Božanić, Dušan K.

Link to this page

Authority KeyName Variants
orcid::0000-0001-8246-9635
  • Božanić, Dušan K. (3)
Projects

Author's Bibliography

DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells

Dojčilović, Radovan; Pajović, Jelena D.; Božanić, Dušan K.; Jović, Nataša; Pavlović, Vera P.; Pavlović, Vladimir B.; Acković, Lea Lenhardt; Zeković, Ivana; Dramićanin, Miroslav; Kaščaková, Slavka; Réfrégiers, Matthieu; Rašić, Goran; Vlahović, Branislav; Đoković, Vladimir

(IOP Publishing, 2018)

TY  - JOUR
AU  - Dojčilović, Radovan
AU  - Pajović, Jelena D.
AU  - Božanić, Dušan K.
AU  - Jović, Nataša
AU  - Pavlović, Vera P.
AU  - Pavlović, Vladimir B.
AU  - Acković, Lea Lenhardt
AU  - Zeković, Ivana
AU  - Dramićanin, Miroslav
AU  - Kaščaková, Slavka
AU  - Réfrégiers, Matthieu
AU  - Rašić, Goran
AU  - Vlahović, Branislav
AU  - Đoković, Vladimir
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4604
AB  - The interaction of partially reduced graphene oxide (prGO) and Huh7.5.1 liver cancer cells was investigated by means of DUV fluorescence bioimaging. The prGO sample was obtained by the reduction (to a certain extent) of the initially prepared graphene oxide (GO) nanosheets with hydrazine. The fluorescence of the GO nanosheets increases with time of the reduction due to a change in ratio of the sp2 and sp3 carbon sites and the prGO sample was extracted from the dispersion after 6 min, when the intensity of the fluorescence reached its maximum. The reduction process was left to proceed further to saturation until highly reduced graphene oxide (denoted here as rGO) was obtained. GO, prGO and rGO samples were investigated by structural (scanning electron microscopy (SEM), scanning transmission electron microscopy coupled with energy dispersive spectrometry (STEM-EDS)) and spectroscopic (UV-vis, photoluminescence (PL), Raman) methods. After that, Huh7.5.1 cells were incubated with GO, prGO and rGO nanosheets and used in bioimaging studies, which were performed on DISCO beamline of synchrotron SOLEIL. It was found that the prGO significantly enhanced the fluorescence of the cells and increased the intensity of the signal by ~2.5 times. Time-lapse fluorescence microscopy experiments showed that fluorescence dynamics strongly depends on the type of nanosheets used. The obtained prGO nanostructure can be easily conjugated with aromatic ring containing drugs, which opens a possibility for its applications in fluorescence microscopy monitored drug delivery. © 2018 IOP Publishing Ltd.
PB  - IOP Publishing
T2  - 2D Materials
T1  - DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells
SP  - 045019
VL  - 5
DO  - 10.1088/2053-1583/aad72b
UR  - https://hdl.handle.net/21.15107/rcub_dais_4604
ER  - 
@article{
author = "Dojčilović, Radovan and Pajović, Jelena D. and Božanić, Dušan K. and Jović, Nataša and Pavlović, Vera P. and Pavlović, Vladimir B. and Acković, Lea Lenhardt and Zeković, Ivana and Dramićanin, Miroslav and Kaščaková, Slavka and Réfrégiers, Matthieu and Rašić, Goran and Vlahović, Branislav and Đoković, Vladimir",
year = "2018",
