Rac, Vladislav

Link to this page

Authority KeyName Variants
orcid::0000-0002-2790-3950
  • Rac, Vladislav (17)
Projects
Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200116 (University of Belgrade, Faculty of Agriculture)
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200162 (University of Belgrade, Faculty of Physics) Bilateral cooperation program between the Republic of Serbia and the Republic of Slovenia “Nanostructured and mesoporous functional materials with enhanced solar light driven photocatalytic activity” for 2018–2019
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) Chinese-Serbian project [451-03-1205/2021-09]
Croatian Science Foundation [IP-2016-06-224] Croatian Science Foundation, IP-2016- 06-224
Croatian-Serbian bilateral project 2016/17 Oxide-based environmentally-friendly porous materials for genotoxic substances removal
Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing Lithium-ion batteries and fuel cells - research and development
Nanostructured multifunctional materials and nanocomposites Providence Health Care [40861UH, 451-03-01963/2017-09/18]

Author's Bibliography

Photocatalytic degradation of bisphenol A in aqueous solution using TiO2/clinoptilolite hybrid photocatalyst

Stojanović, Srna; Rac, Vladislav; Mojsilović, Kristina; Vasilić, Rastko; Marković, Smilja; Damjanović Vasilić, Ljiljana

(2023)

TY  - JOUR
AU  - Stojanović, Srna
AU  - Rac, Vladislav
AU  - Mojsilović, Kristina
AU  - Vasilić, Rastko
AU  - Marković, Smilja
AU  - Damjanović Vasilić, Ljiljana
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/15132
AB  - Photocatalytic degradation of bisphenol A (BPA) was investigated using commercial TiO2 P25 nanoparticles supported on natural zeolite clinoptilolite (Cli). Employing ultrasound assisted solid-state dispersion method hybrid photocatalyst containing 20 wt% of TiO2, marked TCli-20, was prepared. The structural, morphological and surface properties, and particle size distribution of TCli-20 were studied by X-ray powder diffraction, Fourier transform infrared spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, scanning electron microscopy with energy dispersive spectroscopy, atomic force microscopy, Brunner-Emmet-Teller method and laser diffraction. The results revealed a successful loading of TiO2 P25 nanoparticles on Cli surface and the preservation of both zeolitic structure and optical properties of TiO2. The influence of catalyst dose, pH value and the addition of hydrogen peroxide (H2O2) was evaluated. The optimal reaction conditions were 2 g/L of catalyst at near-neutral conditions (pH = 6.4) for complete BPA (5 mg/L) photodegradation after 180 min of exposure to simulated solar light. The addition of H2O2 was beneficial for the degradation process and led to the removal of BPA after 120 min of irradiation. BPA removal (60% for 180 min of irradiation) was reduced when TCli-20 was tested in bottled drinking water due to the presence of bicarbonate ions which acted as scavengers for hydroxyl radicals. Even though the photocatalytic activity of TCli-20 decreased after several cycles of usage, 70% of BPA was still successfully degraded during the fourth cycle. The reusability study showed easy separation, stability and good photocatalytic ability of investigated cost-effective hybrid photocatalyst. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
T2  - Environmental Science and Pollution Research
T1  - Photocatalytic degradation of bisphenol A in aqueous solution using TiO2/clinoptilolite hybrid photocatalyst
SP  - 84046
EP  - 84060
VL  - 30
DO  - 10.1007/s11356-023-28397-w
UR  - https://hdl.handle.net/21.15107/rcub_dais_15132
ER  - 
@article{
author = "Stojanović, Srna and Rac, Vladislav and Mojsilović, Kristina and Vasilić, Rastko and Marković, Smilja and Damjanović Vasilić, Ljiljana",
year = "2023",
abstract = "Photocatalytic degradation of bisphenol A (BPA) was investigated using commercial TiO2 P25 nanoparticles supported on natural zeolite clinoptilolite (Cli). Employing ultrasound assisted solid-state dispersion method hybrid photocatalyst containing 20 wt% of TiO2, marked TCli-20, was prepared. The structural, morphological and surface properties, and particle size distribution of TCli-20 were studied by X-ray powder diffraction, Fourier transform infrared spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, scanning electron microscopy with energy dispersive spectroscopy, atomic force microscopy, Brunner-Emmet-Teller method and laser diffraction. The results revealed a successful loading of TiO2 P25 nanoparticles on Cli surface and the preservation of both zeolitic structure and optical properties of TiO2. The influence of catalyst dose, pH value and the addition of hydrogen peroxide (H2O2) was evaluated. The optimal reaction conditions were 2 g/L of catalyst at near-neutral conditions (pH = 6.4) for complete BPA (5 mg/L) photodegradation after 180 min of exposure to simulated solar light. The addition of H2O2 was beneficial for the degradation process and led to the removal of BPA after 120 min of irradiation. BPA removal (60% for 180 min of irradiation) was reduced when TCli-20 was tested in bottled drinking water due to the presence of bicarbonate ions which acted as scavengers for hydroxyl radicals. Even though the photocatalytic activity of TCli-20 decreased after several cycles of usage, 70% of BPA was still successfully degraded during the fourth cycle. The reusability study showed easy separation, stability and good photocatalytic ability of investigated cost-effective hybrid photocatalyst. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.",
journal = "Environmental Science and Pollution Research",
title = "Photocatalytic degradation of bisphenol A in aqueous solution using TiO2/clinoptilolite hybrid photocatalyst",
pages = "84046-84060",
volume = "30",
doi = "10.1007/s11356-023-28397-w",
url = "https://hdl.handle.net/21.15107/rcub_dais_15132"
}
Stojanović, S., Rac, V., Mojsilović, K., Vasilić, R., Marković, S.,& Damjanović Vasilić, L.. (2023). Photocatalytic degradation of bisphenol A in aqueous solution using TiO2/clinoptilolite hybrid photocatalyst. in Environmental Science and Pollution Research, 30, 84046-84060.
https://doi.org/10.1007/s11356-023-28397-w
https://hdl.handle.net/21.15107/rcub_dais_15132
Stojanović S, Rac V, Mojsilović K, Vasilić R, Marković S, Damjanović Vasilić L. Photocatalytic degradation of bisphenol A in aqueous solution using TiO2/clinoptilolite hybrid photocatalyst. in Environmental Science and Pollution Research. 2023;30:84046-84060.
doi:10.1007/s11356-023-28397-w
https://hdl.handle.net/21.15107/rcub_dais_15132 .
Stojanović, Srna, Rac, Vladislav, Mojsilović, Kristina, Vasilić, Rastko, Marković, Smilja, Damjanović Vasilić, Ljiljana, "Photocatalytic degradation of bisphenol A in aqueous solution using TiO2/clinoptilolite hybrid photocatalyst" in Environmental Science and Pollution Research, 30 (2023):84046-84060,
https://doi.org/10.1007/s11356-023-28397-w .,
https://hdl.handle.net/21.15107/rcub_dais_15132 .
2
2

Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)

Rajić, Vladimir; Marković, Smilja; Popović, M.; Novaković, M.; Veselinović, Ljiljana; Stojković Simatović, Ivana; Škapin, Srečo Davor; Stojadinović, S.; Rac, Vladislav

(Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, 2023)

TY  - CONF
AU  - Rajić, Vladimir
AU  - Marković, Smilja
AU  - Popović, M.
AU  - Novaković, M.
AU  - Veselinović, Ljiljana
AU  - Stojković Simatović, Ivana
AU  - Škapin, Srečo Davor
AU  - Stojadinović, S.
AU  - Rac, Vladislav
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14868
AB  - Zink oxide-based materials have a great potential to be applied in photo and electro catalysts, opto-electronic (indoor illumination, LED), etc. Attractiveness of ZnO is attributed to wide bandgap energy at room temperature (3.37 eV), high electron mobility and transfer efficiency (115-155 cm2·V-1·s-1), large exciton binding energy (60 meV), intrinsic stability, nontoxicity, environmental compatibility and also, simple and not expensive synthesis procedure. A lot of different approaches can be used to modify the bandgap (i.e. optical absorption) of ZnO materials: metal and nonmetal ion doping, hydrogenation, the incorporation of crystalline defects in the form of V and I, modification of particles morphology and surface topology, etc.
In this study, eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped ZnO nanoparticles with 5, 10, 15 and 20 at.% of Fe (Zn1-xFeyO(1-x+1.5y)). The influence of different amount of Fe substituted Zn in ZnO on the crystal structure, morphological, textural, and optical properties as well as on functionality of ZnO particles was investigated. The crystal structure and phase purity of the Zn1-xFeyO(1-x+1.5y) particles were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Effects of the Fe3+ amount on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and nitrogen adsorption–desorption isotherm, respectively. Optical properties were studied using UV-Vis diffuse reflectance and photoluminescence spectroscopy. Functionality of ZnO particles was studied due to their photocatalytic and electrochemical activities. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. Electrochemical behavior of the ZnO samples as anode material was evaluated by linear sweep voltammetry in 0.5 M Na2SO4 electrolyte.
PB  - Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade
C3  - Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia
T1  - Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)
SP  - 34
EP  - 34
UR  - https://hdl.handle.net/21.15107/rcub_dais_14868
ER  - 
@conference{
author = "Rajić, Vladimir and Marković, Smilja and Popović, M. and Novaković, M. and Veselinović, Ljiljana and Stojković Simatović, Ivana and Škapin, Srečo Davor and Stojadinović, S. and Rac, Vladislav",
year = "2023",
abstract = "Zink oxide-based materials have a great potential to be applied in photo and electro catalysts, opto-electronic (indoor illumination, LED), etc. Attractiveness of ZnO is attributed to wide bandgap energy at room temperature (3.37 eV), high electron mobility and transfer efficiency (115-155 cm2·V-1·s-1), large exciton binding energy (60 meV), intrinsic stability, nontoxicity, environmental compatibility and also, simple and not expensive synthesis procedure. A lot of different approaches can be used to modify the bandgap (i.e. optical absorption) of ZnO materials: metal and nonmetal ion doping, hydrogenation, the incorporation of crystalline defects in the form of V and I, modification of particles morphology and surface topology, etc.
In this study, eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped ZnO nanoparticles with 5, 10, 15 and 20 at.% of Fe (Zn1-xFeyO(1-x+1.5y)). The influence of different amount of Fe substituted Zn in ZnO on the crystal structure, morphological, textural, and optical properties as well as on functionality of ZnO particles was investigated. The crystal structure and phase purity of the Zn1-xFeyO(1-x+1.5y) particles were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Effects of the Fe3+ amount on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and nitrogen adsorption–desorption isotherm, respectively. Optical properties were studied using UV-Vis diffuse reflectance and photoluminescence spectroscopy. Functionality of ZnO particles was studied due to their photocatalytic and electrochemical activities. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. Electrochemical behavior of the ZnO samples as anode material was evaluated by linear sweep voltammetry in 0.5 M Na2SO4 electrolyte.",
publisher = "Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade",
journal = "Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia",
title = "Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)",
pages = "34-34",
url = "https://hdl.handle.net/21.15107/rcub_dais_14868"
}
Rajić, V., Marković, S., Popović, M., Novaković, M., Veselinović, L., Stojković Simatović, I., Škapin, S. D., Stojadinović, S.,& Rac, V.. (2023). Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y). in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia
Belgrade : Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade., 34-34.
https://hdl.handle.net/21.15107/rcub_dais_14868
Rajić V, Marković S, Popović M, Novaković M, Veselinović L, Stojković Simatović I, Škapin SD, Stojadinović S, Rac V. Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y). in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia. 2023;:34-34.
https://hdl.handle.net/21.15107/rcub_dais_14868 .
Rajić, Vladimir, Marković, Smilja, Popović, M., Novaković, M., Veselinović, Ljiljana, Stojković Simatović, Ivana, Škapin, Srečo Davor, Stojadinović, S., Rac, Vladislav, "Crystal structure, optical properties and photo/electrocatalytic activity of nanostructured Zn1-xFeyO(1-x+1.5y)" in Book of abstracts / IX International School and Conference on Photonics PHOTONICA2023 with joint events: Understanding interaction light - biological surfaces possibility for new electronic materials and devices & Biological and bioinspired structures for multispectral surveillance & Quantum sensing integration within microfluidic Lab-on-a Chips for biomedical applications, August 28 - September 01, 2023, Belgrade, Serbia (2023):34-34,
https://hdl.handle.net/21.15107/rcub_dais_14868 .

Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting

Aleksić, Katarina; Stojković Simatović, Ivana; Stanković, Ana; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Radmilović, Nadežda; Rajić, Vladimir; Škapin, Srečo Davor; Mančić, Lidija; Marković, Smilja

(Frontiers Media SA, 2023)

TY  - JOUR
AU  - Aleksić, Katarina
AU  - Stojković Simatović, Ivana
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Radmilović, Nadežda
AU  - Rajić, Vladimir
AU  - Škapin, Srečo Davor
AU  - Mančić, Lidija
AU  - Marković, Smilja
PY  - 2023
UR  - https://dais.sanu.ac.rs/123456789/14554
AB  - Catalytic materials are the greatest challenge for the commercial application of water electrolysis (WEs) and fuel cells (FCs) as clean energy technologies. There is a need to find an alternative to expensive and unavailable platinum group metal (PGM) catalysts. This study aimed to reduce the cost of PGM materials by replacing Ru with RuO2 and lowering the amount of RuO2 by adding abundant and multifunctional ZnO. A ZnO@RuO2 composite in a 10:1 molar ratio was synthesized by microwave processing of a precipitate as a green, low-cost, and fast method, and then annealed at 300°C and 600°C to improve the catalytic properties. The physicochemical properties of the ZnO@RuO2 composites were investigated by X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The electrochemical activity of the samples was investigated by linear sweep voltammetry in acidic and alkaline electrolytes. We observed good bifunctional catalytic activity of the ZnO@RuO2 composites toward HER and OER in both electrolytes. The improved bifunctional catalytic activity of the ZnO@RuO2 composite by annealing was discussed and attributed to the reduced number of bulk oxygen vacancies and the increased number of established heterojunctions.
PB  - Frontiers Media SA
T2  - Frontiers in Chemistry
T1  - Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting
VL  - 11
DO  - 10.3389/fchem.2023.1173910
UR  - https://hdl.handle.net/21.15107/rcub_dais_14554
ER  - 
@article{
author = "Aleksić, Katarina and Stojković Simatović, Ivana and Stanković, Ana and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Radmilović, Nadežda and Rajić, Vladimir and Škapin, Srečo Davor and Mančić, Lidija and Marković, Smilja",
year = "2023",
abstract = "Catalytic materials are the greatest challenge for the commercial application of water electrolysis (WEs) and fuel cells (FCs) as clean energy technologies. There is a need to find an alternative to expensive and unavailable platinum group metal (PGM) catalysts. This study aimed to reduce the cost of PGM materials by replacing Ru with RuO2 and lowering the amount of RuO2 by adding abundant and multifunctional ZnO. A ZnO@RuO2 composite in a 10:1 molar ratio was synthesized by microwave processing of a precipitate as a green, low-cost, and fast method, and then annealed at 300°C and 600°C to improve the catalytic properties. The physicochemical properties of the ZnO@RuO2 composites were investigated by X-ray powder diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The electrochemical activity of the samples was investigated by linear sweep voltammetry in acidic and alkaline electrolytes. We observed good bifunctional catalytic activity of the ZnO@RuO2 composites toward HER and OER in both electrolytes. The improved bifunctional catalytic activity of the ZnO@RuO2 composite by annealing was discussed and attributed to the reduced number of bulk oxygen vacancies and the increased number of established heterojunctions.",
publisher = "Frontiers Media SA",
journal = "Frontiers in Chemistry",
title = "Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting",
volume = "11",
doi = "10.3389/fchem.2023.1173910",
url = "https://hdl.handle.net/21.15107/rcub_dais_14554"
}
Aleksić, K., Stojković Simatović, I., Stanković, A., Veselinović, L., Stojadinović, S., Rac, V., Radmilović, N., Rajić, V., Škapin, S. D., Mančić, L.,& Marković, S.. (2023). Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting. in Frontiers in Chemistry
Frontiers Media SA., 11.
https://doi.org/10.3389/fchem.2023.1173910
https://hdl.handle.net/21.15107/rcub_dais_14554
Aleksić K, Stojković Simatović I, Stanković A, Veselinović L, Stojadinović S, Rac V, Radmilović N, Rajić V, Škapin SD, Mančić L, Marković S. Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting. in Frontiers in Chemistry. 2023;11.
doi:10.3389/fchem.2023.1173910
https://hdl.handle.net/21.15107/rcub_dais_14554 .
Aleksić, Katarina, Stojković Simatović, Ivana, Stanković, Ana, Veselinović, Ljiljana, Stojadinović, Stevan, Rac, Vladislav, Radmilović, Nadežda, Rajić, Vladimir, Škapin, Srečo Davor, Mančić, Lidija, Marković, Smilja, "Enhancement of ZnO@RuO2 bifunctional photo-electro catalytic activity toward water splitting" in Frontiers in Chemistry, 11 (2023),
https://doi.org/10.3389/fchem.2023.1173910 .,
https://hdl.handle.net/21.15107/rcub_dais_14554 .
1
2
2

Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study

Bosnar, Sanja; Rac, Vladislav; Stošić, Dušan; Travert, Arnaud; Postole, Georgeta; Auroux, Aline; Škapin, Srečo Davor; Damjanović-Vasilić, Ljiljana S.; Bronić, Josip; Du, Xuesen; Marković, Smilja; Pavlović, Vladimir B.; Rakić, Vesna M.

(2022)

TY  - JOUR
AU  - Bosnar, Sanja
AU  - Rac, Vladislav
AU  - Stošić, Dušan
AU  - Travert, Arnaud
AU  - Postole, Georgeta
AU  - Auroux, Aline
AU  - Škapin, Srečo Davor
AU  - Damjanović-Vasilić, Ljiljana S.
AU  - Bronić, Josip
AU  - Du, Xuesen
AU  - Marković, Smilja
AU  - Pavlović, Vladimir B.
AU  - Rakić, Vesna M.
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13631
AB  - Dual templating approach, using hexadecyltrimethylammonium bromide (CTAB), was employed in an attempt to synthesize hierarchical ZSM-5 zeolite. Amount of mesoporogen and the duration of aging of the precursor were varied. Majority of the synthesis routes resulted in phase separation, yielding separate ZSM-5 and amorphous mesoporous material. The relative amounts of the two phases were dependent on the CTAB amount ratio and also significantly on the duration of precursor aging before CTAB addition. One particular combination of the two factors led to the formation of a homogeneous hierarchical form of ZSM-5 with leafy morphology, consisting of intergrown thin crystalline sheets which formed flower-like structures. The hierarchical ZSM-5 possessed significant microporous (≈95 m2/g) and highly developed mesoporous surface (≈470 m2/g), with a relatively broad distribution of mesopore sizes (<20 nm). The acidity of all samples was studied in detail. Isothermal microcalorimetry/volumetry of ammonia adsorption provided quantitative data on the number and distribution of strength of acidic sites. In situ FTIR of pyridine and collidine adsorption was used to quantify Brønsted and Lewis acid sites, and to provide information on their location - in the micropores or mesopores/external surface. The hierarchical ZSM-5 possessed both Lewis and Brønsted acidity, with Brønsted sites located mainly in the micropores. All samples were fully characterized using XRD, low temperature nitrogen adsorption, FESEM and EDS. The synthetic route used for obtaining the ZSM-5 zeolite with flower-like morphology is a simple strategy for preparing hierarchical ZSM-5 forms targeting enhanced diffusivity and accessibility of catalytically active sites.
T2  - Microporous and Mesoporous Materials
T1  - Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study
SP  - 111534
VL  - 329
DO  - 10.1016/j.micromeso.2021.111534
UR  - https://hdl.handle.net/21.15107/rcub_dais_13631
ER  - 
@article{
author = "Bosnar, Sanja and Rac, Vladislav and Stošić, Dušan and Travert, Arnaud and Postole, Georgeta and Auroux, Aline and Škapin, Srečo Davor and Damjanović-Vasilić, Ljiljana S. and Bronić, Josip and Du, Xuesen and Marković, Smilja and Pavlović, Vladimir B. and Rakić, Vesna M.",
year = "2022",
abstract = "Dual templating approach, using hexadecyltrimethylammonium bromide (CTAB), was employed in an attempt to synthesize hierarchical ZSM-5 zeolite. Amount of mesoporogen and the duration of aging of the precursor were varied. Majority of the synthesis routes resulted in phase separation, yielding separate ZSM-5 and amorphous mesoporous material. The relative amounts of the two phases were dependent on the CTAB amount ratio and also significantly on the duration of precursor aging before CTAB addition. One particular combination of the two factors led to the formation of a homogeneous hierarchical form of ZSM-5 with leafy morphology, consisting of intergrown thin crystalline sheets which formed flower-like structures. The hierarchical ZSM-5 possessed significant microporous (≈95 m2/g) and highly developed mesoporous surface (≈470 m2/g), with a relatively broad distribution of mesopore sizes (<20 nm). The acidity of all samples was studied in detail. Isothermal microcalorimetry/volumetry of ammonia adsorption provided quantitative data on the number and distribution of strength of acidic sites. In situ FTIR of pyridine and collidine adsorption was used to quantify Brønsted and Lewis acid sites, and to provide information on their location - in the micropores or mesopores/external surface. The hierarchical ZSM-5 possessed both Lewis and Brønsted acidity, with Brønsted sites located mainly in the micropores. All samples were fully characterized using XRD, low temperature nitrogen adsorption, FESEM and EDS. The synthetic route used for obtaining the ZSM-5 zeolite with flower-like morphology is a simple strategy for preparing hierarchical ZSM-5 forms targeting enhanced diffusivity and accessibility of catalytically active sites.",
journal = "Microporous and Mesoporous Materials",
title = "Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study",
pages = "111534",
volume = "329",
doi = "10.1016/j.micromeso.2021.111534",
url = "https://hdl.handle.net/21.15107/rcub_dais_13631"
}
Bosnar, S., Rac, V., Stošić, D., Travert, A., Postole, G., Auroux, A., Škapin, S. D., Damjanović-Vasilić, L. S., Bronić, J., Du, X., Marković, S., Pavlović, V. B.,& Rakić, V. M.. (2022). Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study. in Microporous and Mesoporous Materials, 329, 111534.
https://doi.org/10.1016/j.micromeso.2021.111534
https://hdl.handle.net/21.15107/rcub_dais_13631
Bosnar S, Rac V, Stošić D, Travert A, Postole G, Auroux A, Škapin SD, Damjanović-Vasilić LS, Bronić J, Du X, Marković S, Pavlović VB, Rakić VM. Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study. in Microporous and Mesoporous Materials. 2022;329:111534.
doi:10.1016/j.micromeso.2021.111534
https://hdl.handle.net/21.15107/rcub_dais_13631 .
Bosnar, Sanja, Rac, Vladislav, Stošić, Dušan, Travert, Arnaud, Postole, Georgeta, Auroux, Aline, Škapin, Srečo Davor, Damjanović-Vasilić, Ljiljana S., Bronić, Josip, Du, Xuesen, Marković, Smilja, Pavlović, Vladimir B., Rakić, Vesna M., "Overcoming phase separation in dual templating: A homogeneous hierarchical ZSM-5 zeolite with flower-like morphology, synthesis and in-depth acidity study" in Microporous and Mesoporous Materials, 329 (2022):111534,
https://doi.org/10.1016/j.micromeso.2021.111534 .,
https://hdl.handle.net/21.15107/rcub_dais_13631 .
3
13
1
12

TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution

Stojanović, Srna; Rac, Vladislav; Mojsilović, Kristina; Vasilić, Rastko; Marković, Smilja; Damjanović Vasilić, Ljiljana

(Belgrade : Institute of Technical Sciences of SASA, 2022)

TY  - CONF
AU  - Stojanović, Srna
AU  - Rac, Vladislav
AU  - Mojsilović, Kristina
AU  - Vasilić, Rastko
AU  - Marković, Smilja
AU  - Damjanović Vasilić, Ljiljana
PY  - 2022
UR  - https://dais.sanu.ac.rs/123456789/13500
AB  - Bisphenol A (BPA) is a well-known emerging contaminant that pose a severe threat to
human health due to its negative effect on the body’s endocrine systems. BPA is widely used in the production of polycarbonate plastic and epoxy resins and therefore often detected in different water environments. Since the conventional wastewater treatments for BPA removal haven’t been proven efficient it is important to find a green and efficient method for its complete elimination. Therefore, the aim of this work was to prepare a cost-effective hybrid photocatalyst based on TiO2 nanoparticles and natural zeolite clinoptilolite and study its photocatalytic performance toward BPA. The TiO2/clinoptilolite, containing 20 wt% of TiO2, was prepared using ultrasound assisted solid-state dispersion method and characterized using a multi-technique approach by combining X-ray powder diffraction, FTIR, UV Vis DRS spectroscopy, atomic force microscopy (AFM), BET measurements and laser diffraction. The study showed complete removal of BPA (5 mg/L) after 180 minutes of simulated solar irradiation using 2 g/L of hybrid photocatalyst, at pH = 6.4. The addition of H2O2 led to a faster BPA removal after 120 minutes of irradiation. When BPA removal was tested in bottled drinking water a lower removal of 60 % after 180 minutes of irradiation was observed because of the presence of bicarbonate ions and its scavenger effect toward hydroxyl radicals. The reused photocatalyst showed good photocatalytic activity in repeated cycles (e. i. 70 % of BPA was still successfully removed at the end of the 4th cycle).
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia
T1  - TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution
SP  - 74
EP  - 74
UR  - https://hdl.handle.net/21.15107/rcub_dais_13500
ER  - 
@conference{
author = "Stojanović, Srna and Rac, Vladislav and Mojsilović, Kristina and Vasilić, Rastko and Marković, Smilja and Damjanović Vasilić, Ljiljana",
year = "2022",
abstract = "Bisphenol A (BPA) is a well-known emerging contaminant that pose a severe threat to
human health due to its negative effect on the body’s endocrine systems. BPA is widely used in the production of polycarbonate plastic and epoxy resins and therefore often detected in different water environments. Since the conventional wastewater treatments for BPA removal haven’t been proven efficient it is important to find a green and efficient method for its complete elimination. Therefore, the aim of this work was to prepare a cost-effective hybrid photocatalyst based on TiO2 nanoparticles and natural zeolite clinoptilolite and study its photocatalytic performance toward BPA. The TiO2/clinoptilolite, containing 20 wt% of TiO2, was prepared using ultrasound assisted solid-state dispersion method and characterized using a multi-technique approach by combining X-ray powder diffraction, FTIR, UV Vis DRS spectroscopy, atomic force microscopy (AFM), BET measurements and laser diffraction. The study showed complete removal of BPA (5 mg/L) after 180 minutes of simulated solar irradiation using 2 g/L of hybrid photocatalyst, at pH = 6.4. The addition of H2O2 led to a faster BPA removal after 120 minutes of irradiation. When BPA removal was tested in bottled drinking water a lower removal of 60 % after 180 minutes of irradiation was observed because of the presence of bicarbonate ions and its scavenger effect toward hydroxyl radicals. The reused photocatalyst showed good photocatalytic activity in repeated cycles (e. i. 70 % of BPA was still successfully removed at the end of the 4th cycle).",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia",
title = "TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution",
pages = "74-74",
url = "https://hdl.handle.net/21.15107/rcub_dais_13500"
}
Stojanović, S., Rac, V., Mojsilović, K., Vasilić, R., Marković, S.,& Damjanović Vasilić, L.. (2022). TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution. in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 74-74.
https://hdl.handle.net/21.15107/rcub_dais_13500
Stojanović S, Rac V, Mojsilović K, Vasilić R, Marković S, Damjanović Vasilić L. TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution. in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia. 2022;:74-74.
https://hdl.handle.net/21.15107/rcub_dais_13500 .
Stojanović, Srna, Rac, Vladislav, Mojsilović, Kristina, Vasilić, Rastko, Marković, Smilja, Damjanović Vasilić, Ljiljana, "TiO2 nanoparticles supported on natural zeolite clinoptilolite from Serbia for removal of bisphenol A from aqueous solution" in Programme and the Book of Abstracts / Twentieth Young Researchers' Conference Materials Science and Engineering, November 30 - December 2, 2022, Belgrade, Serbia (2022):74-74,
https://hdl.handle.net/21.15107/rcub_dais_13500 .

Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Marković, Smilja

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d
UR  - https://dais.sanu.ac.rs/123456789/9543
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry
SP  - 22078
EP  - 22095
VL  - 22
IS  - 38
DO  - 10.1039/D0CP03377D
UR  - https://hdl.handle.net/21.15107/rcub_dais_9543
ER  - 
@article{
author = "Rajić, Vladimir and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Marković, Smilja",
year = "2020",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22078-22095",
volume = "22",
number = "38",
doi = "10.1039/D0CP03377D",
url = "https://hdl.handle.net/21.15107/rcub_dais_9543"
}
Rajić, V., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković Častvan, I.,& Marković, S.. (2020). Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(38), 22078-22095.
https://doi.org/10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9543
Rajić V, Stojković Simatović I, Veselinović L, Belošević Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković Častvan I, Marković S. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics. 2020;22(38):22078-22095.
doi:10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9543 .
Rajić, Vladimir, Stojković Simatović, Ivana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Novaković, Mirjana, Popović, Maja, Škapin, Srečo Davor, Mojović, Miloš, Stojadinović, Stevan, Rac, Vladislav, Janković Častvan, Ivona, Marković, Smilja, "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry" in Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/D0CP03377D .,
https://hdl.handle.net/21.15107/rcub_dais_9543 .
11
3
10

Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry

Rajić, Vladimir; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Novaković, Mirjana; Popović, Maja; Škapin, Srečo Davor; Mojović, Miloš; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Marković, Smilja

(Royal Society of Chemistry, 2020)

