Manojlović, Dragan D.

Link to this page

Authority KeyName Variants
orcid::0000-0003-1388-6245
  • Manojlović, Dragan D. (6)

Author's Bibliography

Synthesis, characterization and in vitro evaluation of divalent ion release from stable NiFe2O4, ZnFe2O4 and core-shell ZnFe2O4@NiFe2O4 nanoparticles

Anđelković, Ljubica; Jeremić, Dejan; Milenković, Milica R.; Radosavljević, Jelena; Vulić, Predrag; Pavlović, Vladimir B.; Manojlović, Dragan D.; Nikolić, Aleksandar S.

(Elsevier, 2020)

TY  - JOUR
AU  - Anđelković, Ljubica
AU  - Jeremić, Dejan
AU  - Milenković, Milica R.
AU  - Radosavljević, Jelena
AU  - Vulić, Predrag
AU  - Pavlović, Vladimir B.
AU  - Manojlović, Dragan D.
AU  - Nikolić, Aleksandar S.
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/6901
AB  - A simple organic-phase synthesis process was used to produce bare NiFe2O4 and ZnFe2O4 and core-shell ZnFe2O4@NiFe2O4 ferrite nanoparticles. X-ray powder diffractograms for all investigated powders show characteristic peaks of a spinel cubic structure without a secondary phase. Transmission electron microscopy (TEM) indicated the presence of nanoparticles that are smaller than 20 nm. The release of divalent ions (Ni2+ and Zn2+) from synthesized nanoparticles that were dispersed in saline solution, phosphate-buffered saline (PBS) and human serum, as determined by the inductively coupled plasma mass spectrometry (ICP-MS) method, was lower than 2 wt %. These results demonstrate the stability of the investigated nanoparticles in biologically relevant media and exclude the toxicity of Ni2+ and Zn2+ due to metal ion release, thereby opening a broad range of (bio)medical applications.
PB  - Elsevier
T2  - Ceramics International
T1  - Synthesis, characterization and in vitro evaluation of divalent ion release from stable NiFe2O4, ZnFe2O4 and core-shell ZnFe2O4@NiFe2O4 nanoparticles
SP  - 3528
EP  - 3533
VL  - 46
IS  - 3
DO  - 10.1016/j.ceramint.2019.10.068
UR  - https://hdl.handle.net/21.15107/rcub_dais_6901
ER  - 
@article{
author = "Anđelković, Ljubica and Jeremić, Dejan and Milenković, Milica R. and Radosavljević, Jelena and Vulić, Predrag and Pavlović, Vladimir B. and Manojlović, Dragan D. and Nikolić, Aleksandar S.",
year = "2020",
abstract = "A simple organic-phase synthesis process was used to produce bare NiFe2O4 and ZnFe2O4 and core-shell ZnFe2O4@NiFe2O4 ferrite nanoparticles. X-ray powder diffractograms for all investigated powders show characteristic peaks of a spinel cubic structure without a secondary phase. Transmission electron microscopy (TEM) indicated the presence of nanoparticles that are smaller than 20 nm. The release of divalent ions (Ni2+ and Zn2+) from synthesized nanoparticles that were dispersed in saline solution, phosphate-buffered saline (PBS) and human serum, as determined by the inductively coupled plasma mass spectrometry (ICP-MS) method, was lower than 2 wt %. These results demonstrate the stability of the investigated nanoparticles in biologically relevant media and exclude the toxicity of Ni2+ and Zn2+ due to metal ion release, thereby opening a broad range of (bio)medical applications.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Synthesis, characterization and in vitro evaluation of divalent ion release from stable NiFe2O4, ZnFe2O4 and core-shell ZnFe2O4@NiFe2O4 nanoparticles",
pages = "3528-3533",
volume = "46",
number = "3",
doi = "10.1016/j.ceramint.2019.10.068",
url = "https://hdl.handle.net/21.15107/rcub_dais_6901"
}
Anđelković, L., Jeremić, D., Milenković, M. R., Radosavljević, J., Vulić, P., Pavlović, V. B., Manojlović, D. D.,& Nikolić, A. S.. (2020). Synthesis, characterization and in vitro evaluation of divalent ion release from stable NiFe2O4, ZnFe2O4 and core-shell ZnFe2O4@NiFe2O4 nanoparticles. in Ceramics International
Elsevier., 46(3), 3528-3533.
https://doi.org/10.1016/j.ceramint.2019.10.068
https://hdl.handle.net/21.15107/rcub_dais_6901
Anđelković L, Jeremić D, Milenković MR, Radosavljević J, Vulić P, Pavlović VB, Manojlović DD, Nikolić AS. Synthesis, characterization and in vitro evaluation of divalent ion release from stable NiFe2O4, ZnFe2O4 and core-shell ZnFe2O4@NiFe2O4 nanoparticles. in Ceramics International. 2020;46(3):3528-3533.
doi:10.1016/j.ceramint.2019.10.068
https://hdl.handle.net/21.15107/rcub_dais_6901 .
Anđelković, Ljubica, Jeremić, Dejan, Milenković, Milica R., Radosavljević, Jelena, Vulić, Predrag, Pavlović, Vladimir B., Manojlović, Dragan D., Nikolić, Aleksandar S., "Synthesis, characterization and in vitro evaluation of divalent ion release from stable NiFe2O4, ZnFe2O4 and core-shell ZnFe2O4@NiFe2O4 nanoparticles" in Ceramics International, 46, no. 3 (2020):3528-3533,
https://doi.org/10.1016/j.ceramint.2019.10.068 .,
https://hdl.handle.net/21.15107/rcub_dais_6901 .
11
4
11