abstract = "The interaction of partially reduced graphene oxide (prGO) and Huh7.5.1 liver cancer cells was investigated by means of DUV fluorescence bioimaging. The prGO sample was obtained by the reduction (to a certain extent) of the initially prepared graphene oxide (GO) nanosheets with hydrazine. The fluorescence of the GO nanosheets increases with time of the reduction due to a change in ratio of the sp2 and sp3 carbon sites and the prGO sample was extracted from the dispersion after 6 min, when the intensity of the fluorescence reached its maximum. The reduction process was left to proceed further to saturation until highly reduced graphene oxide (denoted here as rGO) was obtained. GO, prGO and rGO samples were investigated by structural (scanning electron microscopy (SEM), scanning transmission electron microscopy coupled with energy dispersive spectrometry (STEM-EDS)) and spectroscopic (UV-vis, photoluminescence (PL), Raman) methods. After that, Huh7.5.1 cells were incubated with GO, prGO and rGO nanosheets and used in bioimaging studies, which were performed on DISCO beamline of synchrotron SOLEIL. It was found that the prGO significantly enhanced the fluorescence of the cells and increased the intensity of the signal by ~2.5 times. Time-lapse fluorescence microscopy experiments showed that fluorescence dynamics strongly depends on the type of nanosheets used. The obtained prGO nanostructure can be easily conjugated with aromatic ring containing drugs, which opens a possibility for its applications in fluorescence microscopy monitored drug delivery. © 2018 IOP Publishing Ltd.",
publisher = "IOP Publishing",
journal = "2D Materials",
title = "DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells",
pages = "045019",
volume = "5",
doi = "10.1088/2053-1583/aad72b",
url = "https://hdl.handle.net/21.15107/rcub_dais_4604"
}
Dojčilović, R., Pajović, J. D., Božanić, D. K., Jović, N., Pavlović, V. P., Pavlović, V. B., Acković, L. L., Zeković, I., Dramićanin, M., Kaščaková, S., Réfrégiers, M., Rašić, G., Vlahović, B.,& Đoković, V.. (2018). DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells. in 2D Materials
IOP Publishing., 5, 045019.
https://doi.org/10.1088/2053-1583/aad72b
https://hdl.handle.net/21.15107/rcub_dais_4604
Dojčilović R, Pajović JD, Božanić DK, Jović N, Pavlović VP, Pavlović VB, Acković LL, Zeković I, Dramićanin M, Kaščaková S, Réfrégiers M, Rašić G, Vlahović B, Đoković V. DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells. in 2D Materials. 2018;5:045019.
doi:10.1088/2053-1583/aad72b
https://hdl.handle.net/21.15107/rcub_dais_4604 .
Dojčilović, Radovan, Pajović, Jelena D., Božanić, Dušan K., Jović, Nataša, Pavlović, Vera P., Pavlović, Vladimir B., Acković, Lea Lenhardt, Zeković, Ivana, Dramićanin, Miroslav, Kaščaková, Slavka, Réfrégiers, Matthieu, Rašić, Goran, Vlahović, Branislav, Đoković, Vladimir, "DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells" in 2D Materials, 5 (2018):045019,
https://doi.org/10.1088/2053-1583/aad72b .,
https://hdl.handle.net/21.15107/rcub_dais_4604 .
5
4
3

DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells

Dojčilović, Radovan; Pajović, Jelena D.; Božanić, Dušan K.; Jović, Nataša; Pavlović, Vera P.; Pavlović, Vladimir B.; Acković, Lea Lenhardt; Zeković, Ivana; Dramićanin, Miroslav; Kaščaková, Slavka; Réfrégiers, Matthieu; Rašić, Goran; Vlahović, Branislav; Đoković, Vladimir

(IOP Publishing, 2018)

TY  - JOUR
AU  - Dojčilović, Radovan
AU  - Pajović, Jelena D.
AU  - Božanić, Dušan K.
AU  - Jović, Nataša
AU  - Pavlović, Vera P.
AU  - Pavlović, Vladimir B.
AU  - Acković, Lea Lenhardt
AU  - Zeković, Ivana
AU  - Dramićanin, Miroslav
AU  - Kaščaková, Slavka
AU  - Réfrégiers, Matthieu
AU  - Rašić, Goran
AU  - Vlahović, Branislav
AU  - Đoković, Vladimir
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4081
AB  - The interaction of partially reduced graphene oxide (prGO) and Huh7.5.1 liver cancer cells was investigated by means of DUV fluorescence bioimaging. The prGO sample was obtained by the reduction (to a certain extent) of the initially prepared graphene oxide (GO) nanosheets with hydrazine. The fluorescence of the GO nanosheets increases with time of the reduction due to a change in ratio of the sp2 and sp3 carbon sites and the prGO sample was extracted from the dispersion after 6 min, when the intensity of the fluorescence reached its maximum. The reduction process was left to proceed further to saturation until highly reduced graphene oxide (denoted here as rGO) was obtained. GO, prGO and rGO samples were investigated by structural (scanning electron microscopy (SEM), scanning transmission electron microscopy coupled with energy dispersive spectrometry (STEM-EDS)) and spectroscopic (UV-vis, photoluminescence (PL), Raman) methods. After that, Huh7.5.1 cells were incubated with GO, prGO and rGO nanosheets and used in bioimaging studies, which were performed on DISCO beamline of synchrotron SOLEIL. It was found that the prGO significantly enhanced the fluorescence of the cells and increased the intensity of the signal by ~2.5 times. Time-lapse fluorescence microscopy experiments showed that fluorescence dynamics strongly depends on the type of nanosheets used. The obtained prGO nanostructure can be easily conjugated with aromatic ring containing drugs, which opens a possibility for its applications in fluorescence microscopy monitored drug delivery. © 2018 IOP Publishing Ltd.
PB  - IOP Publishing
T2  - 2D Materials
T1  - DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells
SP  - 045019
VL  - 5
DO  - 10.1088/2053-1583/aad72b
UR  - https://hdl.handle.net/21.15107/rcub_dais_4081
ER  - 
@article{
author = "Dojčilović, Radovan and Pajović, Jelena D. and Božanić, Dušan K. and Jović, Nataša and Pavlović, Vera P. and Pavlović, Vladimir B. and Acković, Lea Lenhardt and Zeković, Ivana and Dramićanin, Miroslav and Kaščaková, Slavka and Réfrégiers, Matthieu and Rašić, Goran and Vlahović, Branislav and Đoković, Vladimir",
year = "2018",
abstract = "The interaction of partially reduced graphene oxide (prGO) and Huh7.5.1 liver cancer cells was investigated by means of DUV fluorescence bioimaging. The prGO sample was obtained by the reduction (to a certain extent) of the initially prepared graphene oxide (GO) nanosheets with hydrazine. The fluorescence of the GO nanosheets increases with time of the reduction due to a change in ratio of the sp2 and sp3 carbon sites and the prGO sample was extracted from the dispersion after 6 min, when the intensity of the fluorescence reached its maximum. The reduction process was left to proceed further to saturation until highly reduced graphene oxide (denoted here as rGO) was obtained. GO, prGO and rGO samples were investigated by structural (scanning electron microscopy (SEM), scanning transmission electron microscopy coupled with energy dispersive spectrometry (STEM-EDS)) and spectroscopic (UV-vis, photoluminescence (PL), Raman) methods. After that, Huh7.5.1 cells were incubated with GO, prGO and rGO nanosheets and used in bioimaging studies, which were performed on DISCO beamline of synchrotron SOLEIL. It was found that the prGO significantly enhanced the fluorescence of the cells and increased the intensity of the signal by ~2.5 times. Time-lapse fluorescence microscopy experiments showed that fluorescence dynamics strongly depends on the type of nanosheets used. The obtained prGO nanostructure can be easily conjugated with aromatic ring containing drugs, which opens a possibility for its applications in fluorescence microscopy monitored drug delivery. © 2018 IOP Publishing Ltd.",
publisher = "IOP Publishing",
journal = "2D Materials",
title = "DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells",
pages = "045019",
volume = "5",
doi = "10.1088/2053-1583/aad72b",
url = "https://hdl.handle.net/21.15107/rcub_dais_4081"
}
Dojčilović, R., Pajović, J. D., Božanić, D. K., Jović, N., Pavlović, V. P., Pavlović, V. B., Acković, L. L., Zeković, I., Dramićanin, M., Kaščaková, S., Réfrégiers, M., Rašić, G., Vlahović, B.,& Đoković, V.. (2018). DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells. in 2D Materials
IOP Publishing., 5, 045019.
https://doi.org/10.1088/2053-1583/aad72b
https://hdl.handle.net/21.15107/rcub_dais_4081
Dojčilović R, Pajović JD, Božanić DK, Jović N, Pavlović VP, Pavlović VB, Acković LL, Zeković I, Dramićanin M, Kaščaková S, Réfrégiers M, Rašić G, Vlahović B, Đoković V. DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells. in 2D Materials. 2018;5:045019.
doi:10.1088/2053-1583/aad72b
https://hdl.handle.net/21.15107/rcub_dais_4081 .
Dojčilović, Radovan, Pajović, Jelena D., Božanić, Dušan K., Jović, Nataša, Pavlović, Vera P., Pavlović, Vladimir B., Acković, Lea Lenhardt, Zeković, Ivana, Dramićanin, Miroslav, Kaščaková, Slavka, Réfrégiers, Matthieu, Rašić, Goran, Vlahović, Branislav, Đoković, Vladimir, "DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells" in 2D Materials, 5 (2018):045019,
https://doi.org/10.1088/2053-1583/aad72b .,
https://hdl.handle.net/21.15107/rcub_dais_4081 .
5
4
3

