, судбина материјала може кренути једним од два пута: ка доброј интеграцији са околним ткивом, подршци ћелијама са којима интерагује и, код биодеградабилних материјала, замени здравим, функционалним ткивом, или ће пак изазвати снажан и продужен инфламаторни одговор који резултује потпуном изолацијом материјала од остатка ткива дебелом фиброзном капсулом. In vivo испитивања одговора ткива на имплантирани биоматеријал подразумевају истраживања на различитим анималним моделима и у различитим ткивима, са ортопичним или ектопичним имплантацијама. У овом раду ће бити дат преглед наших in vivo истраживања на различитим моделима имплантација. Користили смо ортопичне моделе за формирање кости код пацова и кунића и моделе супкутаних имплантација различитих биоматеријала мишевима и пацовима. За анализу импланата и околног ткива у временским периодима раног и касног одговора коришћене су бројне методе као што су хистолошка бојења, хистоморфометрија, имунохистохемија, СЕМ, радиографске методе, анализа специфичне експресије гена и друге. In vivo анимални модели у сврху претклиничких испитивања важни су за добијање смерница за клиничку примену.
AB  - Today's approach to tissue repair and regeneration often involves application of different biomaterials, alone or in combination with cells and/or growth factors. All materials, regardless of whether they are of natural origin or synthesized, cause a reaction in the surrounding tissue after implantation. This reaction involves a series of related events on which ultimately depends whether the implanted material will be well accepted and perform its primary role. Each material represents a foreign body for the organism and initiates a transient inflammatory reaction, the duration and intensity of which largely determine materil's further fate. Inflammatory reaction is influenced by material's chemical composition, the size and shape of its granules, porosity, compactness, as well as the degree of material's biodegradability. Thus, the fate of the material can go one of two ways: towards good integration with the surrounding tissue, supporting the cells with which it interacts and, in the case of biodegradable materials, replacement by healthy, functional tissue, or it will cause a strong inflammatory response resulting in the complete isolation of the material from the rest of the tissue with thick fibrous capsule. In vivo research of tissue response to implanted biomaterial involves investigation in different animal models and in different tissues, with orthotopic or ectopic implantations. We used orthotopic models for bone formation in rats and rabbits and models of subcutaneous implantation of various biomaterials in mice and rats. Numerous methods were used for the analysis of implants and surrounding tissue in the time periods of early and late response, such as histological staining, histomorphometry, immunohistochemistry, SEM, radiographic methods, analysis of specific gene expression and others. In vivo animal models for the purpose of preclinical studies are important in order to obtain guidelines for clinical application.
PB  - Banja Luka : ANURS
C3  - Contemporary Materials 2022 - Савремени материјали, 8-9. 9. 2022.
T1  - Одговор ткива на различите имплантиране биоматеријале у моделима in vivo
T1  - Tissue response to different implanted biomaterials in models in vivo
UR  - https://hdl.handle.net/21.15107/rcub_dais_13655
ER  - 
@conference{
author = "Živković, Jelena M. and Radenković, Milena and Stojanović, Sanja and Najdanović, Jelena and Cvetković, Vladimir and Vukelić Nikolić, Marija and Vučković, Ivica and Ignjatović, Nenad and Najman, Stevo",
year = "2022",
abstract = "Данашњи приступ репарацији и регенерацији ткива често подразумева употребу различитих биоматеријала, самостално или у комбинацији са ћелијама и/или факторима раста. Сви материјали, без обзира да ли су природног порекла или синтетисани, изазивају реакцију околног ткива након имплантације. Ова реакција подразумева низ повезаних догађаја од којих коначно зависи да ли ће имплантирани материјал бити добро прихваћен и обавити своју примарну улогу. Сваки материјал за организам представља страно тело и иницира пролазну инфламаторну реакцију, чија дужина трајања и интензитет умногоме одређују његову даљу судбину. На то утиче хемијски састав материјала, величина и облик његових гранула, порозност, компактност, као и степен биодеградабилности. Тако, судбина материјала може кренути једним