Influence of various cosolvents on the calcium oxide-catalyzed ethanolysis of sunflower oil

Đokić Stojanović, Dušica R.; Todorović, Zoran B.; Troter, Dragan; Stamenković, Olivera S.; Veselinović, Ljiljana; Zdujić, Miodrag; Manojlović, Dragan D.; Veljković, Vlada B.

(Belgrade : Serbian Chemical Society, 2019)

TY  - JOUR
AU  - Đokić Stojanović, Dušica R.
AU  - Todorović, Zoran B.
AU  - Troter, Dragan
AU  - Stamenković, Olivera S.
AU  - Veselinović, Ljiljana
AU  - Zdujić, Miodrag
AU  - Manojlović, Dragan D.
AU  - Veljković, Vlada B.
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6183
AB  - Ten organic solvents (triethanolamine, diethanolamine, ethylene glycol, methyl ethyl ketone, n-hexane, triethylamine, ethylene glycol dimethyl ether, glycerol, tetrahydrofuran and dioxane) were applied as cosolvents in the CaO-catalyzed ethanolysis of sunflower oil performed in a batch stirred reactor under the following reaction conditions: temperature 70 °C, ethanol-to-oil mole ratio 12:1, initial catalyst concentration 1.374 mol·L -1 and amount of cosolvent 20 % based on the oil amount. The main goals were to assess the effect of the used cosolvents on the synthesis of fatty acid ethyl esters (FAEE) and to select the most efficient one with respect to the final FAEE content, reaction duration and safety profile. In the absence of any cosolvent, the reaction was rather slow, providing a FAEE content of only 89.7±1.7 % after 4 h. Of the tested cosolvents, diethanolamine, triethanolamine and ethylene glycol significantly accelerated the ethanolysis reaction, whereby the last two provided a final FAEE content of 93.1±2.1 and 94.1±1.5 %, respectively, within 0.5 h. However, because of its safety profile, triethanolamine was selected as the best cosolvent for the ethanolysis of sunflower oil catalyzed by calcined CaO.
PB  - Belgrade : Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Influence of various cosolvents on the calcium oxide-catalyzed ethanolysis of sunflower oil
SP  - 253
EP  - 265
VL  - 84
IS  - 3
DO  - 10.2298/JSC180827007D
UR  - https://hdl.handle.net/21.15107/rcub_dais_6183
ER  - 
@article{
author = "Đokić Stojanović, Dušica R. and Todorović, Zoran B. and Troter, Dragan and Stamenković, Olivera S. and Veselinović, Ljiljana and Zdujić, Miodrag and Manojlović, Dragan D. and Veljković, Vlada B.",
year = "2019",
