Miletić, Dunja

Link to this page

Authority KeyName Variants
c1ccca47-52fe-402c-bb61-9dc38888f5ab
  • Miletić, Dunja (2)

Author's Bibliography

Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material

Sknepnek, Aleksandra; Filipović, Suzana; Pavlović, Vladimir B.; Mirković, Nemanja; Miletić, Dunja; Gržetić, Jelena; Mirković, Miljana

(Basel : MDPI AG, 2024)


                                            

                                            
Sknepnek, A., Filipović, S., Pavlović, V. B., Mirković, N., Miletić, D., Gržetić, J.,& Mirković, M.. (2024). Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material. in Polymers
Basel : MDPI AG., 16(4), 470.
https://doi.org/10.3390/polym16040470
https://hdl.handle.net/21.15107/rcub_dais_16384
Sknepnek A, Filipović S, Pavlović VB, Mirković N, Miletić D, Gržetić J, Mirković M. Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material. in Polymers. 2024;16(4):470.
doi:10.3390/polym16040470
https://hdl.handle.net/21.15107/rcub_dais_16384 .
Sknepnek, Aleksandra, Filipović, Suzana, Pavlović, Vladimir B., Mirković, Nemanja, Miletić, Dunja, Gržetić, Jelena, Mirković, Miljana, "Effects of Synthesis Parameters on Structure and Antimicrobial Properties of Bacterial Cellulose/Hydroxyapatite/TiO2 Polymer–Ceramic Composite Material" in Polymers, 16, no. 4 (2024):470,
https://doi.org/10.3390/polym16040470 .,
https://hdl.handle.net/21.15107/rcub_dais_16384 .
1

Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose

Sknepnek, Aleksandra; Filipović, Suzana; Masković, Pavle; Mirković, Miljana; Miletić, Dunja; Nikšić, Miomir; Pavlović, Vladimir B.

(Belgrade : Innovation Center of Faculty of Mechanical Engineering, 2021)

TY  - CONF
AU  - Sknepnek, Aleksandra
AU  - Filipović, Suzana
AU  - Masković, Pavle
AU  - Mirković, Miljana
AU  - Miletić, Dunja
AU  - Nikšić, Miomir
AU  - Pavlović, Vladimir B.
PY  - 2021
UR  - https://dais.sanu.ac.rs/123456789/12348
AB  - Cellulose, as the main constituent of plants, is the most common natural material that is widely used. Bacterial cellulose (BC) is a polymer of β-1,4-glucan chains, extracellularly attached to bacterial cells. It possesses the same structure as plant cellulose but its application has many advantages. BC has tinner threads, better crystallinity, mechanical strength and higher purity. By the means of micro- and nano-pores in the structure, it is possible to retain nano particles and enhance the application of obtained nanostructures. BC lacks antibacterial and antioxidative activity, conductivity and magnetic properties, which lowers the possibility of its application in biomedicine and electronics. To overcome previously mentioned deficiency, it is possible to apply bioactive polymers, nanomaterials or solid particles into the structure. High biocidal potential of TiO2 originates from its photocatalytic properties, and the generation of reactive oxygen species (ROS). At the first site of action, they cause cell membrane damage and afterwards, they attack intracellular components causing cell death. Hydroxyapatite (HAp) is capable to act synergistically with TiO2 and to accelerate its efficiency. Having in mind all characteristics of previously mentioned components, we have investigated the structure, morphology, mechanical properties and antimicrobial activity of advanced ceramics/polymer films. The influence of synthesis duration on BC structure, produced by Komagataeibacter xylinus species, was investigated. Thereafter, the possibility of TiO2/HAp ceramic nanocomposite application in BC was examined. The developed structures were analyzed by SEM and EDS analyzes, as well as XRD and FTIR spectroscopy. Mechanical properties were investigated as well.
PB  - Belgrade : Innovation Center of Faculty of Mechanical Engineering
C3  - Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia
T1  - Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose
SP  - 78
EP  - 78
UR  - https://hdl.handle.net/21.15107/rcub_dais_12348
ER  - 
@conference{
author = "Sknepnek, Aleksandra and Filipović, Suzana and Masković, Pavle and Mirković, Miljana and Miletić, Dunja and Nikšić, Miomir and Pavlović, Vladimir B.",
year = "2021",
abstract = "Cellulose, as the main constituent of plants, is the most common natural material that is widely used. Bacterial cellulose (BC) is a polymer of β-1,4-glucan chains, extracellularly attached to bacterial cells. It possesses the same structure as plant cellulose but its application has many advantages. BC has tinner threads, better crystallinity, mechanical strength and higher purity. By the means of micro- and nano-pores in the structure, it is possible to retain nano particles and enhance the application of obtained nanostructures. BC lacks antibacterial and antioxidative activity, conductivity and magnetic properties, which lowers the possibility of its application in biomedicine and electronics. To overcome previously mentioned deficiency, it is possible to apply bioactive polymers, nanomaterials or solid particles into the structure. High biocidal potential of TiO2 originates from its photocatalytic properties, and the generation of reactive oxygen species (ROS). At the first site of action, they cause cell membrane damage and afterwards, they attack intracellular components causing cell death. Hydroxyapatite (HAp) is capable to act synergistically with TiO2 and to accelerate its efficiency. Having in mind all characteristics of previously mentioned components, we have investigated the structure, morphology, mechanical properties and antimicrobial activity of advanced ceramics/polymer films. The influence of synthesis duration on BC structure, produced by Komagataeibacter xylinus species, was investigated. Thereafter, the possibility of TiO2/HAp ceramic nanocomposite application in BC was examined. The developed structures were analyzed by SEM and EDS analyzes, as well as XRD and FTIR spectroscopy. Mechanical properties were investigated as well.",
publisher = "Belgrade : Innovation Center of Faculty of Mechanical Engineering",
journal = "Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia",
title = "Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose",
pages = "78-78",
url = "https://hdl.handle.net/21.15107/rcub_dais_12348"
}
Sknepnek, A., Filipović, S., Masković, P., Mirković, M., Miletić, D., Nikšić, M.,& Pavlović, V. B.. (2021). Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia
Belgrade : Innovation Center of Faculty of Mechanical Engineering., 78-78.
https://hdl.handle.net/21.15107/rcub_dais_12348
Sknepnek A, Filipović S, Masković P, Mirković M, Miletić D, Nikšić M, Pavlović VB. Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose. in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia. 2021;:78-78.
https://hdl.handle.net/21.15107/rcub_dais_12348 .
Sknepnek, Aleksandra, Filipović, Suzana, Masković, Pavle, Mirković, Miljana, Miletić, Dunja, Nikšić, Miomir, Pavlović, Vladimir B., "Effects of synthesis parameters on structure and properties of the ceramic/polymer films based on bacterial cellulose" in Programme and The Book of Abstracts / International Conference of Experimental and Numerical Investigations and New Technologies - CNN TECH 2021,29 June - 02 July 2021, Zlatibor, Serbia (2021):78-78,
https://hdl.handle.net/21.15107/rcub_dais_12348 .