Structural Investigations of Polyvinyliden Fluoride Thin and Thick Films

Pavlović, Vladimir B.; Božanić, Dušan K.; Pavlović, Vera P.; Dojčilović, Radovan; Pajović, J.; Dukić, M.; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2012)

TY  - CONF
AU  - Pavlović, Vladimir B.
AU  - Božanić, Dušan K.
AU  - Pavlović, Vera P.
AU  - Dojčilović, Radovan
AU  - Pajović, J.
AU  - Dukić, M.
AU  - Vlahović, Branislav
PY  - 2012
UR  - https://dais.sanu.ac.rs/123456789/528
AB  - Polyvinyliden fluoride (PVDF) is a low-density fluoropolymer that exhibits piezoelectric and pyroelectric properties. It can be used in the chemical, semiconductor, medical and defense industries, as well as in aviation and aerospace applications. Crucial factors that lead to the PVDF ferroelectric properties and determine its piezoelectric, mechanical, optical, electrical and thermal properties are its polar conformations, crystal structure, and crystallinity. These characteristics of the material significantly depend on the conditions used in the processing of polymer films. Therefore, we investigated structure and morphology of thin and thick PVDF films obtained by spin coating and solution casting methods, respectively. Structural investigations of PVDF thin and thick films were performed by the X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectrometry (FTIR) methods, while microstructure morphology has been analyzed by scanning electron microscope (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Present results will enable optimization of PVDF processing techniques for the production of pressure and IR sensors.
PB  - Belgrade : Serbian Ceramic Society
C3  - The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts
T1  - Structural Investigations of Polyvinyliden Fluoride Thin and Thick Films
SP  - 29
EP  - 29
UR  - https://hdl.handle.net/21.15107/rcub_dais_528
ER  - 
@conference{
author = "Pavlović, Vladimir B. and Božanić, Dušan K. and Pavlović, Vera P. and Dojčilović, Radovan and Pajović, J. and Dukić, M. and Vlahović, Branislav",
year = "2012",
abstract = "Polyvinyliden fluoride (PVDF) is a low-density fluoropolymer that exhibits piezoelectric and pyroelectric properties. It can be used in the chemical, semiconductor, medical and defense industries, as well as in aviation and aerospace applications. Crucial factors that lead to the PVDF ferroelectric properties and determine its piezoelectric, mechanical, optical, electrical and thermal properties are its polar conformations, crystal structure, and crystallinity. These characteristics of the material significantly depend on the conditions used in the processing of polymer films. Therefore, we investigated structure and morphology of thin and thick PVDF films obtained by spin coating and solution casting methods, respectively. Structural investigations of PVDF thin and thick films were performed by the X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectrometry (FTIR) methods, while microstructure morphology has been analyzed by scanning electron microscope (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Present results will enable optimization of PVDF processing techniques for the production of pressure and IR sensors.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts",
title = "Structural Investigations of Polyvinyliden Fluoride Thin and Thick Films",
pages = "29-29",
url = "https://hdl.handle.net/21.15107/rcub_dais_528"
}
Pavlović, V. B., Božanić, D. K., Pavlović, V. P., Dojčilović, R., Pajović, J., Dukić, M.,& Vlahović, B.. (2012). Structural Investigations of Polyvinyliden Fluoride Thin and Thick Films. in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts
Belgrade : Serbian Ceramic Society., 29-29.
https://hdl.handle.net/21.15107/rcub_dais_528
Pavlović VB, Božanić DK, Pavlović VP, Dojčilović R, Pajović J, Dukić M, Vlahović B. Structural Investigations of Polyvinyliden Fluoride Thin and Thick Films. in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts. 2012;:29-29.
https://hdl.handle.net/21.15107/rcub_dais_528 .
Pavlović, Vladimir B., Božanić, Dušan K., Pavlović, Vera P., Dojčilović, Radovan, Pajović, J., Dukić, M., Vlahović, Branislav, "Structural Investigations of Polyvinyliden Fluoride Thin and Thick Films" in The First Serbian Ceramic Society Conference "Advanced Ceramics and Application" May 10-11, 2012: Program and the Book of Abstracts (2012):29-29,
https://hdl.handle.net/21.15107/rcub_dais_528 .