abstract = "Ten organic solvents (triethanolamine, diethanolamine, ethylene glycol, methyl ethyl ketone, n-hexane, triethylamine, ethylene glycol dimethyl ether, glycerol, tetrahydrofuran and dioxane) were applied as cosolvents in the CaO-catalyzed ethanolysis of sunflower oil performed in a batch stirred reactor under the following reaction conditions: temperature 70 °C, ethanol-to-oil mole ratio 12:1, initial catalyst concentration 1.374 mol·L -1 and amount of cosolvent 20 % based on the oil amount. The main goals were to assess the effect of the used cosolvents on the synthesis of fatty acid ethyl esters (FAEE) and to select the most efficient one with respect to the final FAEE content, reaction duration and safety profile. In the absence of any cosolvent, the reaction was rather slow, providing a FAEE content of only 89.7±1.7 % after 4 h. Of the tested cosolvents, diethanolamine, triethanolamine and ethylene glycol significantly accelerated the ethanolysis reaction, whereby the last two provided a final FAEE content of 93.1±2.1 and 94.1±1.5 %, respectively, within 0.5 h. However, because of its safety profile, triethanolamine was selected as the best cosolvent for the ethanolysis of sunflower oil catalyzed by calcined CaO.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Influence of various cosolvents on the calcium oxide-catalyzed ethanolysis of sunflower oil",
pages = "253-265",
volume = "84",
number = "3",
doi = "10.2298/JSC180827007D",
url = "https://hdl.handle.net/21.15107/rcub_dais_6183"
}
Đokić Stojanović, D. R., Todorović, Z. B., Troter, D., Stamenković, O. S., Veselinović, L., Zdujić, M., Manojlović, D. D.,& Veljković, V. B.. (2019). Influence of various cosolvents on the calcium oxide-catalyzed ethanolysis of sunflower oil. in Journal of the Serbian Chemical Society
Belgrade : Serbian Chemical Society., 84(3), 253-265.
https://doi.org/10.2298/JSC180827007D
https://hdl.handle.net/21.15107/rcub_dais_6183
Đokić Stojanović DR, Todorović ZB, Troter D, Stamenković OS, Veselinović L, Zdujić M, Manojlović DD, Veljković VB. Influence of various cosolvents on the calcium oxide-catalyzed ethanolysis of sunflower oil. in Journal of the Serbian Chemical Society. 2019;84(3):253-265.
doi:10.2298/JSC180827007D
https://hdl.handle.net/21.15107/rcub_dais_6183 .
Đokić Stojanović, Dušica R., Todorović, Zoran B., Troter, Dragan, Stamenković, Olivera S., Veselinović, Ljiljana, Zdujić, Miodrag, Manojlović, Dragan D., Veljković, Vlada B., "Influence of various cosolvents on the calcium oxide-catalyzed ethanolysis of sunflower oil" in Journal of the Serbian Chemical Society, 84, no. 3 (2019):253-265,
https://doi.org/10.2298/JSC180827007D .,
https://hdl.handle.net/21.15107/rcub_dais_6183 .
3
2
4

Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study

Đokić-Stojanović, Dušica R.; Todorović, Zoran B.; Troter, Dragan Z.; Stamenković, Olivera S.; Veselinović, Ljiljana; Zdujić, Miodrag; Manojlović, Dragan D.; Veljković, Vlada B.