TY  - JOUR
AU  - Rajić, Vladimir
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Novaković, Mirjana
AU  - Popović, Maja
AU  - Škapin, Srečo Davor
AU  - Mojović, Miloš
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Marković, Smilja
PY  - 2020
UR  - https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03377d
UR  - https://dais.sanu.ac.rs/123456789/9544
AB  - Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.
PB  - Royal Society of Chemistry
T2  - Physical Chemistry Chemical Physics
T1  - Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry
SP  - 22078
EP  - 22095
VL  - 22
IS  - 38
DO  - 10.1039/D0CP03377D
UR  - https://hdl.handle.net/21.15107/rcub_dais_9544
ER  - 
@article{
author = "Rajić, Vladimir and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Novaković, Mirjana and Popović, Maja and Škapin, Srečo Davor and Mojović, Miloš and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Marković, Smilja",
year = "2020",
abstract = "Eco-friendly and rapid microwave processing of a precipitate was used to produce Fe-doped zinc oxide (Zn1−xFexO, x = 0, 0.05, 0.1, 0.15 and 0.20; ZnO:Fe) nanoparticles, which were tested as catalysts toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in a moderately alkaline solution. The phase composition, crystal structure, morphology, textural properties, surface chemistry, optical properties and band structure were examined to comprehend the influence of Zn2+ partial substitution with Fe3+ on the catalytic activity of ZnO:Fe. Linear sweep voltammetry showed an improved catalytic activity of ZnO:5Fe toward the ORR, compared to pure ZnO, while with increased amounts of the Fe-dopant the activity decreased. The improvement was suggested by a more positive onset potential (0.394 V vs. RHE), current density (0.231 mA cm−2 at 0.150 V vs. RHE), and faster kinetics (Tafel slope, b = 248 mV dec−1), and it may be due to the synergistic effect of (1) a sufficient amount of surface oxygen vacancies, and (2) a certain amount of plate-like particles composed of crystallites with well developed (0001) and (000) facets. Quite the contrary, the OER study showed that the introduction of Fe3+ ions into the ZnO crystal structure resulted in enhanced catalytic activity of all ZnO:Fe samples, compared to pure ZnO, probably due to the modified binding energy and an optimized band structure. With the maximal current density of 1.066 mA cm−2 at 2.216 V vs. RHE, an onset potential of 1.856 V vs. RHE, and the smallest potential difference between the OER and ORR (ΔE = 1.58 V), ZnO:10Fe may be considered a promising bifunctional catalyst toward the OER/ORR in moderately alkaline solution. This study demonstrates that the electrocatalytic activity of ZnO:Fe strongly depends on the defect chemistry and consequently the band structure. Along with providing fundamental insight into the electrocatalytic activity of ZnO:Fe, the study also indicates an optimal stoichiometry for enhanced bifunctional activity toward the OER/ORR, compared to pure ZnO.",
publisher = "Royal Society of Chemistry",
journal = "Physical Chemistry Chemical Physics",
title = "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry",
pages = "22078-22095",
volume = "22",
number = "38",
doi = "10.1039/D0CP03377D",
url = "https://hdl.handle.net/21.15107/rcub_dais_9544"
}
Rajić, V., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Novaković, M., Popović, M., Škapin, S. D., Mojović, M., Stojadinović, S., Rac, V., Janković Častvan, I.,& Marković, S.. (2020). Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics
Royal Society of Chemistry., 22(38), 22078-22095.
https://doi.org/10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9544
Rajić V, Stojković Simatović I, Veselinović L, Belošević Čavor J, Novaković M, Popović M, Škapin SD, Mojović M, Stojadinović S, Rac V, Janković Častvan I, Marković S. Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry. in Physical Chemistry Chemical Physics. 2020;22(38):22078-22095.
doi:10.1039/D0CP03377D
https://hdl.handle.net/21.15107/rcub_dais_9544 .
Rajić, Vladimir, Stojković Simatović, Ivana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Novaković, Mirjana, Popović, Maja, Škapin, Srečo Davor, Mojović, Miloš, Stojadinović, Stevan, Rac, Vladislav, Janković Častvan, Ivona, Marković, Smilja, "Bifunctional catalytic activity of Zn1−xFexO toward the OER/ORR: seeking an optimal stoichiometry" in Physical Chemistry Chemical Physics, 22, no. 38 (2020):22078-22095,
https://doi.org/10.1039/D0CP03377D .,
https://hdl.handle.net/21.15107/rcub_dais_9544 .
11
3
10

Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties

Marković, Smilja; Stojković Simatović, Ivana; Ahmetović, Sanita; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Škapin, Srečo Davor; Bajuk Bogdanović, Danica; Janković Častvan, Ivona; Uskoković, Dragan

(Royal Society of Chemistry, 2019)

TY  - JOUR
AU  - Marković, Smilja
AU  - Stojković Simatović, Ivana
AU  - Ahmetović, Sanita
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Bajuk Bogdanović, Danica
AU  - Janković Častvan, Ivona
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra02553g
UR  - https://dais.sanu.ac.rs/123456789/6272
AB  - ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g−1, compared to ZnO (10.4 mA g−1) and ZnO/F127 photoanodes (20 mA g−1) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm−2. A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron–hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.
PB  - Royal Society of Chemistry
T2  - RSC Advances
T1  - Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties
SP  - 17165
EP  - 17178
VL  - 9
IS  - 30
DO  - 10.1039/C9RA02553G
UR  - https://hdl.handle.net/21.15107/rcub_dais_6272
ER  - 
@article{
author = "Marković, Smilja and Stojković Simatović, Ivana and Ahmetović, Sanita and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Škapin, Srečo Davor and Bajuk Bogdanović, Danica and Janković Častvan, Ivona and Uskoković, Dragan",
year = "2019",
abstract = "ZnO nanopowders were produced using microwave processing of a precipitate and applied as a photoanode for photoelectrochemical water splitting. Two different surfactants, cetyltrimethylammonium bromide (CTAB) as the cationic and Pluronic F127 as the non-ionic one, were employed to in situ adjust the surface-to-bulk defect ratio in the ZnO crystal structure and further to modify the photo(electro)catalytic activity of the ZnO photoanode. The crystal structure, morphological, textural, optical and photo(electro)catalytic properties of ZnO particles were studied in detail to explain the profound effects of the surfactants on the photoanode activity. The ZnO/CTAB photoanode displayed the highest photocurrent density of 27 mA g−1, compared to ZnO (10.4 mA g−1) and ZnO/F127 photoanodes (20 mA g−1) at 1.5 V vs. SCE in 0.1 M Na2SO4 under visible illumination of 90 mW cm−2. A significant shift of the overpotential toward lower values was also observed when photoanodes were illuminated. The highest shift of the overpotential, from 1.296 to 0.248 V vs. SCE, was recorded when the ZnO/CTAB photanode was illuminated. The ZnO/CTAB photoanode provides efficient charge transfer across the electrode/electrolyte interface, with a longer lifetime of photogenerated electron–hole pairs and reduced possibility of charge recombination. The photoconversion efficiency was improved from 1.4% for ZnO and 0.9% for ZnO/F127 to 4.2% for ZnO/CTAB at 0.510 mV. A simple procedure for the synthesis of ZnO particles with improved photo(electro)catalytic properties was established and it was found that even a small amount of CTAB used during processing of ZnO increases the surface-to-bulk defect ratio. Optimization of the surface-to-bulk defect ratio in ZnO materials enables increase of the absorption capacity for visible light, rendering of the recombination rate of the photogenerated pair, as well as increase of both the photocurrent density and photoconversion efficiency.",
publisher = "Royal Society of Chemistry",
journal = "RSC Advances",
title = "Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties",
pages = "17165-17178",
volume = "9",
number = "30",
doi = "10.1039/C9RA02553G",
url = "https://hdl.handle.net/21.15107/rcub_dais_6272"
}
Marković, S., Stojković Simatović, I., Ahmetović, S., Veselinović, L., Stojadinović, S., Rac, V., Škapin, S. D., Bajuk Bogdanović, D., Janković Častvan, I.,& Uskoković, D.. (2019). Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties. in RSC Advances
Royal Society of Chemistry., 9(30), 17165-17178.
https://doi.org/10.1039/C9RA02553G
https://hdl.handle.net/21.15107/rcub_dais_6272
Marković S, Stojković Simatović I, Ahmetović S, Veselinović L, Stojadinović S, Rac V, Škapin SD, Bajuk Bogdanović D, Janković Častvan I, Uskoković D. Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties. in RSC Advances. 2019;9(30):17165-17178.
doi:10.1039/C9RA02553G
https://hdl.handle.net/21.15107/rcub_dais_6272 .
Marković, Smilja, Stojković Simatović, Ivana, Ahmetović, Sanita, Veselinović, Ljiljana, Stojadinović, Stevan, Rac, Vladislav, Škapin, Srečo Davor, Bajuk Bogdanović, Danica, Janković Častvan, Ivona, Uskoković, Dragan, "Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties" in RSC Advances, 9, no. 30 (2019):17165-17178,
https://doi.org/10.1039/C9RA02553G .,
https://hdl.handle.net/21.15107/rcub_dais_6272 .
1
22
11
24

Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)

