Veljković, Sandra

Link to this page

Authority KeyName Variants
orcid::0000-0001-9510-7465
  • Veljković, Sandra (20)
Projects

Author's Bibliography

Analyses of the surface parameters in polycrystalline diamonds

Veljković, Sandra; Mitić, Vojislav V.; Paunović, Vesna; Lazović, Goran; Mohr, Marcus; Fecht, Hans

(Čačak : University of Kragujevac, Faculty of Technical Sciences, 2020)

TY  - JOUR
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Paunović, Vesna
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Fecht, Hans
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10046
AB  - There is a progressing interests for polycrystalline diamonds and they have been more extensively used recently. This area has been intensively researched due to the outstanding potential of this material, and this necessitated presenting some of the latest application related to engineering in this paper. A better insight of polycrystalline diamonds properties can be achieved by intensively researching the surface structure. Samples of nanocrystalline diamonds grown by the chemical vapor deposition method are analyzed and accordingly, the focus of the research was the surface parameters and their structure. It is observed that waviness and texture are unique for any direction, their values are almost the same for the chosen directions and they vary approximately from -0.2 nm to 0.4 nm. Analyses of the parameters allowed a more detailed insight into the morphology of the surfaces of polycrystalline films.
PB  - Čačak : University of Kragujevac, Faculty of Technical Sciences
T2  - Serbian Journal of Electrical Engineering
T1  - Analyses of the surface parameters in polycrystalline diamonds
SP  - 111
EP  - 129
VL  - 17
IS  - 1
DO  - 10.2298/SJEE2001111V
UR  - https://hdl.handle.net/21.15107/rcub_dais_10046
ER  - 
@article{
author = "Veljković, Sandra and Mitić, Vojislav V. and Paunović, Vesna and Lazović, Goran and Mohr, Marcus and Fecht, Hans",
year = "2020",
abstract = "There is a progressing interests for polycrystalline diamonds and they have been more extensively used recently. This area has been intensively researched due to the outstanding potential of this material, and this necessitated presenting some of the latest application related to engineering in this paper. A better insight of polycrystalline diamonds properties can be achieved by intensively researching the surface structure. Samples of nanocrystalline diamonds grown by the chemical vapor deposition method are analyzed and accordingly, the focus of the research was the surface parameters and their structure. It is observed that waviness and texture are unique for any direction, their values are almost the same for the chosen directions and they vary approximately from -0.2 nm to 0.4 nm. Analyses of the parameters allowed a more detailed insight into the morphology of the surfaces of polycrystalline films.",
publisher = "Čačak : University of Kragujevac, Faculty of Technical Sciences",
journal = "Serbian Journal of Electrical Engineering",
title = "Analyses of the surface parameters in polycrystalline diamonds",
pages = "111-129",
volume = "17",
number = "1",
doi = "10.2298/SJEE2001111V",
url = "https://hdl.handle.net/21.15107/rcub_dais_10046"
}
Veljković, S., Mitić, V. V., Paunović, V., Lazović, G., Mohr, M.,& Fecht, H.. (2020). Analyses of the surface parameters in polycrystalline diamonds. in Serbian Journal of Electrical Engineering
Čačak : University of Kragujevac, Faculty of Technical Sciences., 17(1), 111-129.
https://doi.org/10.2298/SJEE2001111V
https://hdl.handle.net/21.15107/rcub_dais_10046
Veljković S, Mitić VV, Paunović V, Lazović G, Mohr M, Fecht H. Analyses of the surface parameters in polycrystalline diamonds. in Serbian Journal of Electrical Engineering. 2020;17(1):111-129.
doi:10.2298/SJEE2001111V
https://hdl.handle.net/21.15107/rcub_dais_10046 .
Veljković, Sandra, Mitić, Vojislav V., Paunović, Vesna, Lazović, Goran, Mohr, Marcus, Fecht, Hans, "Analyses of the surface parameters in polycrystalline diamonds" in Serbian Journal of Electrical Engineering, 17, no. 1 (2020):111-129,
https://doi.org/10.2298/SJEE2001111V .,
https://hdl.handle.net/21.15107/rcub_dais_10046 .

The structure analysis methods for synthetized diamonds consolidation and fractals characterization

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Mohr, Marcus; Fecht, Hans-Jörg

(Belgrade : Serbian Society for Microscopy, 2019)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Mohr, Marcus
AU  - Fecht, Hans-Jörg
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7015
AB  - Synthetized diamonds have application in many areas, especially for electronic devices and components or mechanisms in watches, and medicine where they can be used for surgery knifes. Considering that for small grains is commonly known that atomic structure of grain size has strong impact on structural characteristics of synthetized diamonds, research of fractal nature of
microstructure of diamond films can have very important role in optimization of properties of these films. Regarding these processes, it was applied several characterization methods like SEM, EDS. These data were prepared and used as a source for fractal analysis application. Fractal theory can help in explanation of systems in which, at first sight, roles chaos. For that reason, fractal analysis can be applied on surface topology of synthesized diamonds and during the process of characterization of grains morphology. Thin films of diamonds, which are examined, are formed in chemical vapor deposition or CVD process. Aldo in some implementations is desirable to reduce the grain size, it can bring to the reducing the hardness of ultra-nanocrystalline or UNCD thin films. Because of that, it is very important to find the optimum between smooth surfaces from one side and hardness from the other side in order to create contact which is resistant to wear. Diameter of grain and their fractal geometry are very important microstructural characteristics. which have strong influence on all physical and chemical characteristics. In this paper, the goal is development of more accurate models which describe transportation and mechanical properties of polycrystalline diamonds.
PB  - Belgrade : Serbian Society for Microscopy
PB  - Belgrade : Institute for Biological Research "Siniša Stanković"
C3  - MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]
T1  - The structure analysis methods for synthetized diamonds consolidation and fractals characterization
SP  - 380
EP  - 380
UR  - https://hdl.handle.net/21.15107/rcub_dais_7015
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Mohr, Marcus and Fecht, Hans-Jörg",
year = "2019",
abstract = "Synthetized diamonds have application in many areas, especially for electronic devices and components or mechanisms in watches, and medicine where they can be used for surgery knifes. Considering that for small grains is commonly known that atomic structure of grain size has strong impact on structural characteristics of synthetized diamonds, research of fractal nature of
microstructure of diamond films can have very important role in optimization of properties of these films. Regarding these processes, it was applied several characterization methods like SEM, EDS. These data were prepared and used as a source for fractal analysis application. Fractal theory can help in explanation of systems in which, at first sight, roles chaos. For that reason, fractal analysis can be applied on surface topology of synthesized diamonds and during the process of characterization of grains morphology. Thin films of diamonds, which are examined, are formed in chemical vapor deposition or CVD process. Aldo in some implementations is desirable to reduce the grain size, it can bring to the reducing the hardness of ultra-nanocrystalline or UNCD thin films. Because of that, it is very important to find the optimum between smooth surfaces from one side and hardness from the other side in order to create contact which is resistant to wear. Diameter of grain and their fractal geometry are very important microstructural characteristics. which have strong influence on all physical and chemical characteristics. In this paper, the goal is development of more accurate models which describe transportation and mechanical properties of polycrystalline diamonds.",
publisher = "Belgrade : Serbian Society for Microscopy, Belgrade : Institute for Biological Research "Siniša Stanković"",
journal = "MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]",
title = "The structure analysis methods for synthetized diamonds consolidation and fractals characterization",
pages = "380-380",
url = "https://hdl.handle.net/21.15107/rcub_dais_7015"
}
Veljković, S., Mitić, V. V., Lazović, G., Paunović, V., Mohr, M.,& Fecht, H.. (2019). The structure analysis methods for synthetized diamonds consolidation and fractals characterization. in MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]
Belgrade : Serbian Society for Microscopy., 380-380.
https://hdl.handle.net/21.15107/rcub_dais_7015
Veljković S, Mitić VV, Lazović G, Paunović V, Mohr M, Fecht H. The structure analysis methods for synthetized diamonds consolidation and fractals characterization. in MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia]. 2019;:380-380.
https://hdl.handle.net/21.15107/rcub_dais_7015 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Mohr, Marcus, Fecht, Hans-Jörg, "The structure analysis methods for synthetized diamonds consolidation and fractals characterization" in MCM2019 : proceedings / 14th Multinational Congress on Microscopy, [September 15–20, 2019, Belgrade, Serbia] (2019):380-380,
https://hdl.handle.net/21.15107/rcub_dais_7015 .

Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries

Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Veljković, Sandra; Ranđelović, Branislav; Vlahović, Branislav; Fecht, Hans

(Taylor & Francis, 2019)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
AU  - Fecht, Hans
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6686
AB  - Consolidation parameters have influence and can be used to control structure of BaTiO3 based materials. Microstructure and dielectric properties of Yb2O3 doped BaTiO3-ceramics, sintered from 1320 °C to 1380 °C have been investigated. The correlation between microstructure, capacity and dielectric properties of doped BaTiO3-ceramics, based on fractal geometry and micro-contact surfaces, has been developed. Using the fractal descriptors of the grains contact surface, the microstructure reconstruction constituents, as grains and pores shapes or intergranular contacts, has been successfully done. Obtained results indicated that fractal analysis contact surfaces descriptors of different shapes are very important for the prognosis of BaTiO3-ceramics microstructure and capacity and dielectric properties. The morphology of ceramics grains pointed out the validity of developing new structure analytical methods, based on different grains’ shape geometries. The grains contact structure based on Minkowski hull is presented as a new tool for BaTiO3-ceramics materials structure research. The materials properties prognosis are determined according to the correlations synthesis–structure–property, within Minkowski hull fractal frame. © 2019, © 2019 Taylor & Francis Group, LLC.
PB  - Taylor & Francis
T2  - Ferroelectrics
T1  - Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries
SP  - 184
EP  - 194
VL  - 545
IS  - 1
DO  - 10.1080/00150193.2019.1621704
UR  - https://hdl.handle.net/21.15107/rcub_dais_6686
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Veljković, Sandra and Ranđelović, Branislav and Vlahović, Branislav and Fecht, Hans",
year = "2019",
abstract = "Consolidation parameters have influence and can be used to control structure of BaTiO3 based materials. Microstructure and dielectric properties of Yb2O3 doped BaTiO3-ceramics, sintered from 1320 °C to 1380 °C have been investigated. The correlation between microstructure, capacity and dielectric properties of doped BaTiO3-ceramics, based on fractal geometry and micro-contact surfaces, has been developed. Using the fractal descriptors of the grains contact surface, the microstructure reconstruction constituents, as grains and pores shapes or intergranular contacts, has been successfully done. Obtained results indicated that fractal analysis contact surfaces descriptors of different shapes are very important for the prognosis of BaTiO3-ceramics microstructure and capacity and dielectric properties. The morphology of ceramics grains pointed out the validity of developing new structure analytical methods, based on different grains’ shape geometries. The grains contact structure based on Minkowski hull is presented as a new tool for BaTiO3-ceramics materials structure research. The materials properties prognosis are determined according to the correlations synthesis–structure–property, within Minkowski hull fractal frame. © 2019, © 2019 Taylor & Francis Group, LLC.",
publisher = "Taylor & Francis",
journal = "Ferroelectrics",
title = "Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries",
pages = "184-194",
volume = "545",
number = "1",
doi = "10.1080/00150193.2019.1621704",
url = "https://hdl.handle.net/21.15107/rcub_dais_6686"
}
Mitić, V. V., Lazović, G., Paunović, V., Veljković, S., Ranđelović, B., Vlahović, B.,& Fecht, H.. (2019). Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries. in Ferroelectrics
Taylor & Francis., 545(1), 184-194.
https://doi.org/10.1080/00150193.2019.1621704
https://hdl.handle.net/21.15107/rcub_dais_6686
Mitić VV, Lazović G, Paunović V, Veljković S, Ranđelović B, Vlahović B, Fecht H. Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries. in Ferroelectrics. 2019;545(1):184-194.
doi:10.1080/00150193.2019.1621704
https://hdl.handle.net/21.15107/rcub_dais_6686 .
Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Veljković, Sandra, Ranđelović, Branislav, Vlahović, Branislav, Fecht, Hans, "Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries" in Ferroelectrics, 545, no. 1 (2019):184-194,
https://doi.org/10.1080/00150193.2019.1621704 .,
https://hdl.handle.net/21.15107/rcub_dais_6686 .
2
2
2

The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers

Mitić, Vojislav V.; Lazović, Goran; Lu, Chun-An; Paunović, Vesna; Veljković, Sandra; Fecht, Hans-Jörg; Vlahović, Branislav

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Lu, Chun-An
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Fecht, Hans-Jörg
AU  - Vlahović, Branislav
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6680
AB  - The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 with MOD-Y salts and also on Y2O3. The samples have been consolidated at sintering interval 1200–1350 °C. We demonstrate the new frontiers for different electronic properties between the layers of BaTiO3 grains. As a research target we had GB composite, Nano size metal oxide dispersions, ACDC safety capacitance, nano scale grain boundary control, capacitance, GB control mobility in DC BS operation voltage. We applied all related characterizations and especially SEM. Fractal nature characterization and corrections include influences grains and pores surface and Brownian motions of particles. We established relation with all of this characteristics and temperature. Throw this experiments and results and fractals characterization, we opened new perspectives for higher electronic properties integrations between the grains and practically established the control within the processing, morphological structures and designing the properties. This is very important, new approach towards further miniaturization-fractal miniaturization and related, advanced technologies.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers
SP  - 40
EP  - 40
UR  - https://hdl.handle.net/21.15107/rcub_dais_6680
ER  - 
@conference{
author = "Mitić, Vojislav V. and Lazović, Goran and Lu, Chun-An and Paunović, Vesna and Veljković, Sandra and Fecht, Hans-Jörg and Vlahović, Branislav",
year = "2019",
abstract = "The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 with MOD-Y salts and also on Y2O3. The samples have been consolidated at sintering interval 1200–1350 °C. We demonstrate the new frontiers for different electronic properties between the layers of BaTiO3 grains. As a research target we had GB composite, Nano size metal oxide dispersions, ACDC safety capacitance, nano scale grain boundary control, capacitance, GB control mobility in DC BS operation voltage. We applied all related characterizations and especially SEM. Fractal nature characterization and corrections include influences grains and pores surface and Brownian motions of particles. We established relation with all of this characteristics and temperature. Throw this experiments and results and fractals characterization, we opened new perspectives for higher electronic properties integrations between the grains and practically established the control within the processing, morphological structures and designing the properties. This is very important, new approach towards further miniaturization-fractal miniaturization and related, advanced technologies.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers",
pages = "40-40",
url = "https://hdl.handle.net/21.15107/rcub_dais_6680"
}
Mitić, V. V., Lazović, G., Lu, C., Paunović, V., Veljković, S., Fecht, H.,& Vlahović, B.. (2019). The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
Belgrade : Materials Research Society of Serbia., 40-40.
https://hdl.handle.net/21.15107/rcub_dais_6680
Mitić VV, Lazović G, Lu C, Paunović V, Veljković S, Fecht H, Vlahović B. The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers. in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019. 2019;:40-40.
https://hdl.handle.net/21.15107/rcub_dais_6680 .
Mitić, Vojislav V., Lazović, Goran, Lu, Chun-An, Paunović, Vesna, Veljković, Sandra, Fecht, Hans-Jörg, Vlahović, Branislav, "The BaTiO3 nano-scale coated morphology influence on electronic properties and ceramics fractal nature frontiers" in Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019 (2019):40-40,
https://hdl.handle.net/21.15107/rcub_dais_6680 .

BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model

Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Veljković, Sandra; Huang, W. C.; Vlahović, Branislav

(Societa ceramica italiana, 2019)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Huang, W. C.
AU  - Vlahović, Branislav
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7023
AB  - BaTiO3-ceramics is very well known electroceramics material and has a more than 300, now a days, very advanced applications. The atomic structures packed by Euclidian geometry, up to the nano sizes, are not suitable for particles flows and irregular structures. In order to analyze more originally these structures, apply fractal nature approach. There is existing trend in the now a days literature that a wide range of disordered systems can be characterized by the fractal nature over a microscopic correlation length. The modern ceramics science, faces with very important priorities of the future frontiers which opens new directions within higher knowledge structure even down to nano and due to lack of energy, towards new and alternative energy sources. There is a fact, that energy transformations are permitted on a small scale. Through our actual research we recognize that BaTiO3 and other electronics ceramics have fractal configuration nature based on three phenomena. Ceramic grains have fractal shape seeing as a contour in cross section or as a surface; the other one phenomena is related to so called “negative space” made of pores and inter-granular space. The porosity is extremely complex and has very important role in microelectronics, micro-capacity, PTC, piezoelectric and other phenomena. The third, there is Brownian process of fractal motions inside the material, during and after sintering, in the form of micro-particles flow (ions, atoms and electrons). These is important phenomenology based on inter-granular micro-capacity and super micro-capacitors in function of higher energy harvesting and storage. Fractal nature theory allows recognizing micro-capacitors with fractal electrodes. The method is based on iterative process which is compatible with the grains and pores model. In this paper, based on fractals corrected Heywang model, we analyse the electroresistivity as a part of intergranular micro-impedance. Also, we successfully applied the complex fractal correction on thermodynamic parameters, especially the temperature. On this way we continue to open the new fractal nature frontiers within the electro parameters, like elastoresistivity.
PB  - Societa ceramica italiana
PB  - Politecnico di Torino
C3  - Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019
T1  - BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model
SP  - 515
EP  - 515
UR  - https://hdl.handle.net/21.15107/rcub_dais_7023
ER  - 
@conference{
author = "Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Veljković, Sandra and Huang, W. C. and Vlahović, Branislav",
year = "2019",
abstract = "BaTiO3-ceramics is very well known electroceramics material and has a more than 300, now a days, very advanced applications. The atomic structures packed by Euclidian geometry, up to the nano sizes, are not suitable for particles flows and irregular structures. In order to analyze more originally these structures, apply fractal nature approach. There is existing trend in the now a days literature that a wide range of disordered systems can be characterized by the fractal nature over a microscopic correlation length. The modern ceramics science, faces with very important priorities of the future frontiers which opens new directions within higher knowledge structure even down to nano and due to lack of energy, towards new and alternative energy sources. There is a fact, that energy transformations are permitted on a small scale. Through our actual research we recognize that BaTiO3 and other electronics ceramics have fractal configuration nature based on three phenomena. Ceramic grains have fractal shape seeing as a contour in cross section or as a surface; the other one phenomena is related to so called “negative space” made of pores and inter-granular space. The porosity is extremely complex and has very important role in microelectronics, micro-capacity, PTC, piezoelectric and other phenomena. The third, there is Brownian process of fractal motions inside the material, during and after sintering, in the form of micro-particles flow (ions, atoms and electrons). These is important phenomenology based on inter-granular micro-capacity and super micro-capacitors in function of higher energy harvesting and storage. Fractal nature theory allows recognizing micro-capacitors with fractal electrodes. The method is based on iterative process which is compatible with the grains and pores model. In this paper, based on fractals corrected Heywang model, we analyse the electroresistivity as a part of intergranular micro-impedance. Also, we successfully applied the complex fractal correction on thermodynamic parameters, especially the temperature. On this way we continue to open the new fractal nature frontiers within the electro parameters, like elastoresistivity.",
publisher = "Societa ceramica italiana, Politecnico di Torino",
journal = "Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019",
title = "BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model",
pages = "515-515",
url = "https://hdl.handle.net/21.15107/rcub_dais_7023"
}
Mitić, V. V., Lazović, G., Paunović, V., Veljković, S., Huang, W. C.,& Vlahović, B.. (2019). BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model. in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019
Societa ceramica italiana., 515-515.
https://hdl.handle.net/21.15107/rcub_dais_7023
Mitić VV, Lazović G, Paunović V, Veljković S, Huang WC, Vlahović B. BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model. in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019. 2019;:515-515.
https://hdl.handle.net/21.15107/rcub_dais_7023 .
Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Veljković, Sandra, Huang, W. C., Vlahović, Branislav, "BaTiO3-ceramics electroresistivity and Haywang intergranular capacity fractals model" in Abstract Book / XVI Conference and Exhibition of the European Ceramic Society XVI ECerS Conference, Torino, 16-20 June 2019 (2019):515-515,
https://hdl.handle.net/21.15107/rcub_dais_7023 .