(2019)

TY  - JOUR
AU  - Đokić-Stojanović, Dušica R.
AU  - Todorović, Zoran B.
AU  - Troter, Dragan Z.
AU  - Stamenković, Olivera S.
AU  - Veselinović, Ljiljana
AU  - Zdujić, Miodrag
AU  - Manojlović, Dragan D.
AU  - Veljković, Vlada B.
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7041
AB  - Triethanolamine was applied as an efficient „green“ cosolvent for biodiesel production by CaO-catalyzed ethanolysis of sunflower oil. The reaction was conducted in a batch stirred reactor and optimized with respect to the reaction temperature (61.6-78.4 °C), the ethanol-to-oil molar ratio (7:1-17:1) and the cosolvent loading (3-36 % of the oil weight) by using a rotatable central composite design (RCCD) combined with the response surface methodology (RSM). The optimal reaction conditions were found to be: the ethanol-to-oil molar ratio of 9:1, the reaction temperature of 75 °C and the cosolvent loading of 30 % to oil weight, which resulted in the predicted and actual fatty acid ethyl ester (FAEE) contents of 98.8 % and 97.9±1.3 %, respectively, achieved within only 20 min of the reaction. Also, high FAEE contents were obtained with expired sunflower oil, hempseed oil and waste lard. X-ray diffraction analysis (XRD) was used to understand the changes in the CaO phase. The CaO catalyst can be used without any treatment in two consecutive cycles. Due to the calcium leaching into the product, an additional purification stage must be included in the overall process.
T2  - Hemijska industrija
T1  - Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study
SP  - 351
EP  - 362
VL  - 73
IS  - 6
DO  - 10.2298/HEMIND190822033D
UR  - https://hdl.handle.net/21.15107/rcub_dais_7041
ER  - 
@article{
author = "Đokić-Stojanović, Dušica R. and Todorović, Zoran B. and Troter, Dragan Z. and Stamenković, Olivera S. and Veselinović, Ljiljana and Zdujić, Miodrag and Manojlović, Dragan D. and Veljković, Vlada B.",
year = "2019",
abstract = "Triethanolamine was applied as an efficient „green“ cosolvent for biodiesel production by CaO-catalyzed ethanolysis of sunflower oil. The reaction was conducted in a batch stirred reactor and optimized with respect to the reaction temperature (61.6-78.4 °C), the ethanol-to-oil molar ratio (7:1-17:1) and the cosolvent loading (3-36 % of the oil weight) by using a rotatable central composite design (RCCD) combined with the response surface methodology (RSM). The optimal reaction conditions were found to be: the ethanol-to-oil molar ratio of 9:1, the reaction temperature of 75 °C and the cosolvent loading of 30 % to oil weight, which resulted in the predicted and actual fatty acid ethyl ester (FAEE) contents of 98.8 % and 97.9±1.3 %, respectively, achieved within only 20 min of the reaction. Also, high FAEE contents were obtained with expired sunflower oil, hempseed oil and waste lard. X-ray diffraction analysis (XRD) was used to understand the changes in the CaO phase. The CaO catalyst can be used without any treatment in two consecutive cycles. Due to the calcium leaching into the product, an additional purification stage must be included in the overall process.",
journal = "Hemijska industrija",
title = "Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study",
pages = "351-362",
volume = "73",
number = "6",
doi = "10.2298/HEMIND190822033D",
url = "https://hdl.handle.net/21.15107/rcub_dais_7041"
}
Đokić-Stojanović, D. R., Todorović, Z. B., Troter, D. Z., Stamenković, O. S., Veselinović, L., Zdujić, M., Manojlović, D. D.,& Veljković, V. B.. (2019). Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study. in Hemijska industrija, 73(6), 351-362.
https://doi.org/10.2298/HEMIND190822033D
https://hdl.handle.net/21.15107/rcub_dais_7041
Đokić-Stojanović DR, Todorović ZB, Troter DZ, Stamenković OS, Veselinović L, Zdujić M, Manojlović DD, Veljković VB. Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study. in Hemijska industrija. 2019;73(6):351-362.
doi:10.2298/HEMIND190822033D
https://hdl.handle.net/21.15107/rcub_dais_7041 .
Đokić-Stojanović, Dušica R., Todorović, Zoran B., Troter, Dragan Z., Stamenković, Olivera S., Veselinović, Ljiljana, Zdujić, Miodrag, Manojlović, Dragan D., Veljković, Vlada B., "Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study" in Hemijska industrija, 73, no. 6 (2019):351-362,
https://doi.org/10.2298/HEMIND190822033D .,
https://hdl.handle.net/21.15107/rcub_dais_7041 .
4
2
4