Marković, Smilja; Rajić, Vladimir B.; Stojković Simatović, Ivana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Ivanovski, Valentin N.; Novaković, Mirjana; Škapin, Srečo Davor; Stojadinović, Stevan; Rac, Vladislav; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Marković, Smilja
AU  - Rajić, Vladimir B.
AU  - Stojković Simatović, Ivana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Ivanovski, Valentin N.
AU  - Novaković, Mirjana
AU  - Škapin, Srečo Davor
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6677
AB  - Even has been under study since 1935, zinc oxide (ZnO) based materials still attract a huge scientific attention. Owing to a wide band gap energy (3.37 eV at room temperature) and a large exciton binding energy (60 meV) ZnO has a variety of application, e.g. in electronics, optoelectronics, spintronics and photocatalysis. Besides, it has been shown that zinc oxide-based materials have a great potential as photoelectrocatalysts in the processes of water splitting, yielding an increased both photocurrent density and photoconversion efficiency. However, with a band gap energy of 3.37 eV, ZnO is restricted to absorb UV light only. This restriction can be overcome by modifying optical properties of zinc oxide particles. During the years different approaches have been applied to modify the visible light photocatalytic activity of ZnO materials, for example: (1) metal and nonmetal ion doping, (2) hydrogenation, (3) the incorporation of crystalline defects in the form of vacancies and interstitials, (4) the modification of particles morphology and surface topology, etc.
In this study we employed 3d metal ion substitution to improve visible light-driven photoactivity of zinc oxide particles. We investigated the influence of Fe concentration in Zn1-xFeyO(1-x+1.5y) nanoparticles on crystal structure, textural, optical and photoelectrocatalytic properties. Zn1-xFeyO(1-x+1.5y) nanoparticles with nominally 5, 10, 15 and 20 at.% of Fe ions were synthesized by microwave processing of a precipitate. The crystal structure and phase purity of the samples were investigated by X-ray diffraction, Raman and ATR-FTIR spectroscopy. Mössbauer spectroscopy was carried out to clarify the valence state of the iron ions in the ZnO crystal structure. Effects of the iron ions concentration on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) with elemental mapping, and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. Photoelectrochemical activity of the Zn1-xFeyO(1-x+1.5y) samples as anode material was evaluated by linear sweep voltammetry in Na2SO4 electrolyte; the oxygen evolution kinetics were determined and compared. In addition, a series of first principles calculations were performed to address the influence of the iron concentration on the electronic structure of Zn1-xFeyO(1-x+1.5y) samples.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)
SP  - 54
EP  - 54
UR  - https://hdl.handle.net/21.15107/rcub_dais_6677
ER  - 
@conference{
author = "Marković, Smilja and Rajić, Vladimir B. and Stojković Simatović, Ivana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Ivanovski, Valentin N. and Novaković, Mirjana and Škapin, Srečo Davor and Stojadinović, Stevan and Rac, Vladislav and Uskoković, Dragan",
year = "2019",
abstract = "Even has been under study since 1935, zinc oxide (ZnO) based materials still attract a huge scientific attention. Owing to a wide band gap energy (3.37 eV at room temperature) and a large exciton binding energy (60 meV) ZnO has a variety of application, e.g. in electronics, optoelectronics, spintronics and photocatalysis. Besides, it has been shown that zinc oxide-based materials have a great potential as photoelectrocatalysts in the processes of water splitting, yielding an increased both photocurrent density and photoconversion efficiency. However, with a band gap energy of 3.37 eV, ZnO is restricted to absorb UV light only. This restriction can be overcome by modifying optical properties of zinc oxide particles. During the years different approaches have been applied to modify the visible light photocatalytic activity of ZnO materials, for example: (1) metal and nonmetal ion doping, (2) hydrogenation, (3) the incorporation of crystalline defects in the form of vacancies and interstitials, (4) the modification of particles morphology and surface topology, etc.
In this study we employed 3d metal ion substitution to improve visible light-driven photoactivity of zinc oxide particles. We investigated the influence of Fe concentration in Zn1-xFeyO(1-x+1.5y) nanoparticles on crystal structure, textural, optical and photoelectrocatalytic properties. Zn1-xFeyO(1-x+1.5y) nanoparticles with nominally 5, 10, 15 and 20 at.% of Fe ions were synthesized by microwave processing of a precipitate. The crystal structure and phase purity of the samples were investigated by X-ray diffraction, Raman and ATR-FTIR spectroscopy. Mössbauer spectroscopy was carried out to clarify the valence state of the iron ions in the ZnO crystal structure. Effects of the iron ions concentration on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) with elemental mapping, and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. Photoelectrochemical activity of the Zn1-xFeyO(1-x+1.5y) samples as anode material was evaluated by linear sweep voltammetry in Na2SO4 electrolyte; the oxygen evolution kinetics were determined and compared. In addition, a series of first principles calculations were performed to address the influence of the iron concentration on the electronic structure of Zn1-xFeyO(1-x+1.5y) samples.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)",
pages = "54-54",
url = "https://hdl.handle.net/21.15107/rcub_dais_6677"
}
Marković, S., Rajić, V. B., Stojković Simatović, I., Veselinović, L., Belošević Čavor, J., Ivanovski, V. N., Novaković, M., Škapin, S. D., Stojadinović, S., Rac, V.,& Uskoković, D.. (2019). Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y). in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 54-54.
https://hdl.handle.net/21.15107/rcub_dais_6677
Marković S, Rajić VB, Stojković Simatović I, Veselinović L, Belošević Čavor J, Ivanovski VN, Novaković M, Škapin SD, Stojadinović S, Rac V, Uskoković D. Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y). in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:54-54.
https://hdl.handle.net/21.15107/rcub_dais_6677 .
Marković, Smilja, Rajić, Vladimir B., Stojković Simatović, Ivana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Ivanovski, Valentin N., Novaković, Mirjana, Škapin, Srečo Davor, Stojadinović, Stevan, Rac, Vladislav, Uskoković, Dragan, "Point defect-enhanced optical and photoelectrochemical water splitting activity of nanostructured Zn1-xFeyO(1-x+1.5y)" in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):54-54,
https://hdl.handle.net/21.15107/rcub_dais_6677 .

Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process

Dojčinović, Milena; Stojković Simatović, Ivana; Marković, Smilja; Janković Častvan, Ivona; Bajuk Bogdanović, Danica; Stojadinović, Stevan; Rac, Vladislav; Nikolić, Maria Vesna

(Budapest : [s. n.], 2019)

TY  - CONF
AU  - Dojčinović, Milena
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
AU  - Janković Častvan, Ivona
AU  - Bajuk Bogdanović, Danica
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Nikolić, Maria Vesna
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6998
AB  - Zinc oxide is a semiconductor material which still, after a century of scientific research, shows great potential in modern day utilisements such as heterogenous photocatalysis of organic pollutants and as a photoanode material for efficient water splitting and oxygen generation. In this work zinc oxide was synthesized by a glycine-nitrate combustion process, which is a cheap, simple and efficient method for synthesizing transition metal oxides. The obtained powder was calcined at 400 and 500 °C and samples were characterized in detail using X-ray powder diffraction (XRPD), Fourier-trasform infrared spectroscopy (FTIR), Raman spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence spectroscopy (PL) and UV-Vis diffuse reflectance spectroscopy (DRS). Photoelectrocatalytic properties were investigated via electrochemical methods: linear voltammetry (LV), chronoamperometry (CA) and impedance spectroscopy (EIS). The results show that the obtained samples are nanocrystalline wurtzite zinc oxide with no impurities, with average particle diameters of 33 nm (annealed at 400 °C) and 48 nm (annealed at 500 °C). Both samples show significant amounts of various crystal deffects. The determined zinc oxide band gap was lower than the band gap of bulk zinc oxide. Photoelectrochemical measurements revealed that this material is photostable and reactive to light. Water oxidation is enhanced by exposing the light. Finally, photocatalytic properties were tested via determining kinetic parameters of organic pollutant decomposition. Both samples showed excellent photocatalytic activity by decomposing methylene blue and phenol.
PB  - Budapest : [s. n.]
C3  - Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
T1  - Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process
SP  - 16
EP  - 16
UR  - https://hdl.handle.net/21.15107/rcub_dais_6998
ER  - 
@conference{
author = "Dojčinović, Milena and Stojković Simatović, Ivana and Marković, Smilja and Janković Častvan, Ivona and Bajuk Bogdanović, Danica and Stojadinović, Stevan and Rac, Vladislav and Nikolić, Maria Vesna",
year = "2019",
abstract = "Zinc oxide is a semiconductor material which still, after a century of scientific research, shows great potential in modern day utilisements such as heterogenous photocatalysis of organic pollutants and as a photoanode material for efficient water splitting and oxygen generation. In this work zinc oxide was synthesized by a glycine-nitrate combustion process, which is a cheap, simple and efficient method for synthesizing transition metal oxides. The obtained powder was calcined at 400 and 500 °C and samples were characterized in detail using X-ray powder diffraction (XRPD), Fourier-trasform infrared spectroscopy (FTIR), Raman spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence spectroscopy (PL) and UV-Vis diffuse reflectance spectroscopy (DRS). Photoelectrocatalytic properties were investigated via electrochemical methods: linear voltammetry (LV), chronoamperometry (CA) and impedance spectroscopy (EIS). The results show that the obtained samples are nanocrystalline wurtzite zinc oxide with no impurities, with average particle diameters of 33 nm (annealed at 400 °C) and 48 nm (annealed at 500 °C). Both samples show significant amounts of various crystal deffects. The determined zinc oxide band gap was lower than the band gap of bulk zinc oxide. Photoelectrochemical measurements revealed that this material is photostable and reactive to light. Water oxidation is enhanced by exposing the light. Finally, photocatalytic properties were tested via determining kinetic parameters of organic pollutant decomposition. Both samples showed excellent photocatalytic activity by decomposing methylene blue and phenol.",
publisher = "Budapest : [s. n.]",
journal = "Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest",
title = "Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process",
pages = "16-16",
url = "https://hdl.handle.net/21.15107/rcub_dais_6998"
}
Dojčinović, M., Stojković Simatović, I., Marković, S., Janković Častvan, I., Bajuk Bogdanović, D., Stojadinović, S., Rac, V.,& Nikolić, M. V.. (2019). Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process. in Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest
Budapest : [s. n.]., 16-16.
https://hdl.handle.net/21.15107/rcub_dais_6998
Dojčinović M, Stojković Simatović I, Marković S, Janković Častvan I, Bajuk Bogdanović D, Stojadinović S, Rac V, Nikolić MV. Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process. in Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest. 2019;:16-16.
https://hdl.handle.net/21.15107/rcub_dais_6998 .
Dojčinović, Milena, Stojković Simatović, Ivana, Marković, Smilja, Janković Častvan, Ivona, Bajuk Bogdanović, Danica, Stojadinović, Stevan, Rac, Vladislav, Nikolić, Maria Vesna, "Structural, photocatalytic and photoelectrochemical characteristics of ZnO nanoparticles synthesized by a glycine-nitrate process" in Abstracts / International Workshop on Woman in Ceramic Science (WoCeram2019), April 7-9, 2019/ Budapest, Hungary, Novotel Danube Budapest (2019):16-16,
https://hdl.handle.net/21.15107/rcub_dais_6998 .

Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization

Bosnar, Sanja; Rac, Vladislav; Škapin, Srečo Davor; Damjanović Vasilić, Ljiljana; Marković, Smilja; Bronić, Josip; Rakić, Vesna

(Belgrade : Serbian Zeolite Association, 2019)

TY  - CONF
AU  - Bosnar, Sanja
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Damjanović Vasilić, Ljiljana
AU  - Marković, Smilja
AU  - Bronić, Josip
AU  - Rakić, Vesna
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6989
AB  - In a quest for optimal synthesis procedure of hierarchically porous zeolite by dual template method, a series of materials was prepared starting from zeolite yielding precursor with an addition of surfactant as a mesoporogen. Characterization of the obtained materials showed that all samples possess micro and mesoporous structures, which ratio depends on the amount of surfactant present in the reaction mixture. However, in the most of the samples separation of phases occurred, and crystalline zeolite phase along amorphous MCM-41 like phase were detected, except for the sample obtained from the modified precursor, where only crystalline zeolite phase was obtained, with a specific and unusual morphology. Adsorption isotherm of that sample resembles the isotherms obtained for post synthesis modified samples.
PB  - Belgrade : Serbian Zeolite Association
C3  - Proceedings of the 8th Serbian-Croatian-Slovenian Symposium on Zeolites, 3 - 5 October 2019, Belgrade, Serbia
T1  - Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization
SP  - 134
EP  - 137
UR  - https://hdl.handle.net/21.15107/rcub_dais_6989
ER  - 
@conference{
author = "Bosnar, Sanja and Rac, Vladislav and Škapin, Srečo Davor and Damjanović Vasilić, Ljiljana and Marković, Smilja and Bronić, Josip and Rakić, Vesna",
year = "2019",
abstract = "In a quest for optimal synthesis procedure of hierarchically porous zeolite by dual template method, a series of materials was prepared starting from zeolite yielding precursor with an addition of surfactant as a mesoporogen. Characterization of the obtained materials showed that all samples possess micro and mesoporous structures, which ratio depends on the amount of surfactant present in the reaction mixture. However, in the most of the samples separation of phases occurred, and crystalline zeolite phase along amorphous MCM-41 like phase were detected, except for the sample obtained from the modified precursor, where only crystalline zeolite phase was obtained, with a specific and unusual morphology. Adsorption isotherm of that sample resembles the isotherms obtained for post synthesis modified samples.",
publisher = "Belgrade : Serbian Zeolite Association",
journal = "Proceedings of the 8th Serbian-Croatian-Slovenian Symposium on Zeolites, 3 - 5 October 2019, Belgrade, Serbia",
title = "Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization",
pages = "134-137",
url = "https://hdl.handle.net/21.15107/rcub_dais_6989"
}
Bosnar, S., Rac, V., Škapin, S. D., Damjanović Vasilić, L., Marković, S., Bronić, J.,& Rakić, V.. (2019). Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization. in Proceedings of the 8th Serbian-Croatian-Slovenian Symposium on Zeolites, 3 - 5 October 2019, Belgrade, Serbia
Belgrade : Serbian Zeolite Association., 134-137.
https://hdl.handle.net/21.15107/rcub_dais_6989
Bosnar S, Rac V, Škapin SD, Damjanović Vasilić L, Marković S, Bronić J, Rakić V. Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization. in Proceedings of the 8th Serbian-Croatian-Slovenian Symposium on Zeolites, 3 - 5 October 2019, Belgrade, Serbia. 2019;:134-137.
https://hdl.handle.net/21.15107/rcub_dais_6989 .
Bosnar, Sanja, Rac, Vladislav, Škapin, Srečo Davor, Damjanović Vasilić, Ljiljana, Marković, Smilja, Bronić, Josip, Rakić, Vesna, "Micro/mesoporous aluminosilicate materials via dual templating, Part 1: synthesis and characterization" in Proceedings of the 8th Serbian-Croatian-Slovenian Symposium on Zeolites, 3 - 5 October 2019, Belgrade, Serbia (2019):134-137,
https://hdl.handle.net/21.15107/rcub_dais_6989 .

Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127

Ahmetović, Sanita; Stojadinović, Stevan; Rac, Vladislav; Škapin, Srečo Davor; Stojković Simatović, Ivana; Marković, Smilja

(Belgrade : Institute of Technical Sciences of SASA, 2018)

TY  - CONF
AU  - Ahmetović, Sanita
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Stojković Simatović, Ivana
AU  - Marković, Smilja
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4724
AB  - Due to its optical and electrical properties, low toxicity, chemical and physical stability, as well as inexpensiveness, zinc oxide (ZnO) based materials have a great potential to be used as photoelectrode in photo(electro)catalysis. Photo(electro)catalytic activity of ZnO materials can be improved by modification of particles morphology and surface topology. In this work, the influence of two different surfactants: cetyltrimethylammonium bromide (CTAB) and Pluronic F-127, on the crystal structure, morphology, optical and photo(electro)catalytic properties of ZnO particles, were examined. ZnO powders were synthesized by microwave processing of a precipitate which was previously prepared by "drop by drop" method in the presence of the surfactants. The crystal structure and phase purity of the ZnO particles were determined by X-ray diffraction and Raman spectroscopy. The effects of the surfactants on ZnO particles morphology were examined by the field emission scanning electron microscopy (FE-SEM). The optical properties were studied using UV-Vis diffuse reflectance and photoluminescence spectroscopy. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. It was found that synthesized ZnO powders have a significant photocatalytic activity. Electrochemical properties were studied using linear sweep voltammetry and impedance spectroscopy in Na2SO4 electrolyte. ZnO powder synthesized in the presence of CTAB (ZnO/CTAB) showed the most significant reduction of potential and the fastest kinetic of oxygen evolution.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
T1  - Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127
SP  - 66
EP  - 66
UR  - https://hdl.handle.net/21.15107/rcub_dais_4724
ER  - 
@conference{
author = "Ahmetović, Sanita and Stojadinović, Stevan and Rac, Vladislav and Škapin, Srečo Davor and Stojković Simatović, Ivana and Marković, Smilja",
year = "2018",
abstract = "Due to its optical and electrical properties, low toxicity, chemical and physical stability, as well as inexpensiveness, zinc oxide (ZnO) based materials have a great potential to be used as photoelectrode in photo(electro)catalysis. Photo(electro)catalytic activity of ZnO materials can be improved by modification of particles morphology and surface topology. In this work, the influence of two different surfactants: cetyltrimethylammonium bromide (CTAB) and Pluronic F-127, on the crystal structure, morphology, optical and photo(electro)catalytic properties of ZnO particles, were examined. ZnO powders were synthesized by microwave processing of a precipitate which was previously prepared by "drop by drop" method in the presence of the surfactants. The crystal structure and phase purity of the ZnO particles were determined by X-ray diffraction and Raman spectroscopy. The effects of the surfactants on ZnO particles morphology were examined by the field emission scanning electron microscopy (FE-SEM). The optical properties were studied using UV-Vis diffuse reflectance and photoluminescence spectroscopy. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. It was found that synthesized ZnO powders have a significant photocatalytic activity. Electrochemical properties were studied using linear sweep voltammetry and impedance spectroscopy in Na2SO4 electrolyte. ZnO powder synthesized in the presence of CTAB (ZnO/CTAB) showed the most significant reduction of potential and the fastest kinetic of oxygen evolution.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia",
title = "Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127",
pages = "66-66",
url = "https://hdl.handle.net/21.15107/rcub_dais_4724"
}
Ahmetović, S., Stojadinović, S., Rac, V., Škapin, S. D., Stojković Simatović, I.,& Marković, S.. (2018). Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 66-66.
https://hdl.handle.net/21.15107/rcub_dais_4724
Ahmetović S, Stojadinović S, Rac V, Škapin SD, Stojković Simatović I, Marković S. Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia. 2018;:66-66.
https://hdl.handle.net/21.15107/rcub_dais_4724 .
Ahmetović, Sanita, Stojadinović, Stevan, Rac, Vladislav, Škapin, Srečo Davor, Stojković Simatović, Ivana, Marković, Smilja, "Structural, morphological and optical characteristics of ZnO particles synthesized in the presence of surfactants CTAB and Pluronic F-127" in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia (2018):66-66,
https://hdl.handle.net/21.15107/rcub_dais_4724 .

Synthesis and characterisation of ZnO synthesized by glycine-nitrate combustion process

Dojčinović, Milena; Marković, Smilja; Stojadinović, Stevan; Rac, Vladislav; Janković Častvan, Ivona; Stojković Simatović, Ivana

(Belgrade : Institute of Technical Sciences of SASA, 2018)

TY  - CONF
AU  - Dojčinović, Milena
AU  - Marković, Smilja
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Janković Častvan, Ivona
AU  - Stojković Simatović, Ivana
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4717
AB  - One of the ways to get rid of toxic organic compounds that industries release into natural waters is photocatalysis of the decomposition of organic compounds on the surface of heterogenous photocatalysts such as zinc oxide. Zinc oxide is a semiconductor that interacts with UV and near-UV visible light by generating electron-hole pairs which decompose organic molecules. Therefore it is useful to explore different ways of synthesizing zinc oxide and to test quality and quantity of organic decomposition photocatalysis so as to enable the commercial use of the material. Zinc oxide is also a respectable material for use as a photoelectrocatalyst in water oxidation, for example, which can be useful for generating oxygen while using natural sunlight - a clean and abundant energy source. In this project nanocrystalline zinc oxide was synthesized by glycin-nitrate combustion process and the powder was annealed on temperatures of 400 °C and 500 °C. Obtained particles where characterized in detail using X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, field emission scanning microscopy (FESEM), photoluminescence spectroscopy (PL) and diffuse reflectance spectroscopy (DRS). The results show that obtained samples are nanocrystalline wurtzite zinc oxide, with particle diameters of 33 nm (annealed at 400 °C) ad 48 nm (annealed at 500 °C). Both samples show significant amount of various crystal defects. Zinc oxide band gap of the samples are determined to be lower than the band gap of the bulk zinc oxide. Photoelectrocatalytic properties were investigated via electrochemical methods: linear voltammetry (LV), chronoamperometry (CA) and impedance spectroscopy (EIS). The results show that material is photostable and reactive to the light. Water oxidation is enhanced by exposing to sunlight. Finally, photocatalytic properties are tested with determining kinetic parameters of phenole and methyl blue decomposition. Zinc oxide nanoparticles are efficient photocatalysts, although sample annealed at 500 °C shows better properties than sample annealed at 400 °C.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
T1  - Synthesis and characterisation of ZnO synthesized by glycine-nitrate combustion process
SP  - 78
EP  - 78
UR  - https://hdl.handle.net/21.15107/rcub_dais_4717
ER  - 
@conference{
author = "Dojčinović, Milena and Marković, Smilja and Stojadinović, Stevan and Rac, Vladislav and Janković Častvan, Ivona and Stojković Simatović, Ivana",
year = "2018",
abstract = "One of the ways to get rid of toxic organic compounds that industries release into natural waters is photocatalysis of the decomposition of organic compounds on the surface of heterogenous photocatalysts such as zinc oxide. Zinc oxide is a semiconductor that interacts with UV and near-UV visible light by generating electron-hole pairs which decompose organic molecules. Therefore it is useful to explore different ways of synthesizing zinc oxide and to test quality and quantity of organic decomposition photocatalysis so as to enable the commercial use of the material. Zinc oxide is also a respectable material for use as a photoelectrocatalyst in water oxidation, for example, which can be useful for generating oxygen while using natural sunlight - a clean and abundant energy source. In this project nanocrystalline zinc oxide was synthesized by glycin-nitrate combustion process and the powder was annealed on temperatures of 400 °C and 500 °C. Obtained particles where characterized in detail using X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, field emission scanning microscopy (FESEM), photoluminescence spectroscopy (PL) and diffuse reflectance spectroscopy (DRS). The results show that obtained samples are nanocrystalline wurtzite zinc oxide, with particle diameters of 33 nm (annealed at 400 °C) ad 48 nm (annealed at 500 °C). Both samples show significant amount of various crystal defects. Zinc oxide band gap of the samples are determined to be lower than the band gap of the bulk zinc oxide. Photoelectrocatalytic properties were investigated via electrochemical methods: linear voltammetry (LV), chronoamperometry (CA) and impedance spectroscopy (EIS). The results show that material is photostable and reactive to the light. Water oxidation is enhanced by exposing to sunlight. Finally, photocatalytic properties are tested with determining kinetic parameters of phenole and methyl blue decomposition. Zinc oxide nanoparticles are efficient photocatalysts, although sample annealed at 500 °C shows better properties than sample annealed at 400 °C.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia",
title = "Synthesis and characterisation of ZnO synthesized by glycine-nitrate combustion process",
pages = "78-78",
url = "https://hdl.handle.net/21.15107/rcub_dais_4717"
}
Dojčinović, M., Marković, S., Stojadinović, S., Rac, V., Janković Častvan, I.,& Stojković Simatović, I.. (2018). Synthesis and characterisation of ZnO synthesized by glycine-nitrate combustion process. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 78-78.
https://hdl.handle.net/21.15107/rcub_dais_4717
Dojčinović M, Marković S, Stojadinović S, Rac V, Janković Častvan I, Stojković Simatović I. Synthesis and characterisation of ZnO synthesized by glycine-nitrate combustion process. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia. 2018;:78-78.
https://hdl.handle.net/21.15107/rcub_dais_4717 .
Dojčinović, Milena, Marković, Smilja, Stojadinović, Stevan, Rac, Vladislav, Janković Častvan, Ivona, Stojković Simatović, Ivana, "Synthesis and characterisation of ZnO synthesized by glycine-nitrate combustion process" in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia (2018):78-78,
https://hdl.handle.net/21.15107/rcub_dais_4717 .

Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing

Marković, Smilja; Stojković Simatović, Ivana; Ahmetović, Sanita; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Škapin, Srečo Davor; Uskoković, Dragan

(Belgrade : Society of Physical Chemists of Serbia, 2018)

TY  - CONF
AU  - Marković, Smilja
AU  - Stojković Simatović, Ivana
AU  - Ahmetović, Sanita
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Uskoković, Dragan
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4561
AB  - ZnO/CTAB powder was prepared by microwave processing of a precipitate with the aid of cetyltrimethylammonium bromide (CTAB). The effects of CTAB on the crystal structure, morphology, optical and photo(electro)catalytic properties of ZnO particles were studied. The results showed that CTAB did not influenced crystal structure or phase purity of ZnO. However, even low concentration of CTAB vary particles morphology; cone-like particles were prepared by processing without CTAB, while a mixture of spheroidal and plate-like ZnO particles were produced when 0.001 M CTAB was used. It was found that synthesized ZnO powders have 0.10 eV lower band gap energy then bulk ZnO (3.37 eV). A high photocatalytic activity for decolorization of methylene blue water solution was established after 2 h of sunlight irradiation; efficiency was 100 and 67% for ZnO/CTAB and ZnO, respectively. Electrochemical test showed faster oxygen evolution kinetics when ZnO/CTAB was used as anode material. Enhanced photo(electro)catalytic activities of ZnO/CTAB particles are attributed to better absorption of visible light due to both, larger dimensions and surface sensitization by CTAB.
PB  - Belgrade : Society of Physical Chemists of Serbia
C3  - Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018, Belgrade
T1  - Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing
SP  - 237
EP  - 240
UR  - https://hdl.handle.net/21.15107/rcub_dais_4561
ER  - 
@conference{
author = "Marković, Smilja and Stojković Simatović, Ivana and Ahmetović, Sanita and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Škapin, Srečo Davor and Uskoković, Dragan",
year = "2018",
abstract = "ZnO/CTAB powder was prepared by microwave processing of a precipitate with the aid of cetyltrimethylammonium bromide (CTAB). The effects of CTAB on the crystal structure, morphology, optical and photo(electro)catalytic properties of ZnO particles were studied. The results showed that CTAB did not influenced crystal structure or phase purity of ZnO. However, even low concentration of CTAB vary particles morphology; cone-like particles were prepared by processing without CTAB, while a mixture of spheroidal and plate-like ZnO particles were produced when 0.001 M CTAB was used. It was found that synthesized ZnO powders have 0.10 eV lower band gap energy then bulk ZnO (3.37 eV). A high photocatalytic activity for decolorization of methylene blue water solution was established after 2 h of sunlight irradiation; efficiency was 100 and 67% for ZnO/CTAB and ZnO, respectively. Electrochemical test showed faster oxygen evolution kinetics when ZnO/CTAB was used as anode material. Enhanced photo(electro)catalytic activities of ZnO/CTAB particles are attributed to better absorption of visible light due to both, larger dimensions and surface sensitization by CTAB.",
publisher = "Belgrade : Society of Physical Chemists of Serbia",
journal = "Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018, Belgrade",
title = "Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing",
pages = "237-240",
url = "https://hdl.handle.net/21.15107/rcub_dais_4561"
}
Marković, S., Stojković Simatović, I., Ahmetović, S., Veselinović, L., Stojadinović, S., Rac, V., Škapin, S. D.,& Uskoković, D.. (2018). Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing. in Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018, Belgrade
Belgrade : Society of Physical Chemists of Serbia., 237-240.
https://hdl.handle.net/21.15107/rcub_dais_4561
Marković S, Stojković Simatović I, Ahmetović S, Veselinović L, Stojadinović S, Rac V, Škapin SD, Uskoković D. Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing. in Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018, Belgrade. 2018;:237-240.
https://hdl.handle.net/21.15107/rcub_dais_4561 .
Marković, Smilja, Stojković Simatović, Ivana, Ahmetović, Sanita, Veselinović, Ljiljana, Stojadinović, Stevan, Rac, Vladislav, Škapin, Srečo Davor, Uskoković, Dragan, "Enhanced photo(electro)catalytic properties of ZnO particles synthesized by CTAB-assisted microwave processing" in Physical Chemistry 2018 : proceedings. Vol. 1 / 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, September 24-28, 2018, Belgrade (2018):237-240,
https://hdl.handle.net/21.15107/rcub_dais_4561 .

CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties

Marković, Smilja; Stojković Simatović, Ivana; Ahmetović, Sanita; Veselinović, Ljiljana; Stojadinović, Stevan; Rac, Vladislav; Škapin, Srečo Davor; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2018)

TY  - CONF
AU  - Marković, Smilja
AU  - Stojković Simatović, Ivana
AU  - Ahmetović, Sanita
AU  - Veselinović, Ljiljana
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Škapin, Srečo Davor
AU  - Uskoković, Dragan
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/3664
AB  - Zinc oxide-based materials have a great potential to be applied as photocatalysts in the processes of removal of organic and biological pollutants from drinking and wastewaters. A major drawback of ZnO as visible-light absorber is a band energy gap of 3.37 eV, which restricts the material to absorb UV light only. This drawback can be overcame by modifying the optical absorption properties of zinc oxide particles. Different approaches have been applied to modify the visible light photocatalytic activity of ZnO materials: (1) metal and nonmetal ion doping, (2) hydrogenation, (3) the incorporation of crystalline defects in the form of vacancies and interstitials, (4) the modification of particles morphology and surface topology, etc. In this study we investigated the influence of different surfactants on the morphology, optical properties and functionality of ZnO particles. Two different surfactants were employed during microwave processing of ZnO particles, cetyltrimethylammonium bromide (CTAB) as cationic and Pluronic F-127 as non-ionic one. The crystal structure and phase purity of the ZnO particles were determined by X-ray diffraction and Raman spectroscopy. Effects of the surfactants on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM) and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. Functionality of ZnO particles was studied due to their photocatalytic and electrochemical activities. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. Electrochemical behavior of the ZnO samples as anode material was evaluated by linear sweep voltammetry in Na2SO4 electrolyte; the oxygen evolution kinetics were determined and compared.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
T1  - CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties
SP  - 70
EP  - 70
UR  - https://hdl.handle.net/21.15107/rcub_dais_3664
ER  - 
@conference{
author = "Marković, Smilja and Stojković Simatović, Ivana and Ahmetović, Sanita and Veselinović, Ljiljana and Stojadinović, Stevan and Rac, Vladislav and Škapin, Srečo Davor and Uskoković, Dragan",
year = "2018",
abstract = "Zinc oxide-based materials have a great potential to be applied as photocatalysts in the processes of removal of organic and biological pollutants from drinking and wastewaters. A major drawback of ZnO as visible-light absorber is a band energy gap of 3.37 eV, which restricts the material to absorb UV light only. This drawback can be overcame by modifying the optical absorption properties of zinc oxide particles. Different approaches have been applied to modify the visible light photocatalytic activity of ZnO materials: (1) metal and nonmetal ion doping, (2) hydrogenation, (3) the incorporation of crystalline defects in the form of vacancies and interstitials, (4) the modification of particles morphology and surface topology, etc. In this study we investigated the influence of different surfactants on the morphology, optical properties and functionality of ZnO particles. Two different surfactants were employed during microwave processing of ZnO particles, cetyltrimethylammonium bromide (CTAB) as cationic and Pluronic F-127 as non-ionic one. The crystal structure and phase purity of the ZnO particles were determined by X-ray diffraction and Raman spectroscopy. Effects of the surfactants on particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM) and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. Functionality of ZnO particles was studied due to their photocatalytic and electrochemical activities. Photocatalytic activity was examined via decolorization of methylene blue under direct sunlight irradiation. Electrochemical behavior of the ZnO samples as anode material was evaluated by linear sweep voltammetry in Na2SO4 electrolyte; the oxygen evolution kinetics were determined and compared.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018",
title = "CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties",
pages = "70-70",
url = "https://hdl.handle.net/21.15107/rcub_dais_3664"
}
Marković, S., Stojković Simatović, I., Ahmetović, S., Veselinović, L., Stojadinović, S., Rac, V., Škapin, S. D.,& Uskoković, D.. (2018). CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
Belgrade : Materials Research Society of Serbia., 70-70.
https://hdl.handle.net/21.15107/rcub_dais_3664
Marković S, Stojković Simatović I, Ahmetović S, Veselinović L, Stojadinović S, Rac V, Škapin SD, Uskoković D. CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018. 2018;:70-70.
https://hdl.handle.net/21.15107/rcub_dais_3664 .
Marković, Smilja, Stojković Simatović, Ivana, Ahmetović, Sanita, Veselinović, Ljiljana, Stojadinović, Stevan, Rac, Vladislav, Škapin, Srečo Davor, Uskoković, Dragan, "CTAB- and pluronic F-127-assisted microwave processing of ZnO particles with modified morphology and optical properties" in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018 (2018):70-70,
https://hdl.handle.net/21.15107/rcub_dais_3664 .

Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics

Marković, Smilja; Rajić, Vladimir B.; Veselinović, Ljiljana; Belošević Čavor, Jelena; Škapin, Srečo Davor; Stojadinović, Stevan; Rac, Vladislav; Lević, Steva; Mojović, Miloš; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2016)

TY  - CONF
AU  - Marković, Smilja
AU  - Rajić, Vladimir B.
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Škapin, Srečo Davor
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Lević, Steva
AU  - Mojović, Miloš
AU  - Uskoković, Dragan
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/902
AB  - Zinc oxide is one of the most studied materials due to its wide bandgap (3.37 eV) and large exciton binding energy (60 meV) which enables application in electronics, optoelectronics and spintronics. In the forms of single crystal and thin-film ZnO are used as UV and blue light emitter, while sintered ZnO-based ceramics are important as varistors, thermistors or semiconductors. It has been found that point defects in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Neutral oxygen vacancies are considered to be a major component of the defect structure of ZnO. Thus, correlation of the oxygen vacancies concentration with band gap energy of ZnO product is important to its application in optoelectronic devices. In this study we investigated the influence of point defects concentration in ZnO crystal structure on its optical and photocatalytic properties. We analyzed ZnO powders prepared by different techniques: (a) microwave processing of precipitate and (b) hydrothermal processing, which yield different ordered crystal structure. To increase a concentration of the point defects in the crystal structure, the powders were sintered in air atmosphere by heating rate of 10 °/min up to 1100 °C, with dwell time of 1 h. The crystal structure, average crystallite size and phase purity of the ZnO ceramics were determined by X-ray diffraction and Raman spectroscopy. The optical properties, in particular, absorption capacity and bang gap energy, were studied using UV–Vis diffuse reflectance spectroscopy. To reveal the role of microstructures and point defects in ZnO crystal lattice, which are receptive for luminescence and photocatalytic activity of this functional oxide, photoluminescence (PL), photoluminescence excitation (PLE) and EPR spectra were analyzed. The influence of point defects concentration in the ZnO crystal structure on photocatalytic properties was examined via decolorization of methylene blue under direct sunlight irradiation. Correlation between amount of the point defects, absorption capacity and photocatalytic efficiency were established. In order to clarify the experimental results ab initio calculations based on density functional theory (DFT) were performed.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
T1  - Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics
SP  - 34
EP  - 34
UR  - https://hdl.handle.net/21.15107/rcub_dais_902
ER  - 
@conference{
author = "Marković, Smilja and Rajić, Vladimir B. and Veselinović, Ljiljana and Belošević Čavor, Jelena and Škapin, Srečo Davor and Stojadinović, Stevan and Rac, Vladislav and Lević, Steva and Mojović, Miloš and Uskoković, Dragan",
year = "2016",
abstract = "Zinc oxide is one of the most studied materials due to its wide bandgap (3.37 eV) and large exciton binding energy (60 meV) which enables application in electronics, optoelectronics and spintronics. In the forms of single crystal and thin-film ZnO are used as UV and blue light emitter, while sintered ZnO-based ceramics are important as varistors, thermistors or semiconductors. It has been found that point defects in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Neutral oxygen vacancies are considered to be a major component of the defect structure of ZnO. Thus, correlation of the oxygen vacancies concentration with band gap energy of ZnO product is important to its application in optoelectronic devices. In this study we investigated the influence of point defects concentration in ZnO crystal structure on its optical and photocatalytic properties. We analyzed ZnO powders prepared by different techniques: (a) microwave processing of precipitate and (b) hydrothermal processing, which yield different ordered crystal structure. To increase a concentration of the point defects in the crystal structure, the powders were sintered in air atmosphere by heating rate of 10 °/min up to 1100 °C, with dwell time of 1 h. The crystal structure, average crystallite size and phase purity of the ZnO ceramics were determined by X-ray diffraction and Raman spectroscopy. The optical properties, in particular, absorption capacity and bang gap energy, were studied using UV–Vis diffuse reflectance spectroscopy. To reveal the role of microstructures and point defects in ZnO crystal lattice, which are receptive for luminescence and photocatalytic activity of this functional oxide, photoluminescence (PL), photoluminescence excitation (PLE) and EPR spectra were analyzed. The influence of point defects concentration in the ZnO crystal structure on photocatalytic properties was examined via decolorization of methylene blue under direct sunlight irradiation. Correlation between amount of the point defects, absorption capacity and photocatalytic efficiency were established. In order to clarify the experimental results ab initio calculations based on density functional theory (DFT) were performed.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016",
title = "Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics",
pages = "34-34",
url = "https://hdl.handle.net/21.15107/rcub_dais_902"
}
Marković, S., Rajić, V. B., Veselinović, L., Belošević Čavor, J., Škapin, S. D., Stojadinović, S., Rac, V., Lević, S., Mojović, M.,& Uskoković, D.. (2016). Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
Belgrade : Materials Research Society of Serbia., 34-34.
https://hdl.handle.net/21.15107/rcub_dais_902
Marković S, Rajić VB, Veselinović L, Belošević Čavor J, Škapin SD, Stojadinović S, Rac V, Lević S, Mojović M, Uskoković D. Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016. 2016;:34-34.
https://hdl.handle.net/21.15107/rcub_dais_902 .
Marković, Smilja, Rajić, Vladimir B., Veselinović, Ljiljana, Belošević Čavor, Jelena, Škapin, Srečo Davor, Stojadinović, Stevan, Rac, Vladislav, Lević, Steva, Mojović, Miloš, Uskoković, Dragan, "Influence of point defects concentration on optical and photocatalytic properties of ZnO ceramics" in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016 (2016):34-34,
https://hdl.handle.net/21.15107/rcub_dais_902 .

Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics

Marković, Smilja; Stanković, Ana; Veselinović, Ljiljana; Belošević Čavor, Jelena; Škapin, Srečo Davor; Stojadinović, Stevan; Rac, Vladislav; Lević, Steva; Janković Častvan, Ivona; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2015)

TY  - CONF
AU  - Marković, Smilja
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Škapin, Srečo Davor
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Lević, Steva
AU  - Janković Častvan, Ivona
AU  - Uskoković, Dragan
PY  - 2015
UR  - https://dais.sanu.ac.rs/123456789/831
AB  - Zinc oxide is one of the most studied materials due to its potential applications in electronics, optoelectronics and spintronics. In the forms of single crystal and thin-film ZnO could be used as UV and blue light emitter, while sintered ZnO-based ceramics are important as varistors, thermistors or wide-band gap semiconductors. Intrinsic defects, such as vacancies, interstitials and antisites, in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Thus, understanding the behavior of intrinsic defects during densification of ZnO ceramics as well as correlation of the defects with band gap energy of final product is important to its application in opto-electronic devices.
In this study, the influence of point defects concentration on the densification process and optical properties of ZnO sintered ceramics was investigated. To obtain ZnO sintered ceramics with variety of point defects concentration we employed two starting powders with a different crystal structure ordering, as well different morphology and specific surface area. Sinterability of the powders was investigated by thermo mechanical analyzer; shrinkage data, collected in axial (h) direction during non-isothermal sintering with heating rates of 5, 10 and 20 °/min, were used to calculate activation energy of sintering process. Sintering of uniaxially pressed (P = 100 MPa) cylindrical compacts (ø 6 mm and h ≈ 3 mm) were done in air atmosphere by heating rate of 10 °/min up to 1100 and 1200 °C, and dwell time of 2 h. To study a crystal structure of the sintered samples XRD and Raman spectroscopy were used, for microstructural investigation field emission scanning electron micrographs were recorded while optical properties were determined by UV-Vis diffuse reflectance and photoluminescence spectroscopy. A detailed study shows that point defect strongly influenced densification process as well optical properties. Sintered ZnO ceramic with a high crystal defect concentration and nanosized grains shows band gap energy of about 2 eV while band gap energy increased with a decrease of defect concentration.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015
T1  - Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics
SP  - 61
EP  - 61
UR  - https://hdl.handle.net/21.15107/rcub_dais_831
ER  - 
@conference{
author = "Marković, Smilja and Stanković, Ana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Škapin, Srečo Davor and Stojadinović, Stevan and Rac, Vladislav and Lević, Steva and Janković Častvan, Ivona and Uskoković, Dragan",
year = "2015",
abstract = "Zinc oxide is one of the most studied materials due to its potential applications in electronics, optoelectronics and spintronics. In the forms of single crystal and thin-film ZnO could be used as UV and blue light emitter, while sintered ZnO-based ceramics are important as varistors, thermistors or wide-band gap semiconductors. Intrinsic defects, such as vacancies, interstitials and antisites, in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Thus, understanding the behavior of intrinsic defects during densification of ZnO ceramics as well as correlation of the defects with band gap energy of final product is important to its application in opto-electronic devices.
In this study, the influence of point defects concentration on the densification process and optical properties of ZnO sintered ceramics was investigated. To obtain ZnO sintered ceramics with variety of point defects concentration we employed two starting powders with a different crystal structure ordering, as well different morphology and specific surface area. Sinterability of the powders was investigated by thermo mechanical analyzer; shrinkage data, collected in axial (h) direction during non-isothermal sintering with heating rates of 5, 10 and 20 °/min, were used to calculate activation energy of sintering process. Sintering of uniaxially pressed (P = 100 MPa) cylindrical compacts (ø 6 mm and h ≈ 3 mm) were done in air atmosphere by heating rate of 10 °/min up to 1100 and 1200 °C, and dwell time of 2 h. To study a crystal structure of the sintered samples XRD and Raman spectroscopy were used, for microstructural investigation field emission scanning electron micrographs were recorded while optical properties were determined by UV-Vis diffuse reflectance and photoluminescence spectroscopy. A detailed study shows that point defect strongly influenced densification process as well optical properties. Sintered ZnO ceramic with a high crystal defect concentration and nanosized grains shows band gap energy of about 2 eV while band gap energy increased with a decrease of defect concentration.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015",
title = "Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics",
pages = "61-61",
url = "https://hdl.handle.net/21.15107/rcub_dais_831"
}
Marković, S., Stanković, A., Veselinović, L., Belošević Čavor, J., Škapin, S. D., Stojadinović, S., Rac, V., Lević, S., Janković Častvan, I.,& Uskoković, D.. (2015). Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics. in Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015
Belgrade : Materials Research Society of Serbia., 61-61.
https://hdl.handle.net/21.15107/rcub_dais_831
Marković S, Stanković A, Veselinović L, Belošević Čavor J, Škapin SD, Stojadinović S, Rac V, Lević S, Janković Častvan I, Uskoković D. Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics. in Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015. 2015;:61-61.
https://hdl.handle.net/21.15107/rcub_dais_831 .
Marković, Smilja, Stanković, Ana, Veselinović, Ljiljana, Belošević Čavor, Jelena, Škapin, Srečo Davor, Stojadinović, Stevan, Rac, Vladislav, Lević, Steva, Janković Častvan, Ivona, Uskoković, Dragan, "Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics" in Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015 (2015):61-61,
https://hdl.handle.net/21.15107/rcub_dais_831 .