Structural and Dielectric Properties of Rare earth Neodymium Zinc Titanite

Khamoushi, Kouros; Mitić, Vojislav V.; Lazović, Goran; Veljković, Sandra

(Belgrade : Serbian Ceramic Society, 2019)

TY  - CONF
AU  - Khamoushi, Kouros
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Veljković, Sandra
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6976
AB  - Using the high -resolution x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and temperature-dependent microwave resonator characterization the dielectric properties and phase assemblage of Rare earth Neodymium Zinc Titanite (NZT) was investigated in this research work. NZT ceramics samples were prepared via mixed oxide. The result shows that it is distrustful to be a stable perovskite structure, in fact something comparable to Ilmenite structure, nevertheless further research shows that the monoclinic structure can be purposed for NZT. The Modelling and simulation were used in this study to define the atomic position and structure of NZT. In conclusions, single-phase ceramics of NZT; have been synthesised at every sintering temperature 1250-1675°C. NZT has the temperature coefficient of resonant frequency 47 MK-1, Quality factor was 42000 at frequency of 4.33 GHz and relative permittivity 36. The crystal structure of NZT is monoclinic with Bravais Lattice P and space group of P21/n. Kikuchi line shows that this material has a single phase. These compositions have promising dielectric properties and can be used in microwave telecommunications.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
T1  - Structural and Dielectric Properties of Rare earth Neodymium Zinc Titanite
SP  - 49
EP  - 49
UR  - https://hdl.handle.net/21.15107/rcub_dais_6976
ER  - 
@conference{
author = "Khamoushi, Kouros and Mitić, Vojislav V. and Lazović, Goran and Veljković, Sandra",
year = "2019",
abstract = "Using the high -resolution x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and temperature-dependent microwave resonator characterization the dielectric properties and phase assemblage of Rare earth Neodymium Zinc Titanite (NZT) was investigated in this research work. NZT ceramics samples were prepared via mixed oxide. The result shows that it is distrustful to be a stable perovskite structure, in fact something comparable to Ilmenite structure, nevertheless further research shows that the monoclinic structure can be purposed for NZT. The Modelling and simulation were used in this study to define the atomic position and structure of NZT. In conclusions, single-phase ceramics of NZT; have been synthesised at every sintering temperature 1250-1675°C. NZT has the temperature coefficient of resonant frequency 47 MK-1, Quality factor was 42000 at frequency of 4.33 GHz and relative permittivity 36. The crystal structure of NZT is monoclinic with Bravais Lattice P and space group of P21/n. Kikuchi line shows that this material has a single phase. These compositions have promising dielectric properties and can be used in microwave telecommunications.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019",
title = "Structural and Dielectric Properties of Rare earth Neodymium Zinc Titanite",
pages = "49-49",
url = "https://hdl.handle.net/21.15107/rcub_dais_6976"
}
Khamoushi, K., Mitić, V. V., Lazović, G.,& Veljković, S.. (2019). Structural and Dielectric Properties of Rare earth Neodymium Zinc Titanite. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
Belgrade : Serbian Ceramic Society., 49-49.
https://hdl.handle.net/21.15107/rcub_dais_6976
Khamoushi K, Mitić VV, Lazović G, Veljković S. Structural and Dielectric Properties of Rare earth Neodymium Zinc Titanite. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019. 2019;:49-49.
https://hdl.handle.net/21.15107/rcub_dais_6976 .
Khamoushi, Kouros, Mitić, Vojislav V., Lazović, Goran, Veljković, Sandra, "Structural and Dielectric Properties of Rare earth Neodymium Zinc Titanite" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019 (2019):49-49,
https://hdl.handle.net/21.15107/rcub_dais_6976 .

The BaTiO3 ferroelectric properties within the microscale fractal nature

Mitić, Vojislav V.; Lazović, Goran; Lu, Chun-An; Paunović, Vesna; Veljković, Sandra; Newman, Nathan; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2019)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Lu, Chun-An
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Newman, Nathan
AU  - Vlahović, Branislav
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6979
AB  - The electronic ceramics applications based on ferroelectric and dielectric properties have enormous grow in function of very high microelectronics integrations. We used nano BaTiO3 with different versions of Y2O3 additives. We consolidated samples by sintering process in temperature interval from 1200 C to 1350 C. Here we also present some results as a “pre-coating” process for BaTiO3nano structure. This was quite original experimental process effected on different ferroelectrics characteristics between the grains. By our approach these relations between the grains corresponding to our ideas for fractal microelectronics properties integrations. The fractal nature analysis has been applied, too. We applied the complex fractal corrections between the grains and pores surfaces, including the particles Brownian’s Motion between the boundaries. This is completely new approach to the phenomenas of the ferroelectrics, dielectric and in general electronic properties integrations. we are on the way to create the correlation between the processing, structural and advance electronic properties for modern applications.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
T1  - The BaTiO3 ferroelectric properties within the microscale fractal nature
SP  - 36
EP  - 36
UR  - https://hdl.handle.net/21.15107/rcub_dais_6979
ER  - 
@conference{
author = "Mitić, Vojislav V. and Lazović, Goran and Lu, Chun-An and Paunović, Vesna and Veljković, Sandra and Newman, Nathan and Vlahović, Branislav",
year = "2019",
abstract = "The electronic ceramics applications based on ferroelectric and dielectric properties have enormous grow in function of very high microelectronics integrations. We used nano BaTiO3 with different versions of Y2O3 additives. We consolidated samples by sintering process in temperature interval from 1200 C to 1350 C. Here we also present some results as a “pre-coating” process for BaTiO3nano structure. This was quite original experimental process effected on different ferroelectrics characteristics between the grains. By our approach these relations between the grains corresponding to our ideas for fractal microelectronics properties integrations. The fractal nature analysis has been applied, too. We applied the complex fractal corrections between the grains and pores surfaces, including the particles Brownian’s Motion between the boundaries. This is completely new approach to the phenomenas of the ferroelectrics, dielectric and in general electronic properties integrations. we are on the way to create the correlation between the processing, structural and advance electronic properties for modern applications.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019",
title = "The BaTiO3 ferroelectric properties within the microscale fractal nature",
pages = "36-36",
url = "https://hdl.handle.net/21.15107/rcub_dais_6979"
}
Mitić, V. V., Lazović, G., Lu, C., Paunović, V., Veljković, S., Newman, N.,& Vlahović, B.. (2019). The BaTiO3 ferroelectric properties within the microscale fractal nature. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
Belgrade : Serbian Ceramic Society., 36-36.
https://hdl.handle.net/21.15107/rcub_dais_6979
Mitić VV, Lazović G, Lu C, Paunović V, Veljković S, Newman N, Vlahović B. The BaTiO3 ferroelectric properties within the microscale fractal nature. in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019. 2019;:36-36.
https://hdl.handle.net/21.15107/rcub_dais_6979 .
Mitić, Vojislav V., Lazović, Goran, Lu, Chun-An, Paunović, Vesna, Veljković, Sandra, Newman, Nathan, Vlahović, Branislav, "The BaTiO3 ferroelectric properties within the microscale fractal nature" in Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019 (2019):36-36,
https://hdl.handle.net/21.15107/rcub_dais_6979 .