Supplementary material to Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study

Đokić-Stojanović, Dušica R.; Todorović, Zoran B.; Troter, Dragan Z.; Stamenković, Olivera S.; Veselinović, Ljiljana; Zdujić, Miodrag; Manojlović, Dragan D.; Veljković, Vlada B.

(2019)

TY  - DATA
AU  - Đokić-Stojanović, Dušica R.
AU  - Todorović, Zoran B.
AU  - Troter, Dragan Z.
AU  - Stamenković, Olivera S.
AU  - Veselinović, Ljiljana
AU  - Zdujić, Miodrag
AU  - Manojlović, Dragan D.
AU  - Veljković, Vlada B.
PY  - 2019
UR  - https://www.ache-pub.org.rs/index.php/HemInd/article/view/587/pdf_1
UR  - https://dais.sanu.ac.rs/123456789/7043
AB  - Figure D1. Normal probability plot of residuals (a), Cook's distances (b) and predicted and actual values of FAEE content (c); Table D1. Results of sequential model sum of squares test; Table D2. Results of lack of fit test; Table D3. Results of model summary statistics test
T2  - Hemijska industrija
T1  - Supplementary material to Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study
SP  - D17
EP  - D18
VL  - 73
IS  - 6
UR  - https://hdl.handle.net/21.15107/rcub_dais_7043
ER  - 
@misc{
author = "Đokić-Stojanović, Dušica R. and Todorović, Zoran B. and Troter, Dragan Z. and Stamenković, Olivera S. and Veselinović, Ljiljana and Zdujić, Miodrag and Manojlović, Dragan D. and Veljković, Vlada B.",
year = "2019",
abstract = "Figure D1. Normal probability plot of residuals (a), Cook's distances (b) and predicted and actual values of FAEE content (c); Table D1. Results of sequential model sum of squares test; Table D2. Results of lack of fit test; Table D3. Results of model summary statistics test",
journal = "Hemijska industrija",
title = "Supplementary material to Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study",
pages = "D17-D18",
volume = "73",
number = "6",
url = "https://hdl.handle.net/21.15107/rcub_dais_7043"
}
Đokić-Stojanović, D. R., Todorović, Z. B., Troter, D. Z., Stamenković, O. S., Veselinović, L., Zdujić, M., Manojlović, D. D.,& Veljković, V. B.. (2019). Supplementary material to Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study. in Hemijska industrija, 73(6), D17-D18.
https://hdl.handle.net/21.15107/rcub_dais_7043
Đokić-Stojanović DR, Todorović ZB, Troter DZ, Stamenković OS, Veselinović L, Zdujić M, Manojlović DD, Veljković VB. Supplementary material to Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study. in Hemijska industrija. 2019;73(6):D17-D18.
https://hdl.handle.net/21.15107/rcub_dais_7043 .
Đokić-Stojanović, Dušica R., Todorović, Zoran B., Troter, Dragan Z., Stamenković, Olivera S., Veselinović, Ljiljana, Zdujić, Miodrag, Manojlović, Dragan D., Veljković, Vlada B., "Supplementary material to Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study" in Hemijska industrija, 73, no. 6 (2019):D17-D18,
https://hdl.handle.net/21.15107/rcub_dais_7043 .