од два пута: ка доброј интеграцији са околним ткивом, подршци ћелијама са којима интерагује и, код биодеградабилних материјала, замени здравим, функционалним ткивом, или ће пак изазвати снажан и продужен инфламаторни одговор који резултује потпуном изолацијом материјала од остатка ткива дебелом фиброзном капсулом. In vivo испитивања одговора ткива на имплантирани биоматеријал подразумевају истраживања на различитим анималним моделима и у различитим ткивима, са ортопичним или ектопичним имплантацијама. У овом раду ће бити дат преглед наших in vivo истраживања на различитим моделима имплантација. Користили смо ортопичне моделе за формирање кости код пацова и кунића и моделе супкутаних имплантација различитих биоматеријала мишевима и пацовима. За анализу импланата и околног ткива у временским периодима раног и касног одговора коришћене су бројне методе као што су хистолошка бојења, хистоморфометрија, имунохистохемија, СЕМ, радиографске методе, анализа специфичне експресије гена и друге. In vivo анимални модели у сврху претклиничких испитивања важни су за добијање смерница за клиничку примену., Today's approach to tissue repair and regeneration often involves application of different biomaterials, alone or in combination with cells and/or growth factors. All materials, regardless of whether they are of natural origin or synthesized, cause a reaction in the surrounding tissue after implantation. This reaction involves a series of related events on which ultimately depends whether the implanted material will be well accepted and perform its primary role. Each material represents a foreign body for the organism and initiates a transient inflammatory reaction, the duration and intensity of which largely determine materil's further fate. Inflammatory reaction is influenced by material's chemical composition, the size and shape of its granules, porosity, compactness, as well as the degree of material's biodegradability. Thus, the fate of the material can go one of two ways: towards good integration with the surrounding tissue, supporting the cells with which it interacts and, in the case of biodegradable materials, replacement by healthy, functional tissue, or it will cause a strong inflammatory response resulting in the complete isolation of the material from the rest of the tissue with thick fibrous capsule. In vivo research of tissue response to implanted biomaterial involves investigation in different animal models and in different tissues, with orthotopic or ectopic implantations. We used orthotopic models for bone formation in rats and rabbits and models of subcutaneous implantation of various biomaterials in mice and rats. Numerous methods were used for the analysis of implants and surrounding tissue in the time periods of early and late response, such as histological staining, histomorphometry, immunohistochemistry, SEM, radiographic methods, analysis of specific gene expression and others. In vivo animal models for the purpose of preclinical studies are important in order to obtain guidelines for clinical application.",
publisher = "Banja Luka : ANURS",
journal = "Contemporary Materials 2022 - Савремени материјали, 8-9. 9. 2022.",
title = "Одговор ткива на различите имплантиране биоматеријале у моделима in vivo, Tissue response to different implanted biomaterials in models in vivo",
url = "https://hdl.handle.net/21.15107/rcub_dais_13655"
}
Živković, J. M., Radenković, M., Stojanović, S., Najdanović, J., Cvetković, V., Vukelić Nikolić, M., Vučković, I., Ignjatović, N.,& Najman, S.. (2022). Одговор ткива на различите имплантиране биоматеријале у моделима in vivo. in Contemporary Materials 2022 - Савремени материјали, 8-9. 9. 2022.
Banja Luka : ANURS..
https://hdl.handle.net/21.15107/rcub_dais_13655
Živković JM, Radenković M, Stojanović S, Najdanović J, Cvetković V, Vukelić Nikolić M, Vučković I, Ignjatović N, Najman S. Одговор ткива на различите имплантиране биоматеријале у моделима in vivo. in Contemporary Materials 2022 - Савремени материјали, 8-9. 9. 2022.. 2022;.
https://hdl.handle.net/21.15107/rcub_dais_13655 .
Živković, Jelena M., Radenković, Milena, Stojanović, Sanja, Najdanović, Jelena, Cvetković, Vladimir, Vukelić Nikolić, Marija, Vučković, Ivica, Ignjatović, Nenad, Najman, Stevo, "Одговор ткива на различите имплантиране биоматеријале у моделима in vivo" in Contemporary Materials 2022 - Савремени материјали, 8-9. 9. 2022. (2022),
https://hdl.handle.net/21.15107/rcub_dais_13655 .