Ceramic materials and energy - Extended Coble’s model and fractal nature

Mitić, Vojislav V.; Lazović, Goran; Paunovic, Vesna; Hwu, Jih Ru; Tsay, Shwu-Chen; Perng, Tsong-Ping; Veljković, Sandra; Vlahović, Branislav

(Elsevier, 2019)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunovic, Vesna
AU  - Hwu, Jih Ru
AU  - Tsay, Shwu-Chen
AU  - Perng, Tsong-Ping
AU  - Veljković, Sandra
AU  - Vlahović, Branislav
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S095522191930233X
UR  - https://dais.sanu.ac.rs/123456789/6945
AB  - The new frontiers open different directions within the higher and deeper knowledge structure using unemployed nano sizes domains. The BaTiO3 and other ceramic materials have fractal configuration nature based on three phenomena. First, ceramic grains have fractal shape looking as a contour in cross section or as a surface. Second, there is the so-called “negative space” made of pores and intergranular space. Third, there is fractal Brownian motion (fBm) within the material, during and after sintering, in the form of microparticle flow: ions, atoms, and electrons. Here, we took upon ourselves the task of extending Coble’s model, with already generalized Euclidean geometries, by fractal nature correction. These triple factors make the very peculiar microelectronic environment electro-static/dynamic combination. The stress is here set on inter-granular micro-capacity in function of higher energy harvesting and storage. Constructive fractal theory allows identifying micro-capacitors with fractal electrodes. The method is based on the iterative process of interpolation which is compatible with the grain model itself. Inter-granular permeability is taken as the fundamental thermodynamic parameter function of temperature and enthalpy (Gibbs free energy), which are very important for a structure-energy relation.
PB  - Elsevier
T2  - Journal of the European Ceramic Society
T1  - Ceramic materials and energy - Extended Coble’s model and fractal nature
SP  - 3513
EP  - 3525
VL  - 39
IS  - 12
DO  - 10.1016/j.jeurceramsoc.2019.04.009
UR  - https://hdl.handle.net/21.15107/rcub_dais_6945
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Paunovic, Vesna and Hwu, Jih Ru and Tsay, Shwu-Chen and Perng, Tsong-Ping and Veljković, Sandra and Vlahović, Branislav",
year = "2019",
abstract = "The new frontiers open different directions within the higher and deeper knowledge structure using unemployed nano sizes domains. The BaTiO3 and other ceramic materials have fractal configuration nature based on three phenomena. First, ceramic grains have fractal shape looking as a contour in cross section or as a surface. Second, there is the so-called “negative space” made of pores and intergranular space. Third, there is fractal Brownian motion (fBm) within the material, during and after sintering, in the form of microparticle flow: ions, atoms, and electrons. Here, we took upon ourselves the task of extending Coble’s model, with already generalized Euclidean geometries, by fractal nature correction. These triple factors make the very peculiar microelectronic environment electro-static/dynamic combination. The stress is here set on inter-granular micro-capacity in function of higher energy harvesting and storage. Constructive fractal theory allows identifying micro-capacitors with fractal electrodes. The method is based on the iterative process of interpolation which is compatible with the grain model itself. Inter-granular permeability is taken as the fundamental thermodynamic parameter function of temperature and enthalpy (Gibbs free energy), which are very important for a structure-energy relation.",
publisher = "Elsevier",
journal = "Journal of the European Ceramic Society",
title = "Ceramic materials and energy - Extended Coble’s model and fractal nature",
pages = "3513-3525",
volume = "39",
number = "12",
doi = "10.1016/j.jeurceramsoc.2019.04.009",
url = "https://hdl.handle.net/21.15107/rcub_dais_6945"
}
Mitić, V. V., Lazović, G., Paunovic, V., Hwu, J. R., Tsay, S., Perng, T., Veljković, S.,& Vlahović, B.. (2019). Ceramic materials and energy - Extended Coble’s model and fractal nature. in Journal of the European Ceramic Society
Elsevier., 39(12), 3513-3525.
https://doi.org/10.1016/j.jeurceramsoc.2019.04.009
https://hdl.handle.net/21.15107/rcub_dais_6945
Mitić VV, Lazović G, Paunovic V, Hwu JR, Tsay S, Perng T, Veljković S, Vlahović B. Ceramic materials and energy - Extended Coble’s model and fractal nature. in Journal of the European Ceramic Society. 2019;39(12):3513-3525.
doi:10.1016/j.jeurceramsoc.2019.04.009
https://hdl.handle.net/21.15107/rcub_dais_6945 .
Mitić, Vojislav V., Lazović, Goran, Paunovic, Vesna, Hwu, Jih Ru, Tsay, Shwu-Chen, Perng, Tsong-Ping, Veljković, Sandra, Vlahović, Branislav, "Ceramic materials and energy - Extended Coble’s model and fractal nature" in Journal of the European Ceramic Society, 39, no. 12 (2019):3513-3525,
https://doi.org/10.1016/j.jeurceramsoc.2019.04.009 .,
https://hdl.handle.net/21.15107/rcub_dais_6945 .
6
5
6

Fractal frontiers in microelectronic ceramic materials

Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Cvetković, Nenad; Jovanović, Dejan; Veljković, Sandra; Ranđelović, Branislav; Vlahović, Branislav

(Elsevier, 2019)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Cvetković, Nenad
AU  - Jovanović, Dejan
AU  - Veljković, Sandra
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0272884219300227
UR  - https://dais.sanu.ac.rs/123456789/5252
AB  - The world's perennial need for energy and microelectronic miniaturization brings with it a broad set of technological and scientific challenges. Materials characterized by precise microstructural architectures based on fractal analysis and ranging in size down to nano scale represent an important avenue for finding novel solutions. Deep materials structure hierarchies of this type open new possibilities in capacity according to the Heywang model, especially when extended by a fractals approach and intergranular relationships supported and recognized by their fractal nature. These developments are opening new frontiers in microelectronics miniaturization. They build on early fractal applications that were used as tools in miniaturization research and also provided application perspectives for diverse energy technologies. In other words, fractals, as a crucial concept of modern theoretical-experimental physics and materials sciences, are tightly linked to higher integration processes and microelectronics miniaturization. They also hold potential for meeting the energy exploitation challenge. In this research context, for the first time we experimentally and theoretically investigated the electrostatic field between the grains within fractal nature aspects. It is essentially a theoretical experiment based on samples of experimental microstructures imaged with SEM, as previously published in a number of other papers. We now take the research a step further by consolidating the experimental samples with respect to the predicted distribution of grains and pores within the sample mass. We make an original contribution by opening the frame of scale sizes with respect to the technical processes of consolidation. This lets us predict the constitutive elements of the microstructures – approximately equidistant grains and pores. In this paper we define in a practical manner the final target elements for experimental consolidation of real samples. It is the main bridge between a designed microstructure and related characteristics – for example, fractal dimensions and final properties of next-generation fractal microelectronics.
PB  - Elsevier
T2  - Ceramics International
T1  - Fractal frontiers in microelectronic ceramic materials
SP  - 9679
EP  - 9685
VL  - 45
DO  - 10.1016/j.ceramint.2019.01.020
UR  - https://hdl.handle.net/21.15107/rcub_dais_5252
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Cvetković, Nenad and Jovanović, Dejan and Veljković, Sandra and Ranđelović, Branislav and Vlahović, Branislav",
year = "2019",
abstract = "The world's perennial need for energy and microelectronic miniaturization brings with it a broad set of technological and scientific challenges. Materials characterized by precise microstructural architectures based on fractal analysis and ranging in size down to nano scale represent an important avenue for finding novel solutions. Deep materials structure hierarchies of this type open new possibilities in capacity according to the Heywang model, especially when extended by a fractals approach and intergranular relationships supported and recognized by their fractal nature. These developments are opening new frontiers in microelectronics miniaturization. They build on early fractal applications that were used as tools in miniaturization research and also provided application perspectives for diverse energy technologies. In other words, fractals, as a crucial concept of modern theoretical-experimental physics and materials sciences, are tightly linked to higher integration processes and microelectronics miniaturization. They also hold potential for meeting the energy exploitation challenge. In this research context, for the first time we experimentally and theoretically investigated the electrostatic field between the grains within fractal nature aspects. It is essentially a theoretical experiment based on samples of experimental microstructures imaged with SEM, as previously published in a number of other papers. We now take the research a step further by consolidating the experimental samples with respect to the predicted distribution of grains and pores within the sample mass. We make an original contribution by opening the frame of scale sizes with respect to the technical processes of consolidation. This lets us predict the constitutive elements of the microstructures – approximately equidistant grains and pores. In this paper we define in a practical manner the final target elements for experimental consolidation of real samples. It is the main bridge between a designed microstructure and related characteristics – for example, fractal dimensions and final properties of next-generation fractal microelectronics.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Fractal frontiers in microelectronic ceramic materials",
pages = "9679-9685",
volume = "45",
doi = "10.1016/j.ceramint.2019.01.020",
url = "https://hdl.handle.net/21.15107/rcub_dais_5252"
}
Mitić, V. V., Lazović, G., Paunović, V., Cvetković, N., Jovanović, D., Veljković, S., Ranđelović, B.,& Vlahović, B.. (2019). Fractal frontiers in microelectronic ceramic materials. in Ceramics International
Elsevier., 45, 9679-9685.
https://doi.org/10.1016/j.ceramint.2019.01.020
https://hdl.handle.net/21.15107/rcub_dais_5252
Mitić VV, Lazović G, Paunović V, Cvetković N, Jovanović D, Veljković S, Ranđelović B, Vlahović B. Fractal frontiers in microelectronic ceramic materials. in Ceramics International. 2019;45:9679-9685.
doi:10.1016/j.ceramint.2019.01.020
https://hdl.handle.net/21.15107/rcub_dais_5252 .
Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Cvetković, Nenad, Jovanović, Dejan, Veljković, Sandra, Ranđelović, Branislav, Vlahović, Branislav, "Fractal frontiers in microelectronic ceramic materials" in Ceramics International, 45 (2019):9679-9685,
https://doi.org/10.1016/j.ceramint.2019.01.020 .,
https://hdl.handle.net/21.15107/rcub_dais_5252 .
12
10
11

Fractal frontiers in microelectronic ceramic materials

Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Cvetković, Nenad; Jovanović, Dejan; Veljković, Sandra; Ranđelović, Branislav; Vlahović, Branislav

(Elsevier, 2019)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Cvetković, Nenad
AU  - Jovanović, Dejan
AU  - Veljković, Sandra
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0272884219300227
UR  - https://dais.sanu.ac.rs/123456789/4795
AB  - The world's perennial need for energy and microelectronic miniaturization brings with it a broad set of technological and scientific challenges. Materials characterized by precise microstructural architectures based on fractal analysis and ranging in size down to nano scale represent an important avenue for finding novel solutions. Deep materials structure hierarchies of this type open new possibilities in capacity according to the Heywang model, especially when extended by a fractals approach and intergranular relationships supported and recognized by their fractal nature. These developments are opening new frontiers in microelectronics miniaturization. They build on early fractal applications that were used as tools in miniaturization research and also provided application perspectives for diverse energy technologies. In other words, fractals, as a crucial concept of modern theoretical-experimental physics and materials sciences, are tightly linked to higher integration processes and microelectronics miniaturization. They also hold potential for meeting the energy exploitation challenge. In this research context, for the first time we experimentally and theoretically investigated the electrostatic field between the grains within fractal nature aspects. It is essentially a theoretical experiment based on samples of experimental microstructures imaged with SEM, as previously published in a number of other papers. We now take the research a step further by consolidating the experimental samples with respect to the predicted distribution of grains and pores within the sample mass. We make an original contribution by opening the frame of scale sizes with respect to the technical processes of consolidation. This lets us predict the constitutive elements of the microstructures – approximately equidistant grains and pores. In this paper we define in a practical manner the final target elements for experimental consolidation of real samples. It is the main bridge between a designed microstructure and related characteristics – for example, fractal dimensions and final properties of next-generation fractal microelectronics.
PB  - Elsevier
T2  - Ceramics International
T1  - Fractal frontiers in microelectronic ceramic materials
SP  - 9679
EP  - 9685
VL  - 45
DO  - 10.1016/j.ceramint.2019.01.020
UR  - https://hdl.handle.net/21.15107/rcub_dais_4795
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Cvetković, Nenad and Jovanović, Dejan and Veljković, Sandra and Ranđelović, Branislav and Vlahović, Branislav",
year = "2019",
abstract = "The world's perennial need for energy and microelectronic miniaturization brings with it a broad set of technological and scientific challenges. Materials characterized by precise microstructural architectures based on fractal analysis and ranging in size down to nano scale represent an important avenue for finding novel solutions. Deep materials structure hierarchies of this type open new possibilities in capacity according to the Heywang model, especially when extended by a fractals approach and intergranular relationships supported and recognized by their fractal nature. These developments are opening new frontiers in microelectronics miniaturization. They build on early fractal applications that were used as tools in miniaturization research and also provided application perspectives for diverse energy technologies. In other words, fractals, as a crucial concept of modern theoretical-experimental physics and materials sciences, are tightly linked to higher integration processes and microelectronics miniaturization. They also hold potential for meeting the energy exploitation challenge. In this research context, for the first time we experimentally and theoretically investigated the electrostatic field between the grains within fractal nature aspects. It is essentially a theoretical experiment based on samples of experimental microstructures imaged with SEM, as previously published in a number of other papers. We now take the research a step further by consolidating the experimental samples with respect to the predicted distribution of grains and pores within the sample mass. We make an original contribution by opening the frame of scale sizes with respect to the technical processes of consolidation. This lets us predict the constitutive elements of the microstructures – approximately equidistant grains and pores. In this paper we define in a practical manner the final target elements for experimental consolidation of real samples. It is the main bridge between a designed microstructure and related characteristics – for example, fractal dimensions and final properties of next-generation fractal microelectronics.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Fractal frontiers in microelectronic ceramic materials",
pages = "9679-9685",
volume = "45",
doi = "10.1016/j.ceramint.2019.01.020",
url = "https://hdl.handle.net/21.15107/rcub_dais_4795"
}
Mitić, V. V., Lazović, G., Paunović, V., Cvetković, N., Jovanović, D., Veljković, S., Ranđelović, B.,& Vlahović, B.. (2019). Fractal frontiers in microelectronic ceramic materials. in Ceramics International
Elsevier., 45, 9679-9685.
https://doi.org/10.1016/j.ceramint.2019.01.020
https://hdl.handle.net/21.15107/rcub_dais_4795
Mitić VV, Lazović G, Paunović V, Cvetković N, Jovanović D, Veljković S, Ranđelović B, Vlahović B. Fractal frontiers in microelectronic ceramic materials. in Ceramics International. 2019;45:9679-9685.
doi:10.1016/j.ceramint.2019.01.020
https://hdl.handle.net/21.15107/rcub_dais_4795 .
Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Cvetković, Nenad, Jovanović, Dejan, Veljković, Sandra, Ranđelović, Branislav, Vlahović, Branislav, "Fractal frontiers in microelectronic ceramic materials" in Ceramics International, 45 (2019):9679-9685,
https://doi.org/10.1016/j.ceramint.2019.01.020 .,
https://hdl.handle.net/21.15107/rcub_dais_4795 .
12
10
11

The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Paunović, Vesna; Mohr, Marcus; Fecht, Hans-Jörg

(Belgrade : Institute of Technical Sciences of SASA, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Mohr, Marcus
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4725
AB  - The development of new technologies is very often based on improvement of novel materials and the features of the existing ones as well as their application. Considering that the synthetic diamonds are one of the most appealing areas of modern materials science and its modern applications, the research in this area is becoming more intensive. Therefore, in this paper, an overview of the basic properties of natural and synthesized diamonds is firstly presented followed by the method of forming and parameters that affect the final properties of polycrystalline diamonds. The first method which was used for obtaining synthesized diamonds was HPHT (high pressure high temperature) method, by which were produced diamonds very similar to the natural ones. However, CVD (chemical vapor deposition) method for obtaining polycrystalline diamond films was more promising. By applying this method microcrystalline diamond (MCD) with grain size larger than 100 nm were created. Considering that there were some disadvantages of MCD, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, which average size of grains were 5-100 nm as well as 3-5 nm. Depending on the consolidation process (composition and pressure of applied gases, filament setup and reactor geometry) the properties of polycrystalline diamonds can vary. Detailed analysis of these materials nature can be additionally obtained by application of the fractal analysis which is presented in this paper.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
T1  - The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis
SP  - 58
EP  - 58
UR  - https://hdl.handle.net/21.15107/rcub_dais_4725
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Mohr, Marcus and Fecht, Hans-Jörg",
year = "2018",
abstract = "The development of new technologies is very often based on improvement of novel materials and the features of the existing ones as well as their application. Considering that the synthetic diamonds are one of the most appealing areas of modern materials science and its modern applications, the research in this area is becoming more intensive. Therefore, in this paper, an overview of the basic properties of natural and synthesized diamonds is firstly presented followed by the method of forming and parameters that affect the final properties of polycrystalline diamonds. The first method which was used for obtaining synthesized diamonds was HPHT (high pressure high temperature) method, by which were produced diamonds very similar to the natural ones. However, CVD (chemical vapor deposition) method for obtaining polycrystalline diamond films was more promising. By applying this method microcrystalline diamond (MCD) with grain size larger than 100 nm were created. Considering that there were some disadvantages of MCD, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, which average size of grains were 5-100 nm as well as 3-5 nm. Depending on the consolidation process (composition and pressure of applied gases, filament setup and reactor geometry) the properties of polycrystalline diamonds can vary. Detailed analysis of these materials nature can be additionally obtained by application of the fractal analysis which is presented in this paper.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia",
title = "The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis",
pages = "58-58",
url = "https://hdl.handle.net/21.15107/rcub_dais_4725"
}
Veljković, S., Mitić, V. V., Lazović, G., Paunović, V., Mohr, M.,& Fecht, H.. (2018). The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
Belgrade : Institute of Technical Sciences of SASA., 58-58.
https://hdl.handle.net/21.15107/rcub_dais_4725
Veljković S, Mitić VV, Lazović G, Paunović V, Mohr M, Fecht H. The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis. in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia. 2018;:58-58.
https://hdl.handle.net/21.15107/rcub_dais_4725 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Mohr, Marcus, Fecht, Hans-Jörg, "The consolidation process and microstructure analysis of synthesized diamonds within fractal nature analysis" in Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia (2018):58-58,
https://hdl.handle.net/21.15107/rcub_dais_4725 .

Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers

Mitić, Vojislav V.; Veljković, Sandra; Lazović, Goran; Mohr, Marcus; Gluche, Peter; Paunović, Vesna; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Veljković, Sandra
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Gluche, Peter
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4120
AB  - Many areas, like the most known jewelry, medical-surgery, in high professional industry, as well as producing micro components, there are many possibilities for application of synthesized diamonds. These and others specific application of polycrystal diamonds, require permanently research and improvement of their properties. Such exploring could be much better with understanding fundamentals of microstructures. In such investigation, fractal nature analysis could significantly contribute to the revealing of possibilities for improvements. By the experimental procedure, it is noticed that the influence of grain size on thermal and electrical conductivity have notable impact. Considering that, these conductivities affect the possibility of application in many areas, explaining on microstructural nature is of high importance. The influence of relation between the structures and final properties of synthetized diamonds can be achieved by explaining these phenomena based on fractal nature. The aim of the investigation is the establishing thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers
SP  - 56
EP  - 57
UR  - https://hdl.handle.net/21.15107/rcub_dais_4120
ER  - 
@conference{
author = "Mitić, Vojislav V. and Veljković, Sandra and Lazović, Goran and Mohr, Marcus and Gluche, Peter and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2018",
abstract = "Many areas, like the most known jewelry, medical-surgery, in high professional industry, as well as producing micro components, there are many possibilities for application of synthesized diamonds. These and others specific application of polycrystal diamonds, require permanently research and improvement of their properties. Such exploring could be much better with understanding fundamentals of microstructures. In such investigation, fractal nature analysis could significantly contribute to the revealing of possibilities for improvements. By the experimental procedure, it is noticed that the influence of grain size on thermal and electrical conductivity have notable impact. Considering that, these conductivities affect the possibility of application in many areas, explaining on microstructural nature is of high importance. The influence of relation between the structures and final properties of synthetized diamonds can be achieved by explaining these phenomena based on fractal nature. The aim of the investigation is the establishing thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers",
pages = "56-57",
url = "https://hdl.handle.net/21.15107/rcub_dais_4120"
}
Mitić, V. V., Veljković, S., Lazović, G., Mohr, M., Gluche, P., Paunović, V.,& Fecht, H.. (2018). Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 56-57.
https://hdl.handle.net/21.15107/rcub_dais_4120
Mitić VV, Veljković S, Lazović G, Mohr M, Gluche P, Paunović V, Fecht H. Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:56-57.
https://hdl.handle.net/21.15107/rcub_dais_4120 .
Mitić, Vojislav V., Veljković, Sandra, Lazović, Goran, Mohr, Marcus, Gluche, Peter, Paunović, Vesna, Fecht, Hans-Jörg, "Thermal and electrical conductivity relation phenomena within fractal nature synthesized diamonds frontiers" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):56-57,
https://hdl.handle.net/21.15107/rcub_dais_4120 .

The synthesized diamonds microstructure consolidation review

Veljković, Sandra; Mitić, Vojislav V.; Mohr, Marcus; Paunović, Vesna; Lazović, Goran; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Mohr, Marcus
AU  - Paunović, Vesna
AU  - Lazović, Goran
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4100
AB  - Excellent mechanical, optical and thermal properties of diamonds are the advantages for which they are used in many areas and thus in the industrial as well. Considering that natural diamonds are rare and expensive, in order to overcome that, production of synthesized diamonds is a good solution. Hence, investigation of alternative producing methods led to discovery of commercially available chemical vapor deposition – CVD method. Using this method led to creation of microcrystalline diamond (MCD) with grain size larger than 100 nm. Because of some disadvantages of this synthesized diamond, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, with average size of grains ranging 5-100 nm and 3-5 nm, respectively. Reactor geometry, filament setup and gas phase conditions are also very important parameters for diamonds growth on silicon wafers, in addition to the mixture composition and pressure of applied gases. The goal of the paper is to present the relation of microstructure and diverse consolidation methods.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - The synthesized diamonds microstructure consolidation review
SP  - 89
EP  - 89
UR  - https://hdl.handle.net/21.15107/rcub_dais_4100
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Mohr, Marcus and Paunović, Vesna and Lazović, Goran and Fecht, Hans-Jörg",
year = "2018",
abstract = "Excellent mechanical, optical and thermal properties of diamonds are the advantages for which they are used in many areas and thus in the industrial as well. Considering that natural diamonds are rare and expensive, in order to overcome that, production of synthesized diamonds is a good solution. Hence, investigation of alternative producing methods led to discovery of commercially available chemical vapor deposition – CVD method. Using this method led to creation of microcrystalline diamond (MCD) with grain size larger than 100 nm. Because of some disadvantages of this synthesized diamond, new nanocrystalline (NCD) and ultra-nanocrystalline (UNCD) diamond materials were developed, with average size of grains ranging 5-100 nm and 3-5 nm, respectively. Reactor geometry, filament setup and gas phase conditions are also very important parameters for diamonds growth on silicon wafers, in addition to the mixture composition and pressure of applied gases. The goal of the paper is to present the relation of microstructure and diverse consolidation methods.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "The synthesized diamonds microstructure consolidation review",
pages = "89-89",
url = "https://hdl.handle.net/21.15107/rcub_dais_4100"
}
Veljković, S., Mitić, V. V., Mohr, M., Paunović, V., Lazović, G.,& Fecht, H.. (2018). The synthesized diamonds microstructure consolidation review. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 89-89.
https://hdl.handle.net/21.15107/rcub_dais_4100
Veljković S, Mitić VV, Mohr M, Paunović V, Lazović G, Fecht H. The synthesized diamonds microstructure consolidation review. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:89-89.
https://hdl.handle.net/21.15107/rcub_dais_4100 .
Veljković, Sandra, Mitić, Vojislav V., Mohr, Marcus, Paunović, Vesna, Lazović, Goran, Fecht, Hans-Jörg, "The synthesized diamonds microstructure consolidation review" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):89-89,
https://hdl.handle.net/21.15107/rcub_dais_4100 .

Electrical conductivity and fractal nature analysis synthesized diamonds phenomena

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Mohr, Marcus; Paunović, Vesna; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4102
AB  - Chemical Vapor Deposition – CVD can be used for creation of synthesized diamonds. The result of the process is the microstructure which is composed of numerous small grains. Such structure can be applied in various areas, like medicine, electronics, micromechanical systems, microelectromechanical systems – MEMS and many others. For these and many other applications, one of the most important feature is the electrical conductivity. Although the natural diamond is an excellent insulator, synthesized diamonds show different behavior. The exploring of this feature is a complex area with a strong convolution between grain size and sp2 bond ing effect. The optimization of the synthesized diamond properties requires the revealing of the size and the shape of the created crystallites. Due to the size of grains being significantly reduced, the fractal theory can help in analysis of the grain morphology and especially of electrical conductivity.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Electrical conductivity and fractal nature analysis synthesized diamonds phenomena
SP  - 89
EP  - 90
UR  - https://hdl.handle.net/21.15107/rcub_dais_4102
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Mohr, Marcus and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2018",
abstract = "Chemical Vapor Deposition – CVD can be used for creation of synthesized diamonds. The result of the process is the microstructure which is composed of numerous small grains. Such structure can be applied in various areas, like medicine, electronics, micromechanical systems, microelectromechanical systems – MEMS and many others. For these and many other applications, one of the most important feature is the electrical conductivity. Although the natural diamond is an excellent insulator, synthesized diamonds show different behavior. The exploring of this feature is a complex area with a strong convolution between grain size and sp2 bond ing effect. The optimization of the synthesized diamond properties requires the revealing of the size and the shape of the created crystallites. Due to the size of grains being significantly reduced, the fractal theory can help in analysis of the grain morphology and especially of electrical conductivity.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Electrical conductivity and fractal nature analysis synthesized diamonds phenomena",
pages = "89-90",
url = "https://hdl.handle.net/21.15107/rcub_dais_4102"
}
Veljković, S., Mitić, V. V., Lazović, G., Mohr, M., Paunović, V.,& Fecht, H.. (2018). Electrical conductivity and fractal nature analysis synthesized diamonds phenomena. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 89-90.
https://hdl.handle.net/21.15107/rcub_dais_4102
Veljković S, Mitić VV, Lazović G, Mohr M, Paunović V, Fecht H. Electrical conductivity and fractal nature analysis synthesized diamonds phenomena. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:89-90.
https://hdl.handle.net/21.15107/rcub_dais_4102 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Mohr, Marcus, Paunović, Vesna, Fecht, Hans-Jörg, "Electrical conductivity and fractal nature analysis synthesized diamonds phenomena" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):89-90,
https://hdl.handle.net/21.15107/rcub_dais_4102 .