Supporting Information for Ajdačić Vladimir, Nikolić Andrea, Simić Stefan, Manojlović Dragan D., Stojanović Zoran S., Nikodinović Runić Jasmina, Opsenica Igor M., "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst" Synthesis (Germany), 50, no. 1 (2018), https://doi.org/10.1055/s-0036-1590892

Ajdačić, Vladimir; Nikolić, Andrea; Simić, Stefan; Manojlović, Dragan D.; Stojanović, Zoran S.; Nikodinović Runić, Jasmina; Opsenica, Igor

(2018)

TY  - DATA
AU  - Ajdačić, Vladimir
AU  - Nikolić, Andrea
AU  - Simić, Stefan
AU  - Manojlović, Dragan D.
AU  - Stojanović, Zoran S.
AU  - Nikodinović Runić, Jasmina
AU  - Opsenica, Igor
PY  - 2018
UR  - https://www.thieme-connect.de/media/synthesis/201801/supmat/sup_ss-2017-t0452-op_10-1055_s-0036-1590892.pdf
UR  - https://dais.sanu.ac.rs/123456789/3773
AB  - 1H NMR and 13C NMR Spectra of Products; GC‒MS
T2  - Synthesis
T1  - Supporting Information for Ajdačić Vladimir, Nikolić Andrea, Simić Stefan, Manojlović Dragan D., Stojanović Zoran S., Nikodinović Runić Jasmina, Opsenica Igor M., "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst" Synthesis (Germany), 50, no. 1 (2018),
https://doi.org/10.1055/s-0036-1590892
VL  - 50
IS  - 01
UR  - https://hdl.handle.net/21.15107/rcub_dais_3773
ER  - 
@misc{
author = "Ajdačić, Vladimir and Nikolić, Andrea and Simić, Stefan and Manojlović, Dragan D. and Stojanović, Zoran S. and Nikodinović Runić, Jasmina and Opsenica, Igor",
year = "2018",
abstract = "1H NMR and 13C NMR Spectra of Products; GC‒MS",
journal = "Synthesis",
title = "Supporting Information for Ajdačić Vladimir, Nikolić Andrea, Simić Stefan, Manojlović Dragan D., Stojanović Zoran S., Nikodinović Runić Jasmina, Opsenica Igor M., "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst" Synthesis (Germany), 50, no. 1 (2018),
https://doi.org/10.1055/s-0036-1590892",
volume = "50",
number = "01",
url = "https://hdl.handle.net/21.15107/rcub_dais_3773"
}
Ajdačić, V., Nikolić, A., Simić, S., Manojlović, D. D., Stojanović, Z. S., Nikodinović Runić, J.,& Opsenica, I.. (2018). Supporting Information for Ajdačić Vladimir, Nikolić Andrea, Simić Stefan, Manojlović Dragan D., Stojanović Zoran S., Nikodinović Runić Jasmina, Opsenica Igor M., "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst" Synthesis (Germany), 50, no. 1 (2018),
https://doi.org/10.1055/s-0036-1590892. in Synthesis, 50(01).
https://hdl.handle.net/21.15107/rcub_dais_3773
Ajdačić V, Nikolić A, Simić S, Manojlović DD, Stojanović ZS, Nikodinović Runić J, Opsenica I. Supporting Information for Ajdačić Vladimir, Nikolić Andrea, Simić Stefan, Manojlović Dragan D., Stojanović Zoran S., Nikodinović Runić Jasmina, Opsenica Igor M., "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst" Synthesis (Germany), 50, no. 1 (2018),
https://doi.org/10.1055/s-0036-1590892. in Synthesis. 2018;50(01).
https://hdl.handle.net/21.15107/rcub_dais_3773 .
Ajdačić, Vladimir, Nikolić, Andrea, Simić, Stefan, Manojlović, Dragan D., Stojanović, Zoran S., Nikodinović Runić, Jasmina, Opsenica, Igor, "Supporting Information for Ajdačić Vladimir, Nikolić Andrea, Simić Stefan, Manojlović Dragan D., Stojanović Zoran S., Nikodinović Runić Jasmina, Opsenica Igor M., "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst" Synthesis (Germany), 50, no. 1 (2018),
https://doi.org/10.1055/s-0036-1590892" in Synthesis, 50, no. 01 (2018),
https://hdl.handle.net/21.15107/rcub_dais_3773 .

Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst

Ajdačić, Vladimir; Nikolić, Andrea; Simić, Stefan; Manojlović, Dragan D.; Stojanović, Zoran S.; Nikodinović Runić, Jasmina; Opsenica, Igor M.

(Stuttgart : Georg Thieme Verlag KG, 2018)

TY  - JOUR
AU  - Ajdačić, Vladimir
AU  - Nikolić, Andrea
AU  - Simić, Stefan
AU  - Manojlović, Dragan D.
AU  - Stojanović, Zoran S.
AU  - Nikodinović Runić, Jasmina
AU  - Opsenica, Igor M.
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/3746
AB  - A facile decarbonylation reaction of a variety of aromatic and heteroaromatic aldehydes using maghemite-supported palladium catalyst has been developed. The magnetic properties of catalyst facilitated an easy and efficient recovery of the catalyst from the reaction mixture using an external magnet. It was found that the catalyst could be reused up to four consecutive catalytic runs without a significant change in activity. In addition, the catalyst was also very effective in the dehalogenation of aryl halides. This is the first report on efficient utilization of directly immobilized Pd on maghemite in decarbonylation and dehalogenation reactions. © Georg Thieme Verlag Stuttgart.New York.
PB  - Stuttgart : Georg Thieme Verlag KG
T2  - Synthesis (Germany)
T1  - Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst
EP  - 126
VL  - 50
IS  - 1
DO  - 10.1055/s-0036-1590892
UR  - https://hdl.handle.net/21.15107/rcub_dais_3746
ER  - 
@article{
author = "Ajdačić, Vladimir and Nikolić, Andrea and Simić, Stefan and Manojlović, Dragan D. and Stojanović, Zoran S. and Nikodinović Runić, Jasmina and Opsenica, Igor M.",
year = "2018",
abstract = "A facile decarbonylation reaction of a variety of aromatic and heteroaromatic aldehydes using maghemite-supported palladium catalyst has been developed. The magnetic properties of catalyst facilitated an easy and efficient recovery of the catalyst from the reaction mixture using an external magnet. It was found that the catalyst could be reused up to four consecutive catalytic runs without a significant change in activity. In addition, the catalyst was also very effective in the dehalogenation of aryl halides. This is the first report on efficient utilization of directly immobilized Pd on maghemite in decarbonylation and dehalogenation reactions. © Georg Thieme Verlag Stuttgart.New York.",
publisher = "Stuttgart : Georg Thieme Verlag KG",
journal = "Synthesis (Germany)",
title = "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst",
pages = "126",
volume = "50",
number = "1",
doi = "10.1055/s-0036-1590892",
url = "https://hdl.handle.net/21.15107/rcub_dais_3746"
}
Ajdačić, V., Nikolić, A., Simić, S., Manojlović, D. D., Stojanović, Z. S., Nikodinović Runić, J.,& Opsenica, I. M.. (2018). Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. in Synthesis (Germany)
Stuttgart : Georg Thieme Verlag KG., 50(1).
https://doi.org/10.1055/s-0036-1590892
https://hdl.handle.net/21.15107/rcub_dais_3746
Ajdačić V, Nikolić A, Simić S, Manojlović DD, Stojanović ZS, Nikodinović Runić J, Opsenica IM. Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst. in Synthesis (Germany). 2018;50(1):null-126.
doi:10.1055/s-0036-1590892
https://hdl.handle.net/21.15107/rcub_dais_3746 .
Ajdačić, Vladimir, Nikolić, Andrea, Simić, Stefan, Manojlović, Dragan D., Stojanović, Zoran S., Nikodinović Runić, Jasmina, Opsenica, Igor M., "Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst" in Synthesis (Germany), 50, no. 1 (2018),
https://doi.org/10.1055/s-0036-1590892 .,
https://hdl.handle.net/21.15107/rcub_dais_3746 .
11
6
11