The synthesized diamonds thermal conductivity and fractal nature

Veljković, Sandra; Mitić, Vojislav V.; Lazović, Goran; Mohr, Marcus; Paunović, Vesna; Fecht, Hans-Jörg

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Mohr, Marcus
AU  - Paunović, Vesna
AU  - Fecht, Hans-Jörg
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4101
AB  - It is well known that diamonds are almost the best thermal conductors. This property as well as other convenient features, leaded to intensive research of synthesized diamonds production. Also, the investigation of the most valuable characteristics is the aim of permanently exploring. The thermal conductivity of synthesized diamonds research is very important, and because of that, the knowledge of the thermal conductivity properties is a basic point for completely understanding the synthesized diamonds phenomena. The experimental procedure confirmed interesting results regarding thermal conductivity. Investigation of the influence of different inputs on the synthesized diamonds process is of high importance. Due to the fact that the dimensions of the grain size have an impact on thermal conductivity, and that they are very small in deposited films of synthesized diamonds, the investigation of their fractal nature could lead to the further explanation of phenomena. The goal of this paper is basic analysis of what is the influence on thermal conductivity in the light of fractal nature materials properties.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - The synthesized diamonds thermal conductivity and fractal nature
SP  - 90
EP  - 90
UR  - https://hdl.handle.net/21.15107/rcub_dais_4101
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Lazović, Goran and Mohr, Marcus and Paunović, Vesna and Fecht, Hans-Jörg",
year = "2018",
abstract = "It is well known that diamonds are almost the best thermal conductors. This property as well as other convenient features, leaded to intensive research of synthesized diamonds production. Also, the investigation of the most valuable characteristics is the aim of permanently exploring. The thermal conductivity of synthesized diamonds research is very important, and because of that, the knowledge of the thermal conductivity properties is a basic point for completely understanding the synthesized diamonds phenomena. The experimental procedure confirmed interesting results regarding thermal conductivity. Investigation of the influence of different inputs on the synthesized diamonds process is of high importance. Due to the fact that the dimensions of the grain size have an impact on thermal conductivity, and that they are very small in deposited films of synthesized diamonds, the investigation of their fractal nature could lead to the further explanation of phenomena. The goal of this paper is basic analysis of what is the influence on thermal conductivity in the light of fractal nature materials properties.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "The synthesized diamonds thermal conductivity and fractal nature",
pages = "90-90",
url = "https://hdl.handle.net/21.15107/rcub_dais_4101"
}
Veljković, S., Mitić, V. V., Lazović, G., Mohr, M., Paunović, V.,& Fecht, H.. (2018). The synthesized diamonds thermal conductivity and fractal nature. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 90-90.
https://hdl.handle.net/21.15107/rcub_dais_4101
Veljković S, Mitić VV, Lazović G, Mohr M, Paunović V, Fecht H. The synthesized diamonds thermal conductivity and fractal nature. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:90-90.
https://hdl.handle.net/21.15107/rcub_dais_4101 .
Veljković, Sandra, Mitić, Vojislav V., Lazović, Goran, Mohr, Marcus, Paunović, Vesna, Fecht, Hans-Jörg, "The synthesized diamonds thermal conductivity and fractal nature" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):90-90,
https://hdl.handle.net/21.15107/rcub_dais_4101 .

Microstructure and EDS Characterization of Doped BaTiO3 Ceramics

Miljković, Miroslav; Paunović, Vesna; Mitić, Vojislav V.; Radosavljević Mihajlović, Ana; Veljković, Sandra

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Miljković, Miroslav
AU  - Paunović, Vesna
AU  - Mitić, Vojislav V.
AU  - Radosavljević Mihajlović, Ana
AU  - Veljković, Sandra
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4086
AB  - The purpose of this paper is an investigation of the effects of various dopants (La, Nb, Sb) on the microstructure properties, phase composition and contact surface of BaTiO3 based ceramics. The doped BaTiO3-ceramics were prepared by conventional solid state procedure and sintered up to 1350oC for four hours. The concentration of additive were range from 0.1 to 5.0 at% of La, Nb or Sb. The grain size and microstructure characteristics for various samples and their phase composition was carried out using a scanning electron microscope SEM (JEOL-JSM 5300) equipped with EDS (QX 2000S) system. The homogeneous and completely fine-grained was observed in samples doped with low concentration of dopant (0.1 and 0.5 at %). EDS analysis of this samples did not reveal any dopant-rich regions, which indicated a uniform incorporation of dopants within the samples. In high doped samples, apart from the fine grained matrix, the appearance of local area with secondary abnormal grains was observed. The increase of dopant concentration leads to the appearance of dopant-rich regions between grains.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Microstructure and EDS Characterization of Doped BaTiO3 Ceramics
SP  - 91
EP  - 91
UR  - https://hdl.handle.net/21.15107/rcub_dais_4086
ER  - 
@conference{
author = "Miljković, Miroslav and Paunović, Vesna and Mitić, Vojislav V. and Radosavljević Mihajlović, Ana and Veljković, Sandra",
year = "2018",
abstract = "The purpose of this paper is an investigation of the effects of various dopants (La, Nb, Sb) on the microstructure properties, phase composition and contact surface of BaTiO3 based ceramics. The doped BaTiO3-ceramics were prepared by conventional solid state procedure and sintered up to 1350oC for four hours. The concentration of additive were range from 0.1 to 5.0 at% of La, Nb or Sb. The grain size and microstructure characteristics for various samples and their phase composition was carried out using a scanning electron microscope SEM (JEOL-JSM 5300) equipped with EDS (QX 2000S) system. The homogeneous and completely fine-grained was observed in samples doped with low concentration of dopant (0.1 and 0.5 at %). EDS analysis of this samples did not reveal any dopant-rich regions, which indicated a uniform incorporation of dopants within the samples. In high doped samples, apart from the fine grained matrix, the appearance of local area with secondary abnormal grains was observed. The increase of dopant concentration leads to the appearance of dopant-rich regions between grains.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Microstructure and EDS Characterization of Doped BaTiO3 Ceramics",
pages = "91-91",
url = "https://hdl.handle.net/21.15107/rcub_dais_4086"
}
Miljković, M., Paunović, V., Mitić, V. V., Radosavljević Mihajlović, A.,& Veljković, S.. (2018). Microstructure and EDS Characterization of Doped BaTiO3 Ceramics. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 91-91.
https://hdl.handle.net/21.15107/rcub_dais_4086
Miljković M, Paunović V, Mitić VV, Radosavljević Mihajlović A, Veljković S. Microstructure and EDS Characterization of Doped BaTiO3 Ceramics. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:91-91.
https://hdl.handle.net/21.15107/rcub_dais_4086 .
Miljković, Miroslav, Paunović, Vesna, Mitić, Vojislav V., Radosavljević Mihajlović, Ana, Veljković, Sandra, "Microstructure and EDS Characterization of Doped BaTiO3 Ceramics" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):91-91,
https://hdl.handle.net/21.15107/rcub_dais_4086 .

Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena

Mitić, Vojislav V.; Lazović, Goran; Vosika, Zoran B.; Paunović, Vesna; Veljković, Sandra; Danković, Danijel; Vlahović, Branislav

(Belgrade : Serbian Ceramic Society, 2018)

TY  - CONF
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Vosika, Zoran B.
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Danković, Danijel
AU  - Vlahović, Branislav
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4088
AB  - Well known material with ferroelectric properties, BaTiO3-ceramics, have many advanced applications. Fractal approach in analyzing of these structures can be one of the solution for investigation of morphology. It is known that a wide range of disordered systems can be characterized by the fractal nature over a microscopic correlation length, and on a small scale the energy transformations are permitted. Due to the lack of energy, priorities of the future frontiers in ceramics science is to expand the knowledge even down to nano and towards new and alternative energy sources. Fractal configuration nature of BaTiO3 and other ceramics is based on phenomena that ceramic grains have fractal shape; there are pores and inter-granular space and there is particles Brownian fractal motion inside the material, during and after sintering, in the form of micro-particles flow, which is the most important. These important facts are in function of further developing of knowledge of energy harvesting and storage.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
T1  - Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena
SP  - 92
EP  - 93
UR  - https://hdl.handle.net/21.15107/rcub_dais_4088
ER  - 
@conference{
author = "Mitić, Vojislav V. and Lazović, Goran and Vosika, Zoran B. and Paunović, Vesna and Veljković, Sandra and Danković, Danijel and Vlahović, Branislav",
year = "2018",
abstract = "Well known material with ferroelectric properties, BaTiO3-ceramics, have many advanced applications. Fractal approach in analyzing of these structures can be one of the solution for investigation of morphology. It is known that a wide range of disordered systems can be characterized by the fractal nature over a microscopic correlation length, and on a small scale the energy transformations are permitted. Due to the lack of energy, priorities of the future frontiers in ceramics science is to expand the knowledge even down to nano and towards new and alternative energy sources. Fractal configuration nature of BaTiO3 and other ceramics is based on phenomena that ceramic grains have fractal shape; there are pores and inter-granular space and there is particles Brownian fractal motion inside the material, during and after sintering, in the form of micro-particles flow, which is the most important. These important facts are in function of further developing of knowledge of energy harvesting and storage.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018",
title = "Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena",
pages = "92-93",
url = "https://hdl.handle.net/21.15107/rcub_dais_4088"
}
Mitić, V. V., Lazović, G., Vosika, Z. B., Paunović, V., Veljković, S., Danković, D.,& Vlahović, B.. (2018). Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018
Belgrade : Serbian Ceramic Society., 92-93.
https://hdl.handle.net/21.15107/rcub_dais_4088
Mitić VV, Lazović G, Vosika ZB, Paunović V, Veljković S, Danković D, Vlahović B. Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018. 2018;:92-93.
https://hdl.handle.net/21.15107/rcub_dais_4088 .
Mitić, Vojislav V., Lazović, Goran, Vosika, Zoran B., Paunović, Vesna, Veljković, Sandra, Danković, Danijel, Vlahović, Branislav, "Fractal nature Heywang model contribution and BaTiO3-ceramics semiconducting phenomena" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 17-19 September 2018 (2018):92-93,
https://hdl.handle.net/21.15107/rcub_dais_4088 .

Fractals and ceramics materials characterization

Veljković, Sandra; Munćan, Milan; Miljković, Miroslav; Paunović, Vesna; Kocić, Ljubiša; Mitić, Vojislav V.

(Belgrade : Serbian Ceramic Society, 2017)

TY  - CONF
AU  - Veljković, Sandra
AU  - Munćan, Milan
AU  - Miljković, Miroslav
AU  - Paunović, Vesna
AU  - Kocić, Ljubiša
AU  - Mitić, Vojislav V.
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/4822
AB  - Large part of powder based materials; especially ceramics are porous in more or less percentage. For such materials, two separated spaces are present. The “positive” space is made by grains or particles, while the “negative” space is “reserved” for pores. Formally speaking, the bulk of material space, V can be written as an union of “positive” and “negative” space which otherwise have no common points. Pores and grains share same surfaces, and since grains have fractal nature, with fractal interior and fractal boundary surfaces, the pores also have fractal “walls”. This implies two conclusions: the pores should be treated as the fractal objects, i.e., the objects having non-fractal interior, and fractal surface with dimension equal to grain’s fractal dimension. Suppose that the morphology of materials changes through time for the consideration process. By box counting methods fractal dimension definition, it follows that three sintering phase formulae based on the union described above, the sintering initial phase, the Frenkel formula takes corrected form including fractal dimension value. In this paper we applied four methods: Cube counting, Triangulation, Variance and Power spectrum method. All of these are very important and quite a different then the other, Ceramic Characterization Classic methods, what is opening new frontiers in material science characterization.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
T1  - Fractals and ceramics materials characterization
SP  - 80
EP  - 81
UR  - https://hdl.handle.net/21.15107/rcub_dais_4822
ER  - 
@conference{
author = "Veljković, Sandra and Munćan, Milan and Miljković, Miroslav and Paunović, Vesna and Kocić, Ljubiša and Mitić, Vojislav V.",
year = "2017",
abstract = "Large part of powder based materials; especially ceramics are porous in more or less percentage. For such materials, two separated spaces are present. The “positive” space is made by grains or particles, while the “negative” space is “reserved” for pores. Formally speaking, the bulk of material space, V can be written as an union of “positive” and “negative” space which otherwise have no common points. Pores and grains share same surfaces, and since grains have fractal nature, with fractal interior and fractal boundary surfaces, the pores also have fractal “walls”. This implies two conclusions: the pores should be treated as the fractal objects, i.e., the objects having non-fractal interior, and fractal surface with dimension equal to grain’s fractal dimension. Suppose that the morphology of materials changes through time for the consideration process. By box counting methods fractal dimension definition, it follows that three sintering phase formulae based on the union described above, the sintering initial phase, the Frenkel formula takes corrected form including fractal dimension value. In this paper we applied four methods: Cube counting, Triangulation, Variance and Power spectrum method. All of these are very important and quite a different then the other, Ceramic Characterization Classic methods, what is opening new frontiers in material science characterization.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017",
title = "Fractals and ceramics materials characterization",
pages = "80-81",
url = "https://hdl.handle.net/21.15107/rcub_dais_4822"
}
Veljković, S., Munćan, M., Miljković, M., Paunović, V., Kocić, L.,& Mitić, V. V.. (2017). Fractals and ceramics materials characterization. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
Belgrade : Serbian Ceramic Society., 80-81.
https://hdl.handle.net/21.15107/rcub_dais_4822
Veljković S, Munćan M, Miljković M, Paunović V, Kocić L, Mitić VV. Fractals and ceramics materials characterization. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017. 2017;:80-81.
https://hdl.handle.net/21.15107/rcub_dais_4822 .
Veljković, Sandra, Munćan, Milan, Miljković, Miroslav, Paunović, Vesna, Kocić, Ljubiša, Mitić, Vojislav V., "Fractals and ceramics materials characterization" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017 (2017):80-81,
https://hdl.handle.net/21.15107/rcub_dais_4822 .

Quantitative metallography modern metods

Veljković, Sandra; Mitić, Vojislav V.; Kocić, Ljubiša; Paunović, Vesna

(Belgrade : Serbian Ceramic Society, 2016)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Kocić, Ljubiša
AU  - Paunović, Vesna
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/881
AB  - This paper has been concerned with the classical Stereological targets V, S, L, and N only, namely with so-called first-order properties. Stereology is now drifting rapidly toward second-order methods, aimed at quantifying spatial pattern for the elements of a structure (e.g. clustering, repulsion, etc., between the elements) as well as the nature and degree of association between different structures. Second-order statistical methods are widely available for point patterns. Important devices for the second-order analysis of cells and organelles when regarded as points in space have recently been devised. Analogous methods extend to higher dimensional quantities such as surface areas and volumes.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade
T1  - Quantitative metallography modern metods
SP  - 71
EP  - 72
UR  - https://hdl.handle.net/21.15107/rcub_dais_881
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Kocić, Ljubiša and Paunović, Vesna",
year = "2016",
abstract = "This paper has been concerned with the classical Stereological targets V, S, L, and N only, namely with so-called first-order properties. Stereology is now drifting rapidly toward second-order methods, aimed at quantifying spatial pattern for the elements of a structure (e.g. clustering, repulsion, etc., between the elements) as well as the nature and degree of association between different structures. Second-order statistical methods are widely available for point patterns. Important devices for the second-order analysis of cells and organelles when regarded as points in space have recently been devised. Analogous methods extend to higher dimensional quantities such as surface areas and volumes.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade",
title = "Quantitative metallography modern metods",
pages = "71-72",
url = "https://hdl.handle.net/21.15107/rcub_dais_881"
}
Veljković, S., Mitić, V. V., Kocić, L.,& Paunović, V.. (2016). Quantitative metallography modern metods. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade
Belgrade : Serbian Ceramic Society., 71-72.
https://hdl.handle.net/21.15107/rcub_dais_881
Veljković S, Mitić VV, Kocić L, Paunović V. Quantitative metallography modern metods. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade. 2016;:71-72.
https://hdl.handle.net/21.15107/rcub_dais_881 .
Veljković, Sandra, Mitić, Vojislav V., Kocić, Ljubiša, Paunović, Vesna, "Quantitative metallography modern metods" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade (2016):71-72,
https://hdl.handle.net/21.15107/rcub_dais_881 .

Material characterization SEM modern methods

Veljković, Sandra; Mitić, Vojislav V.; Kocić, Ljubiša; Paunović, Vesna

(Belgrade : Serbian Ceramic Society, 2016)

TY  - CONF
AU  - Veljković, Sandra
AU  - Mitić, Vojislav V.
AU  - Kocić, Ljubiša
AU  - Paunović, Vesna
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/880
AB  - Detailed analysis was carried out and systematization of methods used in the characterization of materials using SEM. We analyzed its operation. Attention was paid to its major parts. Specially to the electron gun and lens. Also, comparisons of forming character oprickim microscope and SEM. In further analysis we have studied differences between EDS and WDS.. The EDS features measurement with a small probe current, short-time acquisition of spectra, etc. WDS features a high energy (wavelength) resolution, detection of trace elements. Most SEMs are equipped with an EDS, whereas a WDS is generally used as an Electron Probe Microanalyzer (EPMA) that mainly performs elemental analysis.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade
T1  - Material characterization SEM modern methods
SP  - 72
EP  - 72
UR  - https://hdl.handle.net/21.15107/rcub_dais_880
ER  - 
@conference{
author = "Veljković, Sandra and Mitić, Vojislav V. and Kocić, Ljubiša and Paunović, Vesna",
year = "2016",
abstract = "Detailed analysis was carried out and systematization of methods used in the characterization of materials using SEM. We analyzed its operation. Attention was paid to its major parts. Specially to the electron gun and lens. Also, comparisons of forming character oprickim microscope and SEM. In further analysis we have studied differences between EDS and WDS.. The EDS features measurement with a small probe current, short-time acquisition of spectra, etc. WDS features a high energy (wavelength) resolution, detection of trace elements. Most SEMs are equipped with an EDS, whereas a WDS is generally used as an Electron Probe Microanalyzer (EPMA) that mainly performs elemental analysis.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade",
title = "Material characterization SEM modern methods",
pages = "72-72",
url = "https://hdl.handle.net/21.15107/rcub_dais_880"
}
Veljković, S., Mitić, V. V., Kocić, L.,& Paunović, V.. (2016). Material characterization SEM modern methods. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade
Belgrade : Serbian Ceramic Society., 72-72.
https://hdl.handle.net/21.15107/rcub_dais_880
Veljković S, Mitić VV, Kocić L, Paunović V. Material characterization SEM modern methods. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade. 2016;:72-72.
https://hdl.handle.net/21.15107/rcub_dais_880 .
Veljković, Sandra, Mitić, Vojislav V., Kocić, Ljubiša, Paunović, Vesna, "Material characterization SEM modern methods" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : V Serbian Ceramic Society Conference, Sep 21-23 September 2016, Belgrade (2016):72-72,
https://hdl.handle.net/21.15107/rcub_